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Abstract

In this work we give precise asymptotic expressions for the probability of the existence
of fixed-size components at the threshold of connectivity for random geometric graphs.
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1. Introduction and basic results on random geometric graphs

Recently, quite a bit of work has been done on random geometric graphs, owing to the
importance of these graphs as theoretical models for ad hoc networks (for applications, we
refer the reader to [4, Chapter 3]). Most of the theoretical results on random geometric graphs
can be found in the book by Penrose [6]. In this section we succinctly recall the results needed
to motivate and prove our main theorem.

Given a set of n vertices and a nonnegative real r = r(n), each vertex is placed at some
random position in the unit torus [0, 1)2 selected independently and uniformly at random. We
denote by Xi = (xi, yi) the random position of vertex i for i ∈ {1, . . . , n}, and let X = X(n) =
{X1, . . . , Xn}. Note that, with probability 1, no two vertices choose the same position and, thus,
we restrict our attention to the case in which |X| = n. We define G(X; r) as the random graph
having X as the vertex set, and with an edge connecting each pair of vertices Xi and Xj in X
at distance d(Xi, Xj ) ≤ r , where d(·, ·) denotes the Euclidean distance in the torus.

Unless otherwise specified, all our stated results are asymptotic as n → ∞. We use the
following standard notation for the asymptotic behaviour of sequences of nonnegative numbers
an and bn: a = O(b) if there exist constants C and n0 such that an ≤ Cbn for n ≥ n0.
Furthermore, a = �(b) if b = O(a), a = �(b) if a = O(b) and a = �(b), and, finally,
a = o(b) if an/bn → 0 as n → ∞. As usual, the abbreviation a.a.s. stands for asymptotically
almost surely, i.e. with probability 1−o(1). All logarithms in this paper are natural logarithms.

Let K1 be the random variable counting the number of isolated vertices in G(X; r). By
multiplying the probability that one vertex is isolated by the number of vertices we obtain

E(K1) = n(1 − πr2)n−1 = n exp{−πr2n − O(r4n)}. (1)
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Define µ := n exp{−πr2n}. Observe from the previous expression that µ is closely related
to E(K1). In fact, µ = o(1) if and only if E(K1 = o(1)), and if µ = �(1) then E(K1) ∼ µ.
Moreover, the asymptotic behaviour of µ characterises the connectivity of G(X; r). The
following proposition is well known: a result similar to item 1 can be found in Corollary 3.1
of [3] and it can also be found in Section 1.4 of [6], item 2 is Theorem 13.11 of [6], and item 3
can also be found in Section 1.4 of [6]. For the sake of completeness, we give a simple proof
of Proposition 1 in Section 4.

Proposition 1. In terms of µ, the connectivity can be characterised as follows.

1. If µ → 0 then, a.a.s., G(X; r) is connected.

2. If µ = �(1) then, a.a.s., G(X; r) consists of one giant component of size greater than
n/2 and a Poisson number (with parameter µ) of isolated vertices.

3. If µ → ∞ then, a.a.s., G(X; r) is disconnected.

From the definition of µ we have

µ = �(1) if and only if r =
√

log n ± O(1)

πn
.

Therefore, we conclude that the property of connectivity of G(X; r) exhibits a sharp threshold
at r = √

log n/πn. Note that the previous classification of the connectivity of G(X; r) indicates
that, if µ = �(1), the components of size 1 are predominant, and these components provide
the main contribution to the connectivity of G(X; r). In fact, if µ = �(1), the probability that
G(X; r) has some component of size greater than 1 other than the giant component is o(1).

On the other hand, Penrose [6] studied the number of components in G(X; r) that are
isomorphic to a given fixed graph; equivalently, he studied the probability of finding components
of a given size in G(X; r). However, the range of radii r covered by Penrose does not exceed
the thermodynamical threshold �(

√
1/n) where a giant component appears at G(X; r), which

is below the connectivity threshold treated in the present paper. In fact, a percolation argument
in [6] only shows that, with probability 1 − o(1), no components other than isolated vertices
and the giant component exist at the connectivity threshold, without giving accurate bounds on
this probability (see Section 1.4, Proposition 13.12, and Proposition 13.13 of [6]).

Throughout the paper, we will consider G(X; r) with r = √
(log n ± O(1))/πn. We prove

that, for such a choice of r , given a fixed � > 1, the probability of having components of size
exactly � is �(1/ log�−1 n). Moreover, in the process of the proof we characterise the different
types of components that could exist for such a value of r .

2. Basic definitions and statements of results

Given a component � of G(X; r), � is embeddable if it can be mapped into the square
[r, 1 − r]2 by a translation in the torus. Embeddable components do not wrap around the torus.

Components which are not embeddable must have a large size (at least �(1/r)). Sometimes
several nonembeddable components can coexist together (see Figure 1).

However, there are some nonembeddable components which are so spread around the torus
that they do not allow any room for other nonembeddable components. Call these components
solitary. Clearly, we can have at most one solitary component. We cannot disprove the existence
of a solitary component, since, with probability 1 − o(1), there exists a giant component of this
nature; see Corollary 2.1 of [3] (implicitly it is also in Theorem 13.11 of [6]). For components
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Figure 1: Nonembeddable components on the unit torus. Left: two nonembeddable and nonsolitary
components. Right: a solitary nonembeddable component and an embeddable component.
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Figure 2: A component � belonging to K ′
ε,9.

which are not solitary, we give asymptotic bounds on the probability of their existence according
to their size.

Given a fixed integer � ≥ 1, let K� be the number of components in G(X; r) of size exactly �.
For large enough n, we can assume these to be embeddable, since r = o(1). Moreover, for
any fixed ε > 0, let K ′

ε,� be the number of components of size exactly �, which have all their
vertices a distance at most εr from their leftmost vertex. Finally, K̃� denotes the number of
components of size at least � and which are not solitary. In Figure 2 an example of a component
� of size exactly � = 9 is given, which has all its vertices a distance at most εr from the leftmost
vertex u.

Note that K ′
ε,� ≤ K� ≤ K̃�. However, in the following we show that, asymptotically, all the

weight in the probability that K̃� > 0 comes from components which also contribute to K ′
ε,�

for arbitrarily small ε. This means that the more common components of size at least � are
cliques of size exactly � with all their vertices close together.

We now have all the necessary definitions to state our main theorem, which is proved in
Section 3.

Theorem 1. Let � ≥ 2 be a fixed integer. Let 0 < ε < 1
2 be fixed. Assume that µ = �(1). Then

Pr[K̃� > 0] ∼ Pr[K� > 0] ∼ Pr[K ′
ε,� > 0] = �

(
1

log�−1 n

)
.

Given a random set X of n points in [0, 1)2, let (G(X; r))r∈R+ be the continuous random
graph process describing the evolution of G(X; r) for r between 0 and +∞ (X remains fixed
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for the whole process). Observe that the graph process starts at r = 0 with all n vertices being
isolated, then edges are progressively added, and, finally, at r ≥ √

2/2 we have the complete
graph on n vertices. In this context, consider the random variables rc = rc(n) = inf{r ∈
R

+ : G(X; r) is connected} and ri = ri(n) = inf{r ∈ R
+ : G(X; r) has no isolated vertex}.

As a corollary of Theorem 1, we obtain an alternative proof of the following well-known
result (see Theorem 1 of [5]): intuitively speaking, we show that, a.a.s., (G(X; r))r∈R+ becomes
connected exactly at the same moment when the last isolated vertex disappears. Note that this
is stronger than the results stated in the introduction, which just say that the properties of
connectivity and having no isolated vertex have a sharp threshold with the same asymptotic
characterization (see Proposition 1).

Corollary 1. With probability 1 − o(1), we have rc = ri .

The proof of Corollary 1 is given in Section 4.

3. Proof of Theorem 1

We state and prove three lemmas from which Theorem 1 will follow easily.

Lemma 1. Let � ≥ 2 be a fixed integer, and let 0 < ε < 1
2 also be fixed. Assume that µ = �(1).

Then,

E(K ′
ε,�) = �

(
1

log�−1 n

)
.

Proof. First observe that, with probability 1, for each component � which contributes to
K ′

ε,�, � has a unique leftmost vertex Xi and the vertex Xj in � at greatest distance from Xi is
also unique. Hence, we can restrict our attention to this case.

Fix an arbitrary set of indices J ⊂ {1, . . . , n} of size |J | = �, with two distinguished
elements i and j . Denote by Y = ⋃

k∈J Xk the set of random points in X with indices in J .
Let E be the following event. All vertices in Y are a distance at most εr from Xi and to the
right of Xi ; vertex Xj is the one in Y with greatest distance from Xi ; and the vertices of Y
form a component � of G(X; r). If Pr[E ] is multiplied by the number of possible choices of
i, j , and the remaining � − 2 elements of J , we obtain

E(K ′
ε,�) = n(n − 1)

(
n − 2

� − 2

)
Pr[E ]. (2)

In order to bound the probability of E , we need some definitions. Let ρ = d(Xi, Xj ), and
let S be the set of all points in the torus [0, 1)2 which are a distance at most r from some vertex
in Y (see Figure 3). Note that ρ and S depend on the set of random points Y.

We first need bounds of Area(S) in terms of ρ. Observe that S is contained in the circle of
radius r + ρ and centre Xi , and, thus,

Area(S) ≤ π(r + ρ)2. (3)

Let iL = i, iR, iT, and iB be respectively the indices of the leftmost, rightmost, topmost, and
bottommost vertices in Y (some of these indices possibly equal). Assume without loss of
generality that the vertical length of Y (i.e. the vertical distance between XiT and XiB ) is at
least ρ/

√
2. Otherwise, the horizontal length of Y has this property and we can rotate the

descriptions in the argument. The upper halfcircle with centre XiT and the lower halfcircle with
centre XiB are disjoint, and are contained in S. If XiR is at greater vertical distance from XiT
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Figure 3: The set S for the component � of Figure 2.

than from XiB , then consider the rectangle of height ρ/(2
√

2) and width r − ρ/(2
√

2) with
one corner on XiR , and above and to the right of XiR . Otherwise, consider the same rectangle
below and to the right of XiR . This rectangle is also contained in S and its interior does not
intersect the previously described halfcircles. Analogously, we can find another rectangle of
height ρ/(2

√
2) and width r − ρ/(2

√
2) to the left of XiL and either above or below XiL with

the same properties. Hence,

Area(S) ≥ πr2 + 2

(
ρ

2
√

2

)(
r − ρ

2
√

2

)
. (4)

From (3), (4), and the fact that ρ < r/2, we can write

πr2
(

1 + 1

6

ρ

r

)
< Area(S) < πr2

(
1 + 5

2

ρ

r

)
<

9π

4
r2. (5)

Now consider the probability P that the n − � vertices not in Y lie outside S. Clearly, P =
(1 − Area(S))n−�. Moreover, by (5) and using the fact that exp{−x − x2} ≤ 1 − x ≤ e−x for
all x ∈ [0, 1

2 ], we obtain

exp

{
−

(
1 + 5ρ

2r

)
πr2n −

(
9πr2

4

)2

n

}
< P <

exp{−(1 + ρ/(6r))πr2n}
(1 − 9πr2/4)�

,

and after plugging in the definition of µ (recall that µ = n exp{−r2πn}) we have

(
µ

n

)1+5ρ/(2r)

exp

{
−

(
9πr2

4

)2

n

}
< P <

(
µ

n

)1+ρ/(6r) 1

(1 − 9πr2/4)�
. (6)

Event E can also be described as follows. There is some nonnegative real ρ ≤ εr such that
Xj is placed at distance ρ from Xi and to the right of Xi ; all the remaining vertices in Y are inside
the halfcircle of centre Xi and radius ρ; and the n − � vertices not in Y lie outside S. Hence,
Pr[E ] can be bounded from above or below by integrating with respect to ρ the probability
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density function of d(Xi, Xj ) times the probability that the remaining � − 2 selected vertices
lie inside the right halfcircle of centre Xi and radius ρ times the upper or, respectively, lower
bound on P we obtained in (6):

�(1)I

(
5

2

)
≤ Pr(E) ≤ �(1)I

(
1

6

)
, (7)

where

I (β) =
∫ εr

0
πρ

(
π

2
ρ2

)�−2 1

n1+βρ/r
dρ = 2

n

(
π

2
r2

)�−1 ∫ ε

0
x2�−3n−βx dx. (8)

Since � is fixed, for β = 5
2 or β = 1

6 ,

I (β) = �

(
log�−1 n

n�

) ∫ ε

0
x2�−3n−βx dx

= �

(
log�−1 n

n�

)
(2� − 3)!

(β log n)2�−2

= �

(
1

n� log�−1 n

)
. (9)

The statement follows from (2), (7), and (9).

Lemma 2. Let � ≥ 2 be a fixed integer. Let ε > 0 also be fixed. Assume that µ = �(1). Then

Pr[K̃� − K ′
ε,� > 0] = O

(
1

log� n

)
.

Proof. We assume throughout this proof that ε ≤ 10−18, and we prove the claim for this
case. The case in which ε > 10−18 follows from the fact that (K̃� − K ′

ε,�) ≤ (K̃� − K ′
10−18,�

).
Consider all the possible components in G(X; r) which are not solitary. Remove from these

components the ones of size at most � and diameter at most εr , and denote by M the number
of remaining components. By construction, K̃� − K ′

ε,� ≤ M , and, therefore, it is sufficient
to prove that Pr[M > 0] = O(1/ log� n). The components counted by M are classified into
several types according to their size and diameter. We deal with each type separately.

Part 1. Consider all the possible components in G(X; r) which have diameter at most εr

and size between � + 1 and log n/37. Call them components of type 1, and let M1 denote their
number.

For each k, � + 1 ≤ k ≤ log n/37, let Ek be the expected number of components of type 1
and size k. We observe that these components have all of their vertices a distance at most εr

from the leftmost vertex. Therefore, we can apply the same argument we used for bounding
E(K ′

ε,�) in the proof of Lemma 1. Note that (2), (7), and (8) are also valid for sizes not fixed
but depending on n. Thus, we obtain

Ek ≤ O(1)n(n − 1)

(
n − 2

k − 2

)
I

(
1

6

)
,

where I ( 1
6 ) is defined in (8). We use the fact that

(
n − 2

k − 2

)
≤

(
ne

k − 2

)k−2
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and obtain

Ek = O(1) log n

(
e

2

log n

k − 2

)k−2 ∫ ε

0
x2k−3n−x/6 dx. (10)

The expression x2k−3n−x/6 can be maximized for x ∈ R
+ by elementary techniques, and we

deduce that

x2k−3n−x/6 ≤
(

2k − 3

(e/6) log n

)2k−3

.

We can bound the integral in (10) and obtain

Ek = O(1) log n

(
e

2

log n

k − 2

)k−2

ε

(
2k − 3

(e/6) log n

)2k−3

= O(1)

(
36

2e

(2k − 3)2

(k − 2) log n

)k−2

k.

Note that, for k ≤ log n/37, the expression

k

(
36

2e

(2k − 3)2

(k − 2) log n

)k−2

is decreasing with k. Hence, we can write

Ek = O

(
1

log�+1 n

)
for all k : � + 3 ≤ k ≤ 1

37 log n.

Moreover, the bounds E�+1 = O(1/ log� n) and E�+2 = O(1/ log�+1 n) are obtained from
Lemma 1, and, hence,

E(M1) =
log n/37∑
k=�+1

Ek = O

(
1

log� n

)
+ O

(
1

log�+1 n

)
+ log n

37
O

(
1

log�+1 n

)
= O

(
1

log� n

)
,

and then Pr[M1 > 0] ≤ E(M1) = O(1/ log� n).

Part 2. Consider all the possible components in G(X; r) which have diameter at most εr and
size greater than log n/37. Call them components of type 2, and let M2 denote their number.

We tessellate the torus with square cells of side y = �(εr)−1�−1 (y ≥ εr , but also y ∼ εr).
We define a box to be a square of side 2y consisting of the union of four cells of the tessellation.
Consider the set of all possible boxes. Note that any component of type 2 must be fully contained
in some box (see Figure 4).

Let us fix a box b. Let W be the number of vertices which are contained inside b. Note
that W has a binomial distribution with mean E(W) = (2y)2n ∼ (2ε)2 log n/π . By setting
δ = log n/37 E(W) − 1 and applying the Chernoff inequality to W (see, e.g. [2, Theorem
12.7]), we have

Pr
[
W > 1

37 log n
] = Pr[W > (1 + δ) E(W)]

≤
(

eδ

(1 + δ)1+δ

)E(W)

= n−(log(1+δ)−δ/(1+δ))/37.
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b

2y

y

Figure 4: The tessellation for counting components of type 2 with two particular boxes marked.

S

S*�

(a) (b)

Figure 5: The tessellation for counting components of type 3.

Note that δ ∼ π/148ε2 − 1 > e79; therefore,

Pr
[
W > 1

37 log n
]

< n−2.1.

Taking a union bound over the set of all �(r−1) = �(n/ log n) boxes, the probability that there
is some box with more than log n/37 vertices is O(1/(n1.1 log n)). Since each component of
type 2 is contained in some box, we have

Pr[M2 > 0] = O

(
1

n1.1 log n

)
.

Part 3. Consider all the possible components in G(X; r) which are embeddable and have
diameter at least εr . Call them components of type 3, and let M3 denote their number.

We tessellate the torus into square cells of side αr for some α = α(ε) > 0 fixed but
sufficiently small. Let � be a component of type 3. Let S = S� be the set of all points in the
torus [0, 1)2 which are a distance at most r from some vertex in �. Remove from S the vertices
of � and the edges (represented by straight line segments), and denote by S′ the outer connected
topologic component of the remaining set. By construction, S′ must contain no vertex in X
(see Figure 5(a)).

Now let iL, iR, iT, and iB be respectively the indices of the leftmost, rightmost, topmost, and
bottommost vertices in � (some of these indices possibly equal). As in the previous setting,
assume that the vertical length of � (i.e. the vertical distance between XiT and XiB ) is at
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least εr/
√

2. Otherwise, the horizontal length of � has this property and we can rotate the
descriptions in the argument. The upper halfcircle with centre XiT and the lower halfcircle with
centre XiB are disjoint and are contained in S′. If XiR is at greater vertical distance from XiT

than from XiB , then consider the rectangle of height εr/(2
√

2) and width r − εr/(2
√

2) with
one corner on XiR , and above and to the right of XiR . Otherwise, consider the same rectangle
below and to the right of XiR . This rectangle is also contained in S′ and its interior does not
intersect the previously described halfcircles. Analogously, we can find another rectangle of
height εr/(2

√
2) and width r − εr/(2

√
2) to the left of XiL , and either above or below XiL ,

with the same properties. Hence, taking into account the fact that ε ≤ 10−18, we have

Area(S′) ≥ πr2 + 2

(
εr

2
√

2

)(
r − εr

2
√

2

)
>

(
1 + ε

5

)
πr2.

Let S∗ be the union of all the cells in the tessellation which are fully contained in S′. We lose a
bit of area compared to S′. However, if α was chosen small enough, we can guarantee that S∗
is topologically connected and has an area of Area(S∗) ≥ (1 + ε/6)πr2. This α can be chosen
to be the same for all components of type 3 (see Figure 5(b)).

Hence, we have shown that the event (M3 > 0) implies that some connected union of cells
S∗ of area Area(S∗) ≥ (1 + ε/6)πr2 contains no vertices. By removing some cells from S∗,
we can assume that (1+ ε/6)πr2 ≤ Area(S∗) < (1+ ε/6)πr2 +α2r2. Let S∗ be any union of
cells with these properties. Note that there are �(1/r2) = �(n/ log n) many possible choices
for S∗. The probability that S∗ contains no vertices is

(1 − Area(S∗))n ≤ exp

{
−

(
1 + ε

6

)
πr2n

}
=

(
µ

n

)1+ε/6

.

Therefore, we can take the union bound over all the �(n/ log n) possible S∗, and obtain an
upper bound of the probability that there is some component of type 3:

Pr[M3 > 0] ≤ �

(
n

log n

)(
µ

n

)1+ε/6

= �

(
1

nε/6 log n

)
.

Part 4. Consider all the possible components in G(X; r) which are not embeddable and not
solitary either. Call them components of type 4, and let M4 denote their number.

We tessellate the torus [0, 1)2 into �(n/ log n) small square cells of side length αr , where
α > 0 is a sufficiently small positive constant.

Let � be a component of type 4. Let S = S� be the set of all points in the torus [0, 1)2

which are a distance at most r from some vertex in �. Remove from S the vertices of � and the
edges (represented by straight segments), and denote by S′ the remaining set. By construction,
S′ must contain no vertex in X.

Suppose that there is a horizontal or a vertical band of width 2r in [0, 1)2 which does not
intersect the component � (assume without loss of generality that it is the topmost horizontal
band consisting of all points with the y-coordinate in [1 − 2r, 1)). Let us divide the torus into
vertical bands of width 2r . All of them must contain at least one vertex of �, since otherwise �

would be embeddable. Select any nine consecutive vertical bands and pick one vertex of � with
maximal y-coordinate in each one. For each one of these nine vertices, we select the left-upper
quartercircle centred at the vertex if the vertex is closer to the right side of the band or the
right-upper quartercircle otherwise. These nine quartercircles we chose are disjoint and must
contain no vertices by construction. Moreover, they belong to the same connected component
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of the set S′, which we denote by S′′, and which has an area of Area(S′′) ≥ 9
4πr2. Let S∗ be

the union of all the cells in the tessellation of the torus which are completely contained in S′′.
We lose a bit of area compared to S′′. However, as usual, by choosing α small enough we can
guarantee that S∗ is connected and that it has an area of Area(S∗) ≥ 11

5 πr2. Note that this α

can be chosen to be the same for all components � of this kind.
Suppose otherwise that all horizontal and vertical bands of width 2r in [0, 1)2 contain at

least one vertex of �. Since � is not solitary, it must be possible that it coexists with some
other nonembeddable component �′. Then all vertical bands or all horizontal bands of width 2r

must also contain some vertex of �′ (assume without loss of generality that the vertical bands
do). Let us divide the torus into vertical bands of width 2r . We can find a simple path � with
vertices in �′ which passes through 11 consecutive bands. For each one of the nine internal
bands, pick the uppermost vertex of � in the band below � (in the torus sense). As before, each
one of these vertices contributes with a disjoint quartercircle which must be empty of vertices,
and by the same argument we obtain a connected union of cells of the tessellation, which we
denote by S∗, with Area(S∗) ≥ 11

5 πr2 and containing no vertices.
Hence, we have shown that the event (M4 > 0) implies that some connected union of cells

S∗ with Area(S∗) ≥ 11
5 πr2 contains no vertices. By repeating the same argument we used for

components of type 3 but replacing (1 + ε/6)πr2 by 11
5 πr2, we obtain

Pr[M4 > 0] = �

(
1

n6/5 log n

)
.

For a random variable X and any k ≥ 1, we denote by E[X]k the kth factorial moment of
X, i.e. E(X)k = E(X(X − 1) · · · (X − k + 1)).

Lemma 3. Let � ≥ 2 be a fixed integer. Let 0 < ε < 1
2 be fixed. Assume that µ = �(1). Then

E(K ′
ε,�)2

= O

(
1

log2�−2 n

)
.

Proof. As in the proof of Lemma 1, we assume that each component � which contributes
to K ′

ε,� has a unique leftmost vertex Xi , and the vertex Xj in � at greatest distance from Xi is
also unique. In fact, this happens with probability 1.

Choose any two disjoint subsets of {1, . . . , n} of size � each, namely, J1 and J2, with four
distinguished elements i1, j1 ∈ J1 and i2, j2 ∈ J2. For k ∈ {1, 2}, denote by Yk = ⋃

l∈Jk
Xl

the set of random points in X with indices in Jk . Let E be the event that the following conditions
hold for both k = 1 and k = 2. All vertices in Yk are a distance at most εr from Xik and to the
right of Xik ; vertex Xjk

is the one in Yk with greatest distance from Xik ; and the vertices of Yk

form a component � of G(X; r). If Pr[E ] is multiplied by the number of possible choices of
ik , jk , and the remaining vertices of Jk , we obtain

E(K ′
ε,�)2 = O(n2�) Pr[E ]. (11)

In order to bound the probability of E , we need some definitions. For each k ∈ {1, 2}, let
ρk = d(Xik , Xjk

) and let Sk be the set of all the points in the torus [0, 1)2 which are a distance
at most r from some vertex in Yk . Obviously, ρk and Sk depend on the set of random points
Yk . Also, define S = S1 ∪ S2.

Let F be the event that d(Xi1 , Xi2) > 3r , and let F be the complementary event. This
holds with probability 1 −O(r2). In order to bound Pr[E | F ], we apply a similar approach to
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the one in the proof of Lemma 1. In fact, observe that if F holds then S1 ∩S2 = ∅. Therefore,
in view of (5) we can write

πr2
(

2 + ρ1 + ρ2

6r

)
< Area(S) <

18π

4
r2, (12)

and using the same techniques that gave us (6), we obtain

(1 − Area(S))n−2� <

(
µ

n

)2+(ρ1+ρ2)/(6r) 1

(1 − 18πr2/4)2�
. (13)

Observe that E can also be described as follows. For each k ∈ {1, 2}, there is some nonnegative
real ρk ≤ εr such that Xjk

is placed at distance ρk from Xik and to the right of Xik ; all the
remaining vertices in Yk are inside the halfcircle of centre Xik and radius ρk; and the n − �

vertices not in Yk lie outside Sk . In fact, rather than this last condition, we only require for
our bound that all vertices in X \ (Y1 ∪ Y2) are placed outside S, which has probability
(1−Area(S))n−2�. Then, from (13) and following an analogous argument to the one that leads
to (7), we obtain the bound

Pr[E | F ] ≤ �(1)

∫ εr

0

∫ εr

0
πρ1

(
π

2
ρ2

1

)�−2

πρ2

(
π

2
ρ2

2

)�−2 1

n2+(ρ1+ρ2)/(6r)
dρ1 dρ2

= �(1)I

(
1

6

)2

,

where I ( 1
6 ) is defined in (8). Thus, from (9) we conclude that

Pr[E ∧ F ] ≤ �(1)P (F )I

(
1

6

)2

= O

(
1

n2� log2�−2 n

)
. (14)

Otherwise, suppose that F does not hold (i.e. d(Xi1 , Xi2) ≤ 3r). Observe that E implies
that d(Xi1 , Xi2) > r , since Xi1 and Xi2 must belong to different components. Hence, the
circles with centres on Xi1 and Xi2 and radius r have an intersection of area less than (π/2)r2.
These two circles are contained in S, and then we can write Area(S) ≥ 3

2πr2. Note that E
implies that all vertices in X \ (Y1 ∪ Y2) are placed outside S and that, for each k ∈ {1, 2}, all
the vertices in Yk \ {Xik } are a distance at most εr and to the right of Xik . This gives us the
following rough bound:

Pr[E | F ] ≤
(

π

2
(εr)2

)2�−2(
1 − 3π

2
r2

)n−2�

= O(1)

(
log n

n

)2�−2(
µ

n

)3/2

.

Multiplying this by Pr[F ] = O(r2) = O(log n/n) we obtain

Pr[E ∧ F ] = O

(
log2�−1 n

n2�+1/2

)
, (15)

which is negligible compared to (14). The statement follows from (11), (14), and (15).

Our main theorem now follows easily. From Corollary 1.12 of [1], we have

E(K ′
ε,�) − 1

2 E(K ′
ε,�)2 ≤ Pr[K ′

ε,� > 0] ≤ E(K ′
ε,�),
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and, therefore, by Lemmas 1 and 3, we obtain

Pr[K ′
ε,� > 0] = �

(
1

log�−1 n

)
.

Combining this with Lemma 2 yields the statement.

4. Proof of Corollary 1

Before proving Corollary 1, we give a proof of Proposition 1, since we will make use of the
arguments used in the proof of this proposition.

Proof of Proposition 1. Recall that µ = n exp{−πr2n} and r = √
(log n − log µ)/πn.

Observe that r ∈ [0, +∞) is monotonically decreasing with respect to µ ∈ (0, n]. Hence,
the probability that G(X; r) is connected is also decreasing with respect to µ.

Suppose first that µ = �(1). From (1) and since O(r4n) = o(1), we have E(K1) ∼ µ. We
will compute the factorial moments of K1 and show that E(K1)k ∼ µk for each fixed k. As in
Lemma 1, for k ≥ 2, we fix an arbitrary set of indices J ⊂ {1, . . . , n} of size |J | = k. Denote
by Y = ⋃

k∈J Xk the set of random points in X with indices in J . Let E be the event that all
vertices in Y are isolated, and denote by S the set of points in [0, 1)2 that are a distance at most
r from some vertex in Y. We have E(K1)k ∼ nk Pr[E ]. Note that in order for the event E to
happen, we must have S ∩ (X \ Y) = ∅. To compute Pr[E ], we distinguish two cases.

Case 1. Let J0 be the event that, for all i �= j ∈ J , d(Xi, Xj ) > 4r , which has probability
1 − O(r2) = 1 − o(1). Note that if J0 holds then Area(S) = kr2π , and, thus, the contribution
to Pr[E ] is

Pr[E | J0] Pr[J0] ∼ (1 − kr2π)n−k ∼ e−kr2πn.

Case 2. Otherwise there exists i �= j ∈ J such that d(Xi, Xj ) ≤ 4r . Define

J ′ = {j ∈ J | there exists i ∈ J, i < j, d(Xi, Xj ) ≤ 4r},
and let � = |J ′|. Note that 1 ≤ � ≤ k − 1. Let j ′ be the smallest element of J ′, and let i′ < j ′
be the (smallest) element of J with d(Xi′ , Xj ′) ≤ 4r . Denote by Ci′ the circle of radius r

centred at Xi′ , and consider the halfcircle of radius r centred at Xj ′ delimited by the line going
through Xj ′ , perpendicular to the line connecting Xi′ with Xj ′ , and which does not intersect
Ci′ (note that d(Xi′ , Xj ′) > r , so this halfcircle exists). This circle and halfcircle contribute to
Area(S) by 3

2 r2π , and, thus, in total, Area(S) ≥ (k − � + 1
2 )r2π . Moreover, the probability

that any j ∈ J belongs to J ′ is at most �(r2). Hence, if we denote by J� the event that such a
set J ′ with |J ′| = � exists, we have, for any 1 ≤ � ≤ k − 1,

Pr[E | J�] Pr[J�] ≤
(

1 −
(

k − � + 1

2

))r2πn

�(r2)� = o(exp{−kr2πn}).

Then, the main contribution to Pr[E ] comes from case 1, and, therefore,

E(K1) ∼ nk exp{−kr2πn} = µk,

so the random variable K1 is asymptotically Poisson with parameter µ (see Theorem 1.22 of [1]).
By Theorem 1, a.a.s., G(X; r) consists only of isolated vertices and a solitary component, and
the second statement in the result is proven.
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The first and third statements follow directly from the fact that, for any µ = �(1),

Pr[G(X; r) is connected] ∼ e−µ,

combined with the decreasing monotonicity of this probability with respect to µ.

Proof of Corollary 1. For any ε > 0, we can find a large enough constant κ = κ(ε) such
that exp{−eκ} < ε/2 and 1 − exp{−e−κ} < ε/2. Let

r� =
√

log n − κ

πn
and ru =

√
log n + κ

πn
.

By Proposition 1, K1 is asymptotically Poisson in G(X; r�) and G(X; ru) with parameter
µ = eκ and µ = e−κ , respectively. Therefore, in G(X; r�) we have

Pr[K1 = 0] ∼ exp{−eκ} <
ε

2
,

and in G(X; ru) we have

Pr[K1 > 0] ∼ 1 − exp{−e−κ} <
ε

2
.

Moreover, by Theorem 1, a.a.s., both G(X; r�) and G(X; ru) consist only of isolated vertices
and a giant solitary component. Hence, with probability at least 1 − ε, the random process
(G(X; r))r∈R+ has the following evolution: for r ≤ r�, the graph stays disconnected; at r = r�,
there are only a few isolated vertices and a giant component; for r between r� and ru, all isolated
vertices merge together or with other components; finally, for r ≥ ru, the graph is connected.
For this particular evolution of the process, rc = ri unless for an r with r� < r < ru some
isolated vertices merge together and create a small component before being absorbed by the
giant component. Then, it is sufficient for our purposes to show that, a.a.s., any two isolated
vertices in G(X; r�) are at a distance greater than ru.

Define Z to be the random variable that counts the pairs of vertices i and j , which are both
isolated in G(X; r�) and such that d(Xi, Xj ) ≤ ru. By the same argument as in the proof of
Proposition 1, setting S to be the set of points in [0, 1)2 at distance at most r� from either Xi

or Xj , we obtain Area(S) ≥ 3
2 r2

� π . Moreover, since r� < d(Xi, Xj ) ≤ ru, Xj must lie in
an annulus of area �(1/n) around Xi , which occurs with probability �(1/n). Taking a union
bound over all pairs of vertices i and j ,

Pr[Z > 0] ≤ n(n − 1)

(
1 − 3

2
r2
� π

)n−2

�

(
1

n

)
= �(n−1/2).

Therefore, when gradually increasing r from r� to ru, a.a.s. no pair of isolated vertices in
G(X; r�) gets connected before joining the solitary component, and, thus, no component of
size 2 or larger (except for the solitary component) appears in this part of the process. Hence,
with probability at least 1−ε, we have rc = ri , and the statement follows, since ε can be chosen
to be arbitrarily small.
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