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Abstract. We introduce the concept of left APP-rings which is a generalization
of left p.q.-Baer rings and right PP-rings, and investigate its properties. It is shown
that the APP property is inherited by polynomial extensions and is a Morita invariant
property.
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1. Introduction. Throughout this paper, R denotes a ring with unity. Recall that
R is (quasi-) Baer if the right annihilator of every nonempty subset (every right ideal)
of R is generated by an idempotent of R. In [13] Kaplansky introduced Baer rings
to abstract various properties of AW ∗-algebras and von Neumann algebras. Clark
defined quasi-Baer rings in [9] and used them to characterize when a finite dimensional
algebra with unity over an algebraically closed field is isomorphic to a twisted matrix
units semigroup algebra. As a generalization of quasi-Baer rings, Birkenmeier, Kim
and Park in [6] introduced the concept of principally quasi-Baer rings. A ring R is
called left principally quasi-Baer (or simply left p.q.-Baer) if the left annihilator of a
principal left ideal of R is generated by an idempotent. Similarly, right p.q.-Baer rings
can be defined. A ring is called p.q.-Baer if it is both right and left p.q.-Baer. Observe
that biregular rings and quasi-Baer rings are p.q.-Baer. For more details and examples
of left p.q.-Baer rings, see [3], [4], [5], [6], and [15]. We say a ring R is a left APP-ring
if the left annihilator lR(Ra) is right s-unital as an ideal of R for any element a ∈ R.
This concept is a common generalization of left p.q.-Baer rings and right PP-rings. In
this paper we investigate left APP-rings. In section 2 we provide several basic results.
In section 3 we discuss various constructions and extensions under which the class of
left APP-rings is closed.

For a nonempty subset Y of R, lR(Y ) and rR(Y ) denote the left and right annihilator
of Y in R, respectively.

2. Left APP-rings. An ideal I of R is said to be right s-unital if, for each a ∈ I there
exists an element x ∈ I such that ax = a. Note that if I and J are right s-unital ideals,
then so is I ∩ J (if a ∈ I ∩ J, then a ∈ aIJ ⊆ a(I ∩ J)). It follows from [22, Theorem 1]
that I is right s-unital if and only if for any finitely many elements a1, a2, . . . , an ∈ I
there exists an element x ∈ I such that ai = aix, i = 1, 2, . . . , n. A submodule N of a left
R-module M is called a pure submodule if L ⊗R N −→ L ⊗R M is a monomorphism
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for every right R-module L. By [19, Proposition 11.3.13], an ideal I is right s-unital if
and only if R/I is flat as a left R-module if and only if I is pure as a left ideal of R.

DEFINITION 2.1. A ring R is called a left APP-ring if the left annihilator lR(Ra) is
right s-unital as an ideal of R for any element a ∈ R.

Right APP-rings may be defined analogously. Clearly every left p.q.-Baer ring is
a left APP-ring (thus the class of left APP-rings includes all biregular rings and all
quasi-Baer rings).

A ring R is called a right (resp. left) PP-ring if the right (resp. left) annihilator of an
element of R is generated by an idempotent. R is called a PP-ring if it is both right and
left PP. Clearly every Baer ring is a PP-ring. The following result appeared in Fraser
and Nicholson [10, Proposition 1].

LEMMA 2.2. The following conditions are equivalent for a ring R.
(1) R is a right PP-ring.
(2) If ∅ 	= X ⊆ R then for all a ∈ lR(X), a ∈ alR(X).

From [1], a ring R is called an Armendariz ring if whenever f (x) = ∑m
i=0 aixi, g(x) =∑n

j=0 bjxj ∈ R[x] satisfy f (x)g(x) = 0, we have aibj = 0 for every i and j. From [11], a ring
R is called a quasi-Armendariz ring if whenever f (x) = ∑m

i=0 aixi, g(x) = ∑n
j=0 bjxj ∈

R[x] satisfy f (x)R[x]g(x) = 0, we have aiRbj = 0 for every i and j. Armendariz rings
are quasi-Armendariz rings. Results and examples of quasi-Armendariz rings appeared
in [11].

PROPOSITION 2.3. For any ring, we have the following implications:
(1) right PP ⇒ left APP.
(2) quasi-Baer ⇒ left p.q.-Baer ⇒ left APP ⇒ quasi-Armendariz.

Proof. (1). This follows from Lemma 2.2.
(2). If R is a left APP-ring, then, by [11, Theorem 3.9], R is a quasi-Armendariz

ring. Other implications are clear. �
All of the converses in Proposition 2.3 do not hold. In fact, left p.q.-Baer �

quasi-Baer follows from [6, Example 1.5]. Some examples were given in [6, Exam-
ples 1.3 and 1.5] to show that the class of left p.q.-Baer rings is not contained in the
class of right PP-rings and, the class of right PP-rings is not contained in the class of left
p.q.-Baer rings. By Proposition 2.3, it is clear that both of these classes are contained
in the class of left APP-rings. This shows that left APP � left p.q.-Baer and left
APP � right PP. Quasi-Armendariz � left APP follows from the following example.

EXAMPLE 2.4. Use the ring in [4, Example 2.3]. For a given field F , let

S =
{

(an)∞n=1 ∈
∏

F |an is eventually constant
}
,

which is a subring of the countably infinite direct product
∏

F . Then the ring S
is a commutative ring. Let R = S[[x]]. Clearly S is a reduced ring. Suppose that
f (x) = a0 + a1x + a2x2 + · · · and g(x) = b0 + b1x + b2x2 + · · · ∈ S[[x]] are such that
f (x)g(x) = 0. Then, from [1, p. 2269], it follows that aibj = 0 for all i and j. Thus R is
a reduced ring. From [2], R is an Armendariz ring, and so it is a quasi-Armendariz
ring.
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Suppose that R is an APP-ring. Let f (x) = f0 + f1x + f2x2 + · · · and g(x) =
g0 + g1x + g2x2 + · · · ∈ R, where f0 = (0, 1, 0, 0, . . .), f1 = (0, 1, 0, 1, 0, 0, . . .), f2 =
(0, 1, 0, 1, 0, 1, 0, 0, . . .), . . . , and g0 = (1, 0, 0, 0, . . .), g1 = (1, 0, 1, 0, 0, 0, . . .), g2 =
(1, 0, 1, 0, 1, 0, 0, 0, . . .), . . . . Then g(x) ∈ lR(R f (x)). Thus there exists h(x) ∈ lR(R f (x))
such that g(x) = g(x)h(x). Suppose that h(x) = h0 + h1x + h2x2 + · · ·. Now from
h(x) f (x) = 0 and from [1, p. 2269] it follows that hi fj = 0 for all i and j and, so
there exists ni ∈ � such that hi has the form (bi

1, 0, bi
3, 0, . . . , bi

2ni+1, 0, 0, 0, . . .), where
bi

k ∈ F , i = 0, 1, 2, . . . . From g(x)(1 − h(x)) = 0 it follows that gi(1 − h0) = 0 and
gihj = 0 for all i and j ≥ 1 and, so there exists mi ∈ � such that hi has the form
(0, bi

2, 0, bi
4, 0, . . . , bi

2mi
, 0, 0, 0, . . .), where bi

k ∈ F , i = 1, 2, . . . . Thus h1 = h2 = · · · =
0 and so h(x) = h0. This contradicts with gi = gih0, i = 0, 1, . . . . Thus R is not APP.

The following is an example of commutative APP-rings which are neither PP nor
p.q.-Baer. Recall that a ring R is called a left Bezout ring if every finitely generated left
ideal of R is principal. We denote by w.g.dim(R) the weak global dimension of a ring
R, which is defined as sup{ f d(A)|A is a left R-module}. Note that w.g.dim(R) ≤ 1 if
and only if every left ideal of R is flat.

EXAMPLE 2.5. (see, [8, p. 64]) Let � be the ring of integers and let

S =
( ∞∏

i=1

�/2�

) / ( ∞⊕
i=1

�/2�

)
.

Then S is clearly a Boolean ring and, by [8, p. 64], the weak global dimension of S[[x]]
is one and S[[x]] is not semihereditary. Let R = S[[x]]. Then every principal ideal of R
is flat, and so R/ lR(Ra) = R/ lR(a) ∼= Ra is flat. Thus lR(Ra) is pure as a left ideal of
R for every a ∈ R. Hence R is an APP-ring. In [8, Theorem 43], it was shown that the
power series ring A[[x]] over a von Neumann regular ring A is semihereditary if and
only if A[[x]] is a Bezout ring in which all principal ideals are projective. On the other
hand, by [8, Theorem 42], S[[x]] is a Bezout ring since the weak global dimension of
S[[x]] is one. Thus R is not PP, and so is not p.q.-Baer.

PROPOSITION 2.6. The following conditions are equivalent for a ring R.
(1) R is a left APP-ring.
(2) If I is a finitely generated left ideal of R then for all a ∈ lR(I), a ∈ alR(I).

Proof. Clearly (2) implies (1). Now suppose that R is a left APP-ring and I =
Ra1 + · · · + Ran is a finitely generated left ideal of R. Then lR(I) = ∩n

i=1lR(Rai). Let
a ∈ lR(I). Then a ∈ lR(Rai) for each i. Hence there exists xi ∈ lR(Rai) such that axi = a
for each i. Then ax = a, where x = x1x2 · · · xn ∈ lR(I). �

PROPOSITION 2.7. Suppose that R satisfies the ascending chain condition on principal
left ideals. Then the following conditions are equivalent.

(1) R is a left APP-ring.
(2) R is a left p.q.-Baer ring.

Proof. Clearly (2) implies (1). Suppose that R is a left APP-ring. For every a ∈ R,
denote L = lR(Ra). Take a maximal principal ideal Rb contained in L. Since b = bl
for some l ∈ L, Rb ⊆ Rl, so maximality of Rb implies that Rb = Rl. Hence l = xb for
some x ∈ R and b = bxb and Rb = Re, where e = xb = e2. Clearly L = Le + L(1 − e).
Note that if t ∈ L(1 − e), then Re ⊆ R(e + t − et) ⊆ L. Hence Re = R(e + t − et) and,
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since Re ∩ R(t − et) = 0, we get that t − et = 0. However (et)2 = 0, so t2 = 0. On the
other hand, for every u ∈ L(1 − e), u = ul for some l ∈ L. Consequently u = ul(1 − e).
Now w = l(1 − e) ∈ L(1 − e), so w2 = 0. Consequently u = uw = uw2 = 0. Thus
L(1 − e) = 0, so L = Re and we are done. �

Note that this reasoning shows in fact that in rings satisfying ascending chain
condition on principal left ideals, right s-unital ideals are generated by idempotents (as
left ideals).

PROPOSITION 2.8. Let R be a commutative Bezout ring. Then the following conditions
are equivalent.

(1) R is an APP-ring.
(2) w.g.dim(R) ≤ 1.

Proof. If R is a commutative Bezout ring, then w.g.dim(R) ≤ 1 if and only if every
ideal of R is flat if and only if every finitely generated ideal of R is flat if and only if
every principal ideal of R is flat if and only if R/ lR(Ra) is flat for every a ∈ R if and
only if R is an APP-ring. �

Note that Baer rings have no nonzero central nilpotent elements, and so
commutative Baer rings are reduced. Huh, Kim and Lee in [12, Proposition 4] extended
this property onto right PP-rings by showing that right PP-rings have no nonzero
central nilpotent elements. For left APP-rings we have the following more general
result.

PROPOSITION 2.9. Let R be a left APP-ring. If 0 	= a ∈ R is such that lR(Ra) ⊆ rR(a),
then aRa 	= 0.

Proof. Suppose that aRa = 0. Then a ∈ lR(Ra). Since R is a left APP-ring, there
exists b ∈ lR(Ra) such that a = ab. Thus b ∈ rR(a) and so a = ab = 0. �

As a corollary we have that left APP-rings have no nonzero central nilpotent
elements.

COROLLARY 2.10. Let R be a left APP-ring. Then R is semiprime if and only if
lR(Ra) ⊆ rR(a) for all a ∈ R.

Proof. Suppose that R is semiprime. Note that ((Ra)lR(Ra)R)2 = 0 for all a ∈ R.
Thus RalR(Ra)R = 0 and so lR(Ra) ⊆ rR(a) for all a ∈ R. Conversely if lR(Ra) ⊆ rR(a)
for all a ∈ R, then, by Proposition 2.9, R is semiprime. �

COROLLARY 2.11. Commutative APP-rings are reduced.

In [12, Example 3], an example was given to show that commutative reduced rings
need not be PP. In fact, there exist commutative reduced rings which need not be APP.
For example, let R be the ring as in Example 2.4. Then R is a commutative reduced
ring. But R is not an APP-ring.

3. Extensions of left APP-rings. In this section we discuss various constructions
and extensions under which the class of left APP-rings is closed. We deal with the
direct sums as rings without identity when the index sets are infinite. In this case the
definitions of right PP-rings, left p.q.-Baer rings and left APP-rings are also valid.
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Note that the direct sums of right PP-rings need not be right PP. Consider the
following example. Let F be a field and Ri = F , i = 1, 2, . . . . Suppose that R = ⊕∞

i=1Ri

is a right PP-ring. Then for a = (1, 0, 0, · · ·) ∈ R, there exists e ∈ R such that rR(a) =
eR. Write e = (e1, e2, . . . , en, 0, 0, . . .). Denote x = (xi)∞i=1 where xn+1 = 1 and xi = 0
for i = 1, 2, . . . , n, n + 2, . . . . Clearly ax = 0 but x 	∈ eR. So R is not a PP-ring. This
example also shows that the direct sums of left p.q.-Baer rings need not be left p.q.-Baer.

From [12], a ring R is called a generalized right PP-ring if for any x ∈ R the right
ideal xnR is projective for some positive integer n, depending on x, or equivalently, if for
any x ∈ R the right annihilator of xn is generated by an idempotent for some positive
integer n, depending on x. By [12, Lemma 1(iv)], R is a generalized right PP-ring if
and only if R is a right PP-ring when R is reduced. Note that in the above example,
the ring R = ⊕∞

i=1Ri is reduced. So above example also shows that the direct sums of
generalized right PP-rings need not be generalized right PP. Hence Proposition 7(ii) of
[12] is incorrect.

But for left APP-rings we have the following result.

PROPOSITION 3.1. Let Ri, i ∈ I be rings. Then we have the following:
(1) R = ∏

i∈I Ri is a left APP-ring if and only if Ri is a left APP-ring for each i ∈ I.
(2) R = ⊕

i∈I Ri is a left APP-ring if and only if Ri is a left APP-ring for each i ∈ I.

If |I| < ∞, then the result is clear. If |I| = ∞, then Proposition 3.1 is a direct
corollary of the following more general result. Let ℵ be an infinite cardinal number.
Suppose that I is a set and {Ri|i ∈ I} is a family of rings. Let x = (xi)i∈I ∈ ∏

i∈I Ri. We
define the support of x as supp(x) = {i ∈ I|xi 	= 0}. For an infinite cardinal number ℵ,
define the ℵ-product of the Ri’s as

ℵ∏
i∈I

Ri =
{

x ∈
∏
i∈I

Ri | |supp(x)| < ℵ
}

.

Clearly one may view the direct sum and the direct product of a family of rings as
two special cases of the same object, namely, the ℵ-product of the family of rings.
ℵ-products of some families of modules have been studied by [17], [20] and [21].

PROPOSITION 3.2. Let Ri, i ∈ I be rings. Then R = ∏ℵ
i∈I Ri is a left APP-ring if and

only if Ri is a left APP-ring for each i ∈ I.

Proof. If the ring R is a left APP-ring, then clearly so is each Ri. Conversely
suppose that every Ri is a left APP-ring. Let a = (ai)i∈I and b = (bi)i∈I be in R such
that aRb = 0. Then aiRibi = 0 for every i ∈ I . Thus, for every i ∈ supp(b), there exists
ci ∈ Ri such that ai = aici and ciRibi = 0. Now define x = (xi)i∈I via

xi =
⎧⎨
⎩

ci i ∈ supp(b)
1 i ∈ supp(a) − supp(b)
0 i 	∈ supp(a) ∪ supp(b).

Then x ∈ R since |supp(x)| < ℵ, and a = ax, xRb = 0. Thus R is a left APP-ring. �
Let A be a ring, B be a unitary subring of A, {Ai}∞i=1 be a countable set of copies

of A, D be the direct product of all rings Ai, and let R = R(A, B) be the subring of D
generated by the ideal

⊕∞
i=1 Ai and by the subring {(b, b, · · ·)|b ∈ B} (see [23]). Then

we have the following result.
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PROPOSITION 3.3. If A is a commutative ring, then the ring R(A, B) is an APP-ring
if and only if A and B are APP-rings.

Proof. Denote R = R(A, B). Let (xi)∞i=1 and (yi)∞i=1 ∈ R be such that
(xi)∞i=1R(yi)∞i=1 = 0. We note that there exists n such that xn = xn+1 = · · · ∈ B and
yn = yn+1 = · · · ∈ B. Clearly we have xiAyi = 0 for i = 1, 2, . . . , n. Since A is an
APP-ring, there exists wi ∈ A such that xi = xiwi and wiAyi = 0, i = 1, 2, . . . , n − 1.
Since B is an APP-ring and xnByn = 0, there exists wn ∈ B such that xn = xnwn

and wnByn = 0. Since A is commutative, we have wnAyn = 0. Thus (xi)∞i=1 =
(xi)∞i=1(w1, w2, . . . , wn−1, wn, wn, . . .) and (w1, w2, . . . , wn−1, wn, wn, . . .)R(yi)∞i=1 = 0.
Hence R is an APP-ring.

Conversely, if R is an APP-ring, then it is easy to see that A and B are APP-rings
by noting that A is commutative. �

Note that if R(A, B) is a left APP-ring, then A is a left APP-ring. But Example 3.9(2)
shows that B need not be a left APP-ring in general.

PROPOSITION 3.4. Let A be a left APP-ring. If lB(Ab) = 0 for every 0 	= b ∈ B, then
the ring R(A, B) is a left APP-ring.

Proof. In the proof of Proposition 3.3, if yn = 0, then take wn = 1 ∈ B. If
yn 	= 0, then lB(Ayn) = 0. Thus xn = 0. If we take wn = 0, then xn = xnwn and
wnAyn = 0. Thus (xi)∞i=1 = (xi)∞i=1(w1, w2, . . . , wn−1, wn, wn, . . .) and (w1, w2, . . . , wn−1,

wn, wn, . . .)R(yi)∞i=1 = 0. Hence R is a left APP-ring. �

Let n be a positive integer. Let Mn(R) denote the ring of n × n matrices over R.

PROPOSITION 3.5. R is a left APP-ring if and only if Mn(R) is a left APP-ring.

Proof. Let R be a left APP-ring and A = (aij) ∈ Mn(R). Suppose that B = (bij) ∈
Mn(R) is such that B ∈ lMn(R)(Mn(R)A). Then BMn(R)A = 0. Let Eij denote the (i, j)-
matrix unit. Then (

∑
p,q bpqEpq)rEij(

∑
s,t astEst) = 0 for any r ∈ R and any i and j. Thus∑

p,t bpirajtEpt = 0, which implies that bpirajt = 0 for any p and t. Hence bpi ∈ lR(Rajt)
for all i, j, p and t. So bpq ∈ lR(

∑
i,j Raij) for all p, q. By Proposition 2.6, there exists

c ∈ lR(
∑

i,j Raij) such that bpq = bpqc for all p, q. Thus

B = B

⎛
⎜⎜⎜⎝

c
c

. . .
c

⎞
⎟⎟⎟⎠

and it is easy to see that

⎛
⎜⎜⎜⎝

c
c

. . .
c

⎞
⎟⎟⎟⎠ Mn(R)A = 0.

Thus Mn(R) is a left APP-ring.
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Conversely suppose that Mn(R) is a left APP-ring and a, b ∈ R is such that a ∈
lR(Rb). Set

A =

⎛
⎜⎜⎜⎝

a
0

. . .
0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

b
0

. . .
0

⎞
⎟⎟⎟⎠ .

Then AMn(R)B = 0. Thus there exists C = (cij) ∈ Mn(R) such that A = AC,

CMn(R)B = 0. Now it is easy to see that a = ac11 and c11Rb = 0. Thus R is a left
APP-ring. �

PROPOSITION 3.6. R is a left APP-ring if and only if the upper triangular matrix ring
Tn(R) over R is a left APP-ring.

Proof. Let R be a left APP-ring and A = (aij) ∈ Tn(R). Suppose that B = (bij) ∈
Tn(R) is such that B ∈ lTn(R)(Tn(R)A). Then BTn(R)A = 0. By analogy with the proof of
Proposition 3.5, we obtain that bpi ∈ lR(Rajt) for all i, j, p and t with p ≤ i ≤ j ≤ t. Thus
b11 ∈ lR(

∑
1≤i≤j≤n Raij), b12, b22 ∈ lR(

∑
2≤i≤j≤n Raij), . . . , b1,n−1, b2,n−1, . . . , bn−1,n−1 ∈

lR(
∑

n−1≤i≤j≤n Raij), b1n, b2n, . . . , bnn ∈ lR(Rann). Since R is a left APP-ring, by
Proposition 2.6, there exist c1, c2, . . . , cn such that

c1 ∈ lR

( ∑
1≤i≤j≤n

Raij

)
, b11 = b11c1,

c2 ∈ lR

( ∑
2≤i≤j≤n

Raij

)
, b12 = b12c2, b22 = b22c2,

· · · · · · · · · · · ·
cn ∈ lR(Rann), bkn = bkncn, k = 1, 2, . . . , n.

Now it is easy to see that

B = B

⎛
⎜⎜⎜⎝

c1

c2

. . .
cn

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

c1

c2

. . .
cn

⎞
⎟⎟⎟⎠ Tn(R)A = 0.

Hence Tn(R) is a left APP-ring.
Conversely if Tn(R) is a left APP-ring, then, by analogy with the proof of

Proposition 3.5, we can show that R is left APP. �
PROPOSITION 3.7. Let e ∈ R be an idempotent. If R is a left APP-ring then eRe is a

left APP-ring.

Proof. Let x ∈ eRe and a ∈ leRe(eRex). Then aRexe = (ae)Rexe = a(eRe)xe = 0.
Thus a ∈ lR(R(exe)). Since lR(R(exe)) is pure as a left ideal of R, there exists
b ∈ lR(R(exe)) such that a = ab. Thus a = ae = abe = (eae)be = (eae)(ebe) = a(ebe)
and (ebe)(eRe)x = eb(eRe)x = eb(eRe)xe = eb(eR)(exe) ⊆ ebR(exe) = 0. Hence ebe ∈
leRe(eRex). This means that leRe(eRex) is pure as a left ideal of eRe and so eRe is a left
APP-ring. �
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From [6, Theorem 2.2], the concept of left p.q.-Baer rings is a Morita invariant
property. But the concept of right PP-rings is not a Morita invariant property because
�[x] is Baer but the 2 × 2 full matrix ring over �[x] is not a right PP-ring ([2]). From
Propositions 3.5 and 3.7, for left APP-rings we have the following result.

THEOREM 3.8. The endomorphism ring of a finitely generated projective module over
a left APP-ring is left APP. In particular, the left APP condition is a Morita invariant
property.

EXAMPLE 3.9. (1). Subrings of a left APP-ring need not be left APP. Let A = M2(F)
where F is a field. Then A is a left APP-ring by Proposition 3.5. Let

B =
{(

a b
0 a

)
|a, b ∈ F

}
.

Then B is not a left APP-ring by Proposition 2.9.
(2). Factor rings of a left APP-ring need not be left APP. The ring � of integers is

an APP-ring whereas its homomorphic image �/4� is not. The following is another
example of such rings. Let A, B be as in (1). Suppose that a, b, c, d ∈ F are such that(

a b
0 a

)
A

(
c d
0 c

)
= 0

but
(c d

0 c

) 	= 0. If c 	= 0, then clearly
(a b

0 a

) = 0. If c = 0, then d 	= 0. From

(
a b
0 a

) (
0 0
1 1

) (
0 d
0 0

)
= 0

it follows that bd = 0 and ad = 0, which imply that a = b = 0. Thus, lB
(
A

(c d
0 c

)) = 0,
and so, by Proposition 3.4, R = R(A, B) is a left APP-ring since A is a left APP-ring.
But the factor ring R/(⊕∞

i=1Ai), which is isomorphic to B by [23, Example 15.7(2)], is
not left APP. This example also shows that if R(A, B) is a left APP-ring, then B need
not be a left APP-ring in general.

Note that the ring R = {(a b
0 a

)|a, b ∈ F
}
, where F is a given field, is a generalized

right PP-ring by [12, Proposition 3]. So Example 3.9(1) shows that generalized right
PP-rings need not be left APP. On the other hand, let R = M2(�[x]). Then R is both
left and right APP by Proposition 3.5 and Corollary 3.12. But R is not a generalized
right PP-ring by [12, Example 4]. Thus left APP-rings need not be generalized right
PP.

Recall that a monoid S is called a u.p.-monoid (unique product monoid) if for
any two nonempty finite subsets A, B ⊆ S there exists an element g ∈ S uniquely
presented in the form ab where a ∈ A and b ∈ B. The class of u.p.-monoids is quite
large and important (see [7], [16] and [18]). For example, this class includes the right or
left ordered monoids, submonoids of a free group, and torsion-free nilpotent groups.
Every u.p.-monoid S has no non-unity element of finite order.

Let R be a ring and S a u.p.-momoid. Assume that there is a monoid homo-
morphism α : S −→ Aut(R). For any s ∈ S, we denote the image of s under α by αs. Then
we can form a skew monoid ring R ∗ S (induced by the monoid homomorphism α) by
taking its elements to be finite formal combinations

∑
s∈S ass, with multiplication
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induced by:

(ass)(btt) = asαs(bt)(st).

A monoid homomorphism α : S −→ Aut(R) is said to satisfy condition (*) if for
every a ∈ R, the left ideal

∑
s∈S Rαs(a) is finitely generated. In [11, Theorem 3.9], it was

shown that a ring R is left APP if and only if R[x] is left APP. For skew monoid rings
we have the following result.

THEOREM 3.10. Let R be a left APP-ring and S a u.p.-monoid. If α : S −→ Aut(R)
satisfies the condition (∗), then the skew monoid ring R ∗ S (induced by the monoid
homomorphism α) is a left APP-ring.

Proof. Suppose that f = a1s1 + a2s2 + · · · + ansn, g = b1t1 + b2t2 + · · · + bmtm ∈
R ∗ S are such that f ∈ lR∗S((R ∗ S)g). Then f (R ∗ S)g = 0. Thus for every s ∈ S and
every r ∈ R, f (rs)g = 0. Suppose that c1, c2, . . . , cn ∈ R are such that ai = αsi (ci) for
i = 1, 2, . . . , n. We will show that ci ∈ lR(Rαs(bj)) for every s ∈ S, i = 1, 2, . . . , n, j =
1, 2, . . . , m by induction on m.

If m = 1, then g = b1t1. Thus 0 = (a1s1 + a2s2 + · · · + ansn)(rs)(b1t1) = a1αs1

(rαs(b1))s1st1 + a2αs2 (rαs(b1))s2st1 + · · · + anαsn (rαs(b1))snst1 for every r ∈ R. By [7,
Lemma 1.1], S is a cancellative monoid. Thus sist1 	= sjst1 for si 	= sj. Hence
aiαsi (rαs(b1)) = 0, which implies that ci ∈ lR(Rαs(b1)) since αsi is an automorphism,
i = 1, 2, . . . , n.

Now suppose that m ≥ 2. Since S is a u.p.-monoid, there exist p, q with 1 ≤ p ≤ n
and 1 ≤ q ≤ m such that spstq is uniquely presented by considering two subsets
{s1, s2, . . . , sn} and {st1, st2, . . . , stm} of S. Thus from f (rs)g = 0 it follows that
apαsp (rαs(bq))spstq = 0 and so apαsp (rαs(bq)) = 0. Thus αsp (cprαs(bq)) = 0, which implies
that cprαs(bq) = 0 for every r ∈ R since αsp is an automorphism. Hence cp ∈ lR(Rαs(bq)).
Since lR(Rαs(bq)) is pure as a left ideal of R, there exists an element eq ∈ lR(Rαs(bq))
such that cp = cpeq. Thus for every r ∈ R, we have

0 = f (eqrs)g = (a1s1 + a2s2 + · · · + ansn)(eqrs)

· (b1t1 + b2t2 + · · · + bq−1tq−1 + bq+1tq+1 + · · · + bmtm)

+ (a1s1 + a2s2 + · · · + ansn)((eqrαs(bq))stq)

= (a1αs1 (eq)s1 + a2αs2 (eq)s2 + · · · + anαsn (eq)sn)(rs)

· (b1t1 + b2t2 + · · · + bq−1tq−1 + bq+1tq+1 + · · · + bmtm).

Since aiαsi (eq) = αsi (cieq), by induction, it follows that cieq ∈ lR(Rαs(bj)) for i =
1, 2, . . . , n, j = 1, 2, . . . , q − 1, q + 1, . . . , m. Therefore

cp = cpeq ∈ ∩m
j=1lR(Rαs(bj)).

Now apαsp (Rαs(bj)) = αsp (cpRαs(bj)) = 0 for any j = 1, 2, . . . , m. Thus from f (rs)g = 0
it follows that

0 = (a1s1 + a2s2 + · · · + ap−1sp−1 + ap+1sp+1 + · · · + ansn)

· (rs)(b1t1 + b2t2 + · · · + bmtm).

By using the previous method, there exists k ∈ {1, 2, . . . , p − 1, p + 1, . . . , n} such that
ck ∈ ∩m

j=1lR(Rαs(bj)). Thus akαsk (Rαs(bj)) = αsk (ckRαs(bj)) = 0 for any j = 1, 2, . . . , m.
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Hence (a1s1 + a2s2 + · · · + ap−1sp−1 + ap+1sp+1 + · · · + ak−1sk−1 + ak+1sk+1 +· · · + ansn)
(rs)(b1t1 + b2t2 + · · · + bmtm) = 0. Continuing this procedure yields c1, c2, . . . , cn ∈
∩m

j=1lR(Rαs(bj)) for every s ∈ S.
Set

L =
m∑

j=1

∑
s∈S

Rαs(bj).

Then c1, c2, . . . , cn ∈ lR(L). Since α satisfies the condition (*), it is easy to see
that L is finitely generated. From Proposition 2.6, lR(L) is pure as a left ideal
of R. Thus there exists d ∈ lR(L) such that ci = cid, i = 1, 2, . . . , n. Denote by
η the identity of the monoid S. Then f (dη) = ∑n

i=1 aiαsi (d)si = ∑n
i=1 αsi (cid)si =∑n

i=1 αsi (ci)si = ∑n
i=1 aisi = f . For every r ∈ R and every s ∈ S, rαs(bj) ∈ L and, so

(dη)(rs)g = ∑m
j=1 drαs(bj)(stj) = 0. Thus dη ∈ lR∗S((R ∗ S)g). This shows that R ∗ S is

a left APP-ring. �
REMARK 3.11. It is natural to ask for examples of monoid homomorphisms α :

S −→ Aut(R) which satisfy the condition (*).
1. If α(s) = 1 for every s ∈ S, then α satisfies the condition (*).
2. Let T be a ring and R = T ⊕ T . Let γ : R −→ R be an automorphism defined

by γ ((a, b)) = (b, a). Let S = � (or S = � ∪ {0}). Define α : S −→ Aut(R) via α0 = 1
and αn = γ n for every 0 	= n ∈ �. Then

∑
n∈� Rαn((a, b)) = R(a, b) + R(b, a) for every

(a, b) ∈ R. Thus α is a monoid homomorphism satisfying the condition (*).
3. Let T be a ring and R = M2(T). Let γ : R −→ R be an automorphism defined

by

γ

((
a b
c d

))
=

(
a −b

−c d

)
.

Let S = � (or S = � ∪ {0}). Define α : S −→ Aut(R) via α0 = 1 and αn = γ n for every
0 	= n ∈ �. Then

∑
n∈�

Rαn

((
a b
c d

))
= R

(
a b
c d

)
+ R

(
a −b

−c d

)
.

Thus α satisfies the condition (*).
4. Let

R =
{(

a q
0 a

)
|a ∈ �, q ∈ �

}
.

Define γ : R −→ R via

γ

((
a q
0 a

))
=

(
a 2q
0 a

)
.

Then it is easy to see that
∑∞

n=0 Rγ n
((a q

0 a

)) = R
(a q

0 a

)
. Thus α : S = � ∪ {0} −→

Aut(R), defined by α0 = 1 and αn = γ n for every n ∈ �, satisfies the condition (*).

Armendariz showed that polynomial rings over right PP-rings need not be right
PP in the example in [2]. From [5, Theorem 2.1], a ring R is a left p.q.-Baer ring if
and only if R[x] is a left p.q.-Baer ring. It was shown in [7, Corollary 1.4] that R is left
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p.q.-Baer if and only if R[x, x−1] is left p.q.-Baer. For monoid rings, it was shown that
the monoid ring R[S] of a u.p.-monoid S over a ring R is left p.q.-Baer if and only if R
is left p.q.-Baer (see [7, Theorem 1.2]) and R[S] is a reduced PP-ring if and only if R
is a reduced PP-ring (see [7, Corollary 1.3]). For left APP-rings we have the following
result.

COROLLARY 3.12. Let S be a u.p.-monoid and X a nonempty set of not necessarily
commuting indeterminates. Then the following conditions are equivalent.

(1) R is left APP.
(2) R[X ] is left APP.
(3) R[x, x−1] is left APP.
(4) R[S] is left APP.

Proof. The implication (1) ⇒ (4) follows from Theorem 3.10. (4) ⇒ (1). Let a, b ∈ R
be such that a ∈ lR(Rb). Then a ∈ lR[S](R[S]b). Thus there exists

∑n
i=0 aisi ∈ lR[S](R[S]b)

with s0 = η, the identity of S, such that a = a(
∑n

i=0 aisi). Now it is easy to see that
a = aa0 and a0Rb = 0. Thus R is a left APP-ring.

(1) ⇔ (2) ⇔ (3) follow from (1) ⇔ (4), noting that the monoid generated by X
is a u.p.-monoid and R[x, x−1] ∼= R[�], the monoid ring of the u.p.-monoid �

over R. �
COROLLARY 3.13. Let R be a left APP-ring and α a ring automorphism of R such

that
∑∞

i=0 Rαi(b) is finitely generated for every b ∈ R. Then the skew polynomial ring
R[x; α] is a left APP-ring.

There exists a commutative von Neumann regular ring R (hence left APP), but
the ring R[[x]] is not APP. For example, let R be the ring S defined in Example 2.4.
Then R is a commutative von Neumann regular ring. By Example 2.4, R[[x]] is not an
APP-ring.

Some additional conditions were given in [10], [14] and [15] for right PP-rings (or
left p.q.-Baer rings) under which the formal power series ring R[[x]] over R is a right
PP-ring (or left p.q.-Baer ring, respectively). For left APP-rings we have the following
results.

PROPOSITION 3.14. Let R be a ring satisfying descending chain condition on left and
right annihilators. If R is a left APP-ring, then so is R[[x]].

Proof. Suppose that f (x) = a0 + a1x + a2x2 + · · · and g(x) = b0 + b1x +
b2x2 + · · · ∈ R[[x]] are such that f (x) ∈ lR[[x]](R[[x]]g(x)). Then f (x)R[[x]]g(x) = 0. Thus
f (x)Rg(x) = 0. It follows that∑

i+j=k

airbj = 0, k = 0, 1, 2, . . . ,

where r is an arbitrary element of R. Thus, since a0rb0 = 0, one has a0 ∈ lR(Rb0).
So there exists w0 ∈ lR(Rb0) such that a0 = a0w0. Let r′ ∈ R and take r = w0r′ in
a1rb0 + a0rb1 = 0. Then a1w0r′b0 + a0w0r′b1 = 0. But a1w0r′b0 = 0. So a0w0r′b1 = 0.
Since a0 = a0w0, we have a0r′b1 = 0, which implies that a0 ∈ lR(Rb1). Also a1rb0 = 0
for any r ∈ R. This means that a1 ∈ lR(Rb0).

Now assume that

ai ∈ lR(Rbj), i + j = 0, 1, 2, . . . , k − 1.
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Then, since R is a left APP-ring, there exists w0 ∈ lR(Rb0) such that ai = aiw0, i =
0, 1, . . . , k − 1. Let r′ ∈ R and take r = w0r′ in

∑
i+j=k airbj = 0. Then, since akw0r′b0 =

0, we have

a0w0r′bk + a1w0r′bk−1 + · · · + ak−1w0r′b1 = a0r′bk + a1r′bk−1 + · · · + ak−1r′b1 = 0.

From a0, a1, . . . , ak−2 ∈ lR(Rb1) it follows that there exists w1 ∈ lR(Rb1) such that ai =
aiw1, i = 0, 1, . . . , k − 2. Let y ∈ R and take r′ = w1y. Then, since ak−1w1yb1 = 0, we
have

a0w1ybk + a1w1ybk−1 + · · · + ak−2w1yb2 = a0ybk + a1ybk−1 + · · · + ak−2yb2 = 0.

Continuing in this manner, we have a0cbk = 0, where c is an arbitrary element of R.
This implies that a1cbk−1 = 0, . . . , ak−1cb1 = 0, akcb0 = 0. Thus

a0 ∈ lR(Rbk), a1 ∈ lR(Rbk−1), . . . , ak ∈ lR(Rb0).

Therefore, by the induction principle, we have shown that ai ∈ lR(Rbj), i, j =
0, 1, . . . .

Consider the descending chain as following:

lR(Rb0) ⊇ lR(Rb0 + Rb1) ⊇ lR(Rb0 + Rb1 + Rb2) ⊇ · · · .
Then there exists m such that lR(Rb0 + Rb1 + · · · + Rbm) = lR(Rb0 + Rb1 + · · · +
Rbm + Rbm+1) = · · ·. On the other hand, by considering the descending chain as
following:

rR(a0) ⊇ rR(a0, a1) ⊇ rR(a0, a1, a2) ⊇ · · · ,
there exists n such that rR(a0, a1, . . . , an) = rR(a0, a1, . . . , an, an+1) = · · ·. Since a0,

a1, . . . , an ∈ lR(Rb0 + Rb1 + · · · + Rbm), by Proposition 2.6, there exists c ∈ lR(Rb0 +
Rb1 + · · · + Rbm) such that ai = aic for i = 0, 1, . . . , n. Thus 1 − c ∈ rR(a0, a1, . . . , an).
So 1 − c ∈ rR(a0, a1, . . . , an, . . . , ak) for any k ≥ n, which implies that ak = akc for any
k ≥ n. Now it is easy to see that f (x) = f (x)c and c ∈ lR[[x]](R[[x]]g(x)). This shows that
R[[x]] is a left APP-ring. �

A ring R is said to be ℵ0-self-injective if each R-homomorphism from a countably
generated left ideal L of R into R is induced by multiplication by an element of R. R is
said to be left duo if every left ideal of R is two-sided.

PROPOSITION 3.15. Let R be a reduced left duo ring which is ℵ0-self-injective. If R is
a left APP-ring, then so is R[[x]].

Proof. Suppose that f (x) = a0 + a1x + a2x2 + · · · and g(x) = b0 + b1x +
b2x2 + · · · ∈ R[[x]] are such that f (x) ∈ lR[[x]](R[[x]]g(x)). Then f (x)R[[x]]g(x) = 0. Thus
f (x)Rg(x) = 0. By analogy with the proof of Proposition 3.14, we have aiRbj = 0 for
all i and j. Let I = ∑∞

i=0 Rai, J = ∑∞
i=0 Rbi. Then IJ = 0. Hence I

⋂
J = 0 since R is

reduced. Therefore, the projection map α : I
⊕

J −→ R via α(a + b) = a, a ∈ I, b ∈ J,
is well-defined and by hypothesis, α is given by multiplication by an element c ∈ R.
Now for every a ∈ I , a = α(a + b) = (a + b)c = ac + bc. Since R is a left duo ring, we
have a = ac for every a ∈ I and bc = 0 for every b ∈ J. Since R is reduced, it follows
that cRbi = 0, i = 0, 1, 2, . . . . Thus f (x) = f (x)c and c ∈ lR[[x]](R[[x]]g(x)). This shows
that R[[x]] is a left APP-ring. �
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