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ROBUST //oo STABILISATION WITH DEFINITE ATTENUANCE OF
AN UNCERTAIN IMPULSIVE SWITCHED SYSTEM
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Abstract

In this paper, we study the problem of robust //«, stabilisation with definite attenuance
for a class of impulsive switched systems with time-varying uncertainty. A norm-bounded
uncertainty is assumed to appear in all the matrices of the state model. An LMI-based
method for robust/Zoo stabilisation with definite attenuance via a state feedback control
law is developed. A simulation example is presented to demonstrate the effectiveness of
the proposed method.

1. Introduction

Robust Hao stability and control problems of dynamic systems have attracted consid-
erable attention for several decades. The main focus has been on H^ problems for
linear systems [2,10], nonlinear systems [9], and systems without delay as well as
with delays [2,5,9,10] and so on. In recent years, interest has been extended to the
robust Hoc stability problem of impulsive dynamic systems.

Some typical examples of impulsive systems can be found in [11]. One such system
is used to model the population of a certain kind of insect via introducing its natural
enemies at certain time instances. Another system models control of the reaction
process of a chemical reactor by adding chemicals at certain time instances. In [7],
it is pointed out that the dynamical behaviour of the total stock value of a particular
investor can be described by an impulsive system. Some other examples can be found
in [3] and [6]. In [3] and [4], various issues concerning the stability and robust stability
of impulsive dynamic systems are studied using Lyapunov functions. In particular, the
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impulsive switched system with norm-bounded time-varying uncertainty has attracted
much attention.

In this paper, we consider the robust //oo control problem with definite attenuance
of a class of uncertain impulsive switched systems. The problem is to design a
feedback control law such that the closed loop impulsive system is asymptotically
stable and robustly stable with definite attenuance and Hoo performance. Using the
LMI approach, we derive a set of sufficient conditions for ensuring the existence of
such a feedback control law. This feedback control law can then be obtained by
solving a set of linear matrix inequalities.

The rest of the paper is organised as follows. In Section 2, a general class of
uncertain impulsive switched systems with time-varying uncertainty is presented and
some useful definitions are given. In Section 3, some sufficient conditions for robust
Hoc stability with definite attenuance for the impulsive switched system are derived.
A constructive method for constructing the corresponding feedback control law is
then given. In Section 4, a numerical example is presented to illustrate how such a
feedback control law is constructed. Finally, Section 5 concludes the paper.

2. Problem statement

Consider the following class of uncertain impulsive switched systems:

x(t) = (Aik + AAik(t))x(t) + Bike-X'w(t) + Ciku(t), t ^ h,

t = tk, (2.1)

x(t)=0, t = to = O.

Here x 6 R" is the state, u e Rm is the control input and w e Rp is an uncertainty.
Also/\)t e R"*n, Bit e Rnxp, Qk e Rn*mand Dk e Rnxn are constant real matrices, A
is a positive constant, k = 1, 2, . . . , ik e {1, 2 , . . . , s] and s is a positive integer. For
each ik € {1, 2 , . . . , s), A/4,,() is an unknown real norm-bounded matrix function
representing the time-varying parameter uncertainty. An admissible uncertainty is
assumed to be of the form

AAit(t) = FikZik(t)Hik, (2.2)

where Fik and Hik are known real constant matrices and 3, t(0. 4 e {1, 2 , . . . , s),
are unknown real time-varying matrices satisfying ||S,,(/)|| < 1. Here Ax(tk) =
x (tk

+) -x (tk~), x (tk~) = x (tk) = limA^0+ x(tk - h), x(tk
+) = lim/l^0+ x (tk + h),tk is an

impulsive switched point, k = 1 ,2 , . . . , and to < t\ < t2 < • • • < tk < •• • (tk -+ oo
as k ->- oo).
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Define the variable §(f) = e^'x{t) as the state variable of the impulsive switched
system (2.1) and z(t) = Eik$(t), Eik e Rg*n, the control output. Let u(t) = f*'u(t).
Then system (2.1) can be written as:

k(t) = (A./ + Aik + AAit(tm(0 + Bikw(t) + Cku(t), t jL tk,

t = tk,

z(t) = EitHt),
=0, t = to=O,

where £ 6 R" is the state, « € Rm is the control input, w e Rp is the uncertainty
and z € Rq is the control output. Other parameters are the same as those defined for
system (2.1).

DEFINITION 1. The uncertain impulsive switched system (2.1) is said to be robustly
stable if the trivial solution x {t, to, x0) = 0 of the functional differential equation (2.1)
with u(t) = 0 is asymptotically stable with respect to all admissible uncertainties.

DEFINITION 2. The uncertain impulsive switched system (2.1) is said to be robustly
stabilisable if there exists a linear state feedback control law u(t) = Vikx(t) with
rik € Rmxn such that the resulting closed loop system is robustly stable in the sense
of Definition 1.

DEFINITION 3. For given scalarsy > OandA. > 0, the uncertain impulsive switched
system (2.1) is said to be robustly //<» stable with definite attenuance under any
given switching law if the uncertain impulsive system has Hoc performance, that
is, l|z(0llr < yl|w(f)||t is satisfied, and the trivial solution £(r, to, xo) = 0 of the
functional differential equation (2.3) with u(t) = 0 is asymptotically stable with
respect to all admissible uncertainties.

DEFINITIONS For given scalarsy > OandA > 0, the uncertain impulsive switched
system (2.1) is said to be robustly //«> stabilisable with definite attenuance if there exists
a state feedback control law such that for any admissible uncertainty, the following
conditions are satisfied under any given switching law:

(i) Robust stability: The resulting closed-loop system of the impulsive switched
system (2.3) is asymptotically stable;

(ii) Hoc performance: When a positive constant y is given as the objective perfor-
mance,

In this paper, we shall derive a set of sufficient conditions to guarantee robust Hx

stabilisation with definite attenuance for a class of uncertain impulsive switched
systems. More specifically, for given scalars y > 0 and A. > 0, our objective is

https://doi.org/10.1017/S1446181100009627 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009627


474 Honglei Xu, Xinzhi Liu and Kok Lay Teo [4]

to obtain sufficient conditions to ensure robust stability with definite attenuance and,
at the same time, achieve //<„ performance. Furthermore, they can be used to find a
stabilising state feedback control law u(t) = Vikx (t) such that the resulting closed loop
impulsive system is robustly //«, stable with definite attenuance. This state feedback
control law can be obtained via solving a set of linear matrix inequalities.

3. Main results

First, we give several lemmas which are needed for the proofs of our main theorems.

LEMMA 3.1 ([8]). Let G e Rpxq be a matrix such that GTG < 1. Then

2xTGy <xTx + yTy (3.1)

for all x € Rp and y e R". In the case G = I, (3.1) reduces to 2xTy < xTx + yTy.

LEMMA 3.2. Let P e R"*n be a positive definite matrix and Q e Rnxn a symmetric
matrix. Then

^a(P-lQ)x(tfPx(t)<x(t)TQx(t)<Xmia(p-lQ)x(t)TPx(t)

forallx{t) eR".

LEMMA 3.3 ([5]). Let A, F, 3 and H be real matrices of appropriate dimensions
with || S|| < I. Then for any scalars e > 0,

FEH + HTZTFr < e-lFFT + sHTH.

To proceed further, we assume that the following condition is satisfied:

ASSUMPTION 3.4. \\w(t)\\ < L||f(r)||.

We now present our main results on robust //«, stabilisation with definite attenuance.

THEOREM 3.5. Let fik be the largest eigenvalue of the matrix

P~\{I + Dk)
TPik(I + Dk).

Suppose that Assumption 3.4 is satisfied. Then, for any given switching law, system
(2.1) is robustly //<» stable with definite attenuance if there exists a symmetric positive
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definite matrix Pik, positive scalars y, e, k and 0 < fa < I, k e N, such that the
following linear matrix inequalities are satisfied:

-S(k,Pik,s) e-"2PikFik PikBik LV

(3.2)

LI
S(k,Pit,e)

- /

-I

< 0 and

where

S(k, Pit, s) - (XI + Ajk)Pik + Pit(XI + Aik)

(3.3)

(3.4)

PROOF. For t e (tk, tk+i], define the following Lyapunov function for system (2.3)
with u(t) = 0:

V(t) = ST(t)Pit%(t), (3.5)

where Pit is a positive definite symmetric matrix. Taking the time derivative of V(t)
along the solution of (2.3) with u(t) = 0, and then making use of (2.2), we obtain

= mT(t)+^T(t)(Aik + AAik)
T + wT(t)Bjk]Pik

+ t-T(t)PikM(t) + (Aik + AAik)t=(t) + Bikw(t)]

= $T«mi +A{)Pik + Pik(Xl +Aik) + H^Eik(PikFik)
T + PikFik3ikHik]

+ wT(t)(f(t)PikBik)
T + ^(t)PikBikw(t). (3.6)

By Lemma 3.3, we have, for any e > 0,

HlkEik(PikFik)
T + PikFikEikHik < (\/e)PikFikFlPik + eHjkHik (3.7)

and, for any y > 0,

wT(t)$T{t)PikBik)
T + $(t)PikBikw(t)

< y-2^T(t)PikBikBlPikH0 + y2wT(t)w(t). (3.8)

Applying (3.7) and (3.8) with y = 1 to (3.6), and using Assumption 3.4, it follows
that

V(t) < ST l)Pik + Pik(kl + Aik) + £"'PikFikFlPik + eHlHt

+ wT(t)w(t)

PikFikFlPik + PikBikBjtPik + L2/]^(r), (3.9)
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where S(k, Pit, e) is defined by (3.4).
To ensure that

V(t) < 0 for / e (*t_i, tk], (3.10)

we choose e > 0 such that

S(k, Pik, e) + £"' Plt Fik F*Pik + Pik BikBlPik + L2I < 0. (3.11)

Let us now look at the function V(t), defined by (3.5), at the switching points tk. Then
we have

= S'iOP^P^U + Dk)
TPit(l +

< AV(/4-) < V(t-), (3.12)

where fik, 0 < fik < 1, is the maximum eigenvalue of P^\(l + Dk)
TPik(I + Dk).

Combining (3.10) and (3.12), it follows that system (2.3) with u — 0 is asymptoti-
cally stable.

It remains to show that the uncertain impulsive system has Hx performance. For
this, it follows from (3.6)-(3.8) that

V{t) < ?7(0[(A/ + Al)Pit + Pik(XI + Aik) + e~xPitFikFlPik
r 2 T l y2wT(t)w(t)

l y2wT(t)w(t).

Now, by imposing

S(X, Plt, e) + e-1 PikFikFjtPik + y-2PikBikBlPit + EjtEik < 0, (3.13)

we obtain V(t) < -\\EhHt)\\2 + Y2\\w(t)\\2 = -\\z(t)\\2 + K2l|u;(0ll2 and hence

| | z ( r ) | | 2 < -V(0 + r l M 0 l l 2 . (3.14)

Integrating both sides of (3.14), we have

f \ \ z « ) \ \ 2 c l t < - [ V(t)dt + y2 f \\w(t)\\2clt, t £ ( 4 , a (3.15)
Jo ^o Jo
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From (3.5) we see that V(0) = 0 and V(tk) > 0. Since 0 < ft < 1, it follows that

f V(t)dt= [' V(t)dt+ [* V(t)dt+ •••+[' V(t)dt+ f V(t)dt
Jo JO Jt\ Jik-\ Jlk

- V(0) + V(t2) - V(t+)

V(r) - V(tk
+)

-ft)V(r,)+ V(r)>0.

V(tk) -

(3.16)

Combining (3.15) and (3.16), we have

\\z(t)\\l= f \\z(t)\\2dt<Y2 f IMOII2dt = Y2\\Mt)\\l.
Jo Jo

Thus the //<» performance is satisfied. Therefore system (2.1) is robustly //«, stable
with definite attenuance.

Finally, using the Schur complementary theorem [1], the inequalities (3.11) and
(3.13) are equivalent to those of (3.2)-(3.3). This completes the proof.

In the case when there is no uncertainty in system (2.1) (or system (2.3)), that is,
AAilt = 0, we have the following result.

COROLLARY 3.6. Consider system (2.1) (or (2.3)) with Fh = 0, //,, = 0. As-
sume that Assumption 3.4 is satisfied. Let ft be the largest eigenvalue of P~^ (/ +
Dk)TPikU + Dk). Then the uncertain impulsive switched system (2.1) is robustly //«,
stable with definite attenuance if there exists a symmetric positive definite matrix Pik,
positive scalars y, X andO < ft < 1, and k e N such that the following linear matrix
inequalities are satisfied:

LI -I

Ajk)Pik + Pik(kl + Aik)

PikBik LI
-I

xPitBik El
-I

-I

< 0 and (3.17)

(3.18)

THEOREM 3.7-. Let ft be the largest eigenvalue of the matrix Pik\ (/ + Dk)
T Pik (I +

Dk). For any given switching law, consider the uncertain impulsive switched sys-
tem (2.1) and assume that Assumption 3.4 is satisfied. Then system (2.1) is robustly
Hoo stable with definite attenuance if there exists a positive definite symmetric matrix
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Pik, positive scalars y, s, k and 0 < Bk < 1, andk 6 N such that the following linear
matrix inequalities are satisfied:

S(k,Pik,e) e-x'2PikFik

-I

LI

S(k,Pik,e) e-"2PikFik

PL -I
Pik

LI

-I

-I

< 0 and (3.19)

(3.20)

where S(k, Pik, E) = (kI+Ajt)Pik + Pik(kl+Aik) + eH^Hik. Moreover, the feedback
control law is given by u(t) = — Cjk Pikx (t), which is a robust H^ stabilising controller.

PROOF. For the given control law

ii(r) = I V (r), (3.21)

where Tik = -CjkPik. Then uik{t) = I \£(0- Define, for t 6 (tk, tk+1], the following
Lyapunov function for (2.3): V(t) = %T(t)Pik£(t), where Pik is a positive definite
symmetric matrix. Taking the time derivative of V(t) along the solution of (2.3) with
u{t) given by (3.21), we obtain

= m\t) + S;T(t)(Ait + AAikf + wT(t)Bl + uT(t)CZ]Pik

T ^ ( t ) + (Aik + AAit)Ht) + Bikw(t) + Q « ( 0 ]

Ajt)Pik + Pik(kl + Aik) + H*Zik(PikFik)
T + PikFikEikHik

T(t)GT(t)PitBlt)
T + l-T(t)PitBikw(t) - 2f{t)PikCikClPtMt).

Then it follows that

V(t) < t-T(t)[(kI + A\)Pik + Pik(kl+Aik) + s-xPikFikFlPik + eHl

+ i-T{t){PikBikBjtPik - 2PikCikClPik)t;(t) + wT(t)w(t)

< $T(t)[S(k, Pik, e) + e-1PikFikFlPit + Pik(BikBl - 2CikCjk)Pik + L2

where S(k, Pik, e) is defined by (3.4).
Now, using an argument similar to that given for (3.11), we choose s > Osuch that

S(k, Pik, s) 4- e~lPik FitF^Pik + PikBikBjkPik - 2PikCikCjkPik + L2I < 0. (3.22)

https://doi.org/10.1017/S1446181100009627 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009627


[9] Robust Hx stabilisation 479

Furthermore, using an argument similar to that given for (3.13), we impose that

S(k, Pit,e) + e-lPikFilFTpit + y-2PitBikBftPit-2PitCikCftPit + ElEit<0. (3.23)

Hence, using the Schur complementary theorem, the inequalities (3.22M323) can be
written equivalently as (3.19)-(3.20).

4. A numerical example

Consider the uncertain impulsive switched system given by

x(t) = (A, + AA,(r))jc(r) + Bie-
k'w(t) + C,ii(r), t £ tk,

Ax(t) = Ik(t,x) = Dkx(t), t = tk,

z(t) = E^'it)

x(t) = 0, t = tb

x(t) = (A2 + AA2(t))x(t) + B2e-k'w(t) + C2u(t), t £ tk,

= lk{t,x) = Dkx(t), t = tk,

z(t) = E2e
ux{t),

with A — r ° 8 o 5 i R — r ° 'i r — r • °5i F — r'°i A — r ° 5 0 5 i
Wltn A i — [ 0 _, J, tf] — [ o.8 0.5 J ' C l — Lo.5 1 J ' fcl — Lo 1 J ' A 2 ~ L 0 -1 J'

B2 - [V !]- C2 = [! i!s]. £2 = [o?]. Dk = -0.5 and AAik(t) is the uncertainty
matrix satisfying || AA,t(/)|| < 0.2. Then this system is in the form of system (2.1)
(or (2.3)) with

ro.2 on
* = Lo o.2J a n d

Choose Y=S = L = X = 1. Then, by solving the corresponding versions
of (3.19) and (3.20), we obtain, under any given switching law, positive definite
symmetric matrices:

[2.6756 0.7351] [2.6887 0.2045]
1 ~ [o.7351 0.094lj a n 2 ~ [o.2O45 0.0823J

such that the conditions of Theorem 3.7 are satisfied. Hence the required state feedback
control law is: u(t) = ritx(t), where

_ [-3.0432 -0.7822] [-2.8932 -0.2868]
1 ~ [-2.0729 -0.4617J a" 2 ~ [-2.9954 -0.3979J "
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FIGURE 1. Behaviour of the state x(t) when S,(/) = E2U) = sin(2^ * 10/) * / and w(t) = 0.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

FIGURE 2. Phase portrait of the uncertain impulsive switched system when 2i(f) = S2(0 = sin(2n- *
100 * / and w(t) = 0.
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FIGURE 3. Behaviour of the state f (/) when S,(») = S2(/) = sin(27r * 100 • / and w(t) = 0.
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t

3.5

FIGURE 4. Behaviour of the state x(t) with feedback control law «(/) = r,-,jc(O when S|(r) = H2(/) =
sin(2n- * 10/) * / and w(t) = 0.
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FIGURE 5. Phase portrait of the uncertain impulsive switched system with feedback control law u(t)
Vikx(t) when S,(0 = 32(0 = sin(2^ * 100 * / and w(t) = 0.
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FIGURE 6. Behaviour of the state £(0 with feedback control law u(t) = r,,jc(O when 2 , (0 = S2(0
sin(27r * 10/) • / and w(t) = 0.
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This state feedback control law asymptotically stabilises the impulsive switched sys-
tem with norm-bounded time-varying uncertainty. Furthermore, it also guarantees
robust stability with definite attenuance and has //<„ performance.

Assume that the switching law alternates the state of system (2.3) between (4.1)
and (4.2). The numerical simulations are depicted in Figures 1-6. These figures show
that the impulsive switched system with time-varying uncertainty is robustly stable.
Furthermore, under the feedback control law obtained, the corresponding closed loop
system is not only robustly stable with definite attenuance k = 1 but also has //«,
performance.

5. Conclusion

We have derived a set of readily computable conditions in terms of linear matrix
inequalities for a class of impulsive switched systems with time-varying uncertainty.
Based on a positive definite solution of linear matrix inequalities, we can construct a
robust HQO state feedback control law, which guarantees robust stability with definite
attenuance and gives rise to robust H^ performance for the class of impulsive switched
systems with norm-bounded time-varying uncertainty. An illustrative example was
solved so as to demonstrate the effectiveness of the proposed approach.
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