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ABSTRACT. During the deformation of polar ice, a fabric develops which results
in a macroscopically anisotropic behaviour. Since the plastic anisotropy of the ice
single erystal is very high, the effect of a strong (single maximum) fabric on the
macroscopic [low law cannot be neglected when simulating the flow of an ice sheet. As
this is already a dillicult task when using the familiar isotropic power law for ice, the
fabric evolution and related macroscopic mechanical behaviour model, to he
implemented in such a simulation, must be realistic yet simple enough to achieve
results within a reasonable level of complexity, at least as a [irst step.

To this aim, we propose to model polar ice as a transversely isotropic medium; while
simplifying the problem, this captures the essential features of the in-situ observed
fabrics. The macroscopic mechanical behaviour of the ice polyerystal is obtained by
using an orientation distribution function (ODF) for the caxes of the grains, which
characterizes the fabric, and a sel-consistent scheme, considering each single crystal as
transversely isotropic. The evolution of the ODF is described by a conservation
equation. In the first stage, this model was run in the simple cases of uniaxial

compression and tension along the orthotropy symmetry axis.

INTRODUCTION

Polycrystalline ice deforms mainly by intracrystalline
dislocation glide (Pimienta and others, 1987). The ice
single crystal deforms essentially by slip on the basal
plane, normal to the hexagonal symmetry caxis. Due to
the strong anisotropy of the single erystal (Duval and
others, 1983), strain incompatibilities arise in the ice
polyerystal, resulting in @ non-uniform stress field at the
grain scale. In the upper part of a polar ice sheet. where
the stress level is very low, [ast grain-boundary migration
associated with grain growth, which tends to lower the
surface energy of the grains, is an eflicient process 1o
relieve the stress concentrations and might explain the
low Newtonian viscosity derived from the analysis of
inclinometry surveys (Lliboutry and Duval, 1985). With
increasing depth and deviatoric stresses, grain growth
vanishes as strain hardening becomes influential, and the
main accommodation mechanisms are lattice rotation
associated with polygonization of the grains which have a
high stored energy, and grain-boundary migration (Alley,
1992; Alley and others, 1995; Duval and Castelnau.
1995). In this “rotation-recrystallization™ regime. the
rotation of the eaxes of the grains induces the formation
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of a fabric (statistical distribution of the eaxes), which
evolves as a [unction ol the strain history of the ice. Very
strong fabrics, with alignment of the caxes along the
vertical, or random distribution of the caxes in a vertical
plane, have been observed in ice cores drilled at diflerent
sites in Antarctica and Greenland (Gow and Williamson,
1976: Russell-Head and Budd, 1979; Herron and Lang-
way, 1982; Fujita and others. 1987; Lipenkov and others.
1989). Laboratory experiments (Bouchez and Duval.
1982; Wilson, 1982; Jacka and Maccagnan, 1984; Azuma
and Higashi, 1985; Pimienta, 1987) and inclinometry
analysis (Russell-Head and Budd. 1979; Shoji and
Langway, 1984: Gundestrup and Hansen, 1984; Hansen
and Gundestrup, 1988) have shown that these fabrics
greatly influence the mechanical behaviour of ice and
consequently the flow of the polar ice sheets. When
approaching the bedrock, high temperature and rela-
tively high fluctuating stresses initiate dynamic recrystal-
lization, with fast grain-boundary migration. and the
formation of a multi-maxima fabric which adapts to the
local state of stress, as found in temperate glaciers.
According to Duval and Castelnau (1995), this “migra-
tion-recrystallization™ regime begins when the temper-
ature reaches —12°C.
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So far, only a few models have been published on ice
anisotropy. The first model for describing the mechanical
behaviour of ice for a given anisotropy was that ol Lile
(1978), who assumed a Newtonian behaviour for the ice
single crystal. Lliboutry (1987) derived an anisotropic
power law depending on seven parameters, under the
assumptions that the stress is uniform and there is no
energy dissipation at grain boundaries. Lliboutry (1993]
extended his model to a polynomial flow law by adding a
Newtonian dissipation potential (which increases the
number of parameters to ten). As regards fabric devel-
opment, a simple model for uniaxial compression was
given by Azuma and Higashi (1985); it considers each
crystal in the aggregate as an isolated crystal subject to a
hasal shear strain proportional to the overall strain and to
geometrical constraints. Fujita and others (1987) and
Pimienta (1987) extended this model to the case of
uniaxial tension, then Alley (1988) to simple shear. A
more claborate and general version of this model has been
developed by Azuma (1994). Models based on the
hypothesis of a uniform stress state in the polyerystal
have been proposed by Van der Veen and Whillans
(1994) and Castelnau and Duval (1994), the former
including strain/stress induced recrystallization criteria.
All these models are based on the assumption that a grain
in a polycrystal reacts as if it were a single (isolated)
crystal submitted to a basal shear stress which is
postulated a priori.

More recently, in order to reject the assumption level
closer to the physical mechanisms involved at the grain
scale, Castelnau and others (in press) have used a
powerful viscoplastic self-consistent (VPSC) model to
simulate fabric formation and evolution in polar ice. This
model considers each grain as a heterogeneous inclusion
embedded in a homogeneous matrix which can exhibit
any kind of anisotropy. It is assumed that the ice single
crystal deforms by slip on the basal plane and on the
prismatic and pyramidal planes. Contrary to the previous
models, there is no need to make any assumption on the
local state of stress or strain in a grain. The only basic
hypothesis, independent of the assumed mechanical
behaviour of the ice single crystal, is that the c-axis
orientation of a grain does not depend upon the
orientation of the neighbouring grains; this allows one
to assume that all the grains with the same orientation are
undergoing the same mean state of stress exerted by an
equivalent homogeneous medium (HEM). The mechan-
ical properties of the HEM derive from the mean response
of all the grains to the applied conditions at the HEM
houndary. This model reaches a high level of complexity
and gives today, without any doubt, the most accurate
results.

It can be questioned if, from a practical point of view,
this model is well suited to dealing with ice-sheet
modelling. To simulate the behaviour of a polycrystal
(i.c. a material point in the flow domain), the model
needs to consider a minimum of 100 grains; then solving a
flow problem by finite elements (for instance) requires
storage of at least 100 orientations at each integration
point. If some degree of accuracy is needed (large number
of elements and more than three integration points per
element), the required storage capacity will be enormous,
even for a two-dimensional problem. Morcover, the time
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needed for the computation of the texture development,
at cach integration point, will increase the difliculty of
such a procedure. However, mean aggregate properties
and fabric evolution deduced on this scale can suggest a
suitable simplified continuum response for larger-scale
applications.

PROPOSED MODEL
Main features and restrictions of the model

The model presented here is of the same nature as the
VPSC model, but additional assumptions are made in
order to achieve a simpler formulation which could be
used for ice-flow modelling purposes.

The fabrics which are likely to have a significant
influence on the flow of ice caps are strong fabrics with
caxes clustered around the vertical, which form under
compression and/or simple shear, and that with coplanar
¢ axes, which form under extension. In the first case, the
enhancement factor on the strain rates is about 10,
whereas in the latter configuration, when the ice is loaded
along the symmetry axis of the fabric, it is less than 0.1
(Pimienta and others, 1987). Taking into account these
particular fabrics would be a major improvement of the
existing ice-sheet models. Intermediate fabrics with two
maxima, as observed by Bouchez and Duval (1982), can
be modelled by Azuma (1994) and Castelnau and others
(in press) but evolve towards a single-maximum fabric
with increasing accumulated strain. Multi-maxima fab-
rics, [ound in the “migration-recrystallization™ zone near
the bedrock, cannot be modelled without including the
recrystallization processes. However, laboratory exper-
iments (Duval, 1981) and temperate-glacier flow simula-
tions (Meyssonnier, 1989) have shown that an isotropic
power law is quite convenient to model the mechanical
behaviour of this ice.

To capture the essential features of the in-situ
observed [abrics, we propose to model polar ice as a
transversely isotropic medium. Rather than considering
the ice polyerystal as an assembly of a discrete number of
individual grains, we replace the discontinuous distrib-
ution of the orientations of the caxes with a continuous
orientation distribution function (ODF), which gives the
density of grains with a given orientation.

To allow analytical calculations, cach grain of the
polycrystal is modelled as a transversely isotropic
medium, the symmetry axis of which is the caxis of the
crystal, with a weak resistance to shear parallel to the
basal plane. This reduction of the actual behaviour of the
ice crystal may be justified as follows:

According to Kamb (1961), when a single crystal of
ice deforms by simultaneous gliding along its three
aaxes, following a power law, the resultant gliding
direction is exactly the same as that of the resolved
shear stress on the basal plane if the exponent n of the
power law is 1 or 3. For 1 <n <3, the maximum
deviation is of the order of 2.

The mechanical behaviour of a grain in a polycrystal
of ice differs significantly from that of a single
(isolated) crystal undergoing the same state of stress;
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under stresses ol the order of 1 MPa, basal glide in a
single crystal follows a power law with n = 2, whereas
at the same stress level the value of n [or a polyerystal
is 3. The strain incompatibilities between neighbour-
ing grains activate mechanisms other than basal glide,
probably dislocation elimb rather than the activation
of other glide systems (Duval and others, 1983), which
control the mechanical response of the grains. Then,
the phenomenological approach adopted here to
model the behaviour of a grain is acceptable, since
the classical approach used in polverystal plasticity,
involving a number of slip systems, does not seem (o
reproduce the actual mechanisms of ice deformation.

Further simplification is achieved, in this first version of
the model, by assuming a Newtonian behaviour for the
grains. This does not render the model inappropriate, as
some indications ol a power-law exponent less than 2 can
be found in the literature (Doake and Wolff, 1985;
Lliboutry and Duval, 1985; Pimienta, 1987). Extension to
a more general (non-linear) hehaviour is possible but this
is left for future work.

The most severe limitation of the model, in its current
form, is that it is restricted to loading conditions which
respect the symmetry of the fabric.

General framework

The starting point is Eshelby’s relation for an elastic
(homogeneous) ellipsoidal inclusion in an elastic matrix
or HEM with a free boundary at infinity. If this inclusion
3 were removed from the HEM, then unloaded, it would
take the shape 7, leaving a hole of shape 3” in the HEM.
The transformation of 3 to 3*
which is called the “stress-free strain™ of §. According to
Mura (1987), the displacement u inside the inclusion,
corresponding to an imposed arbitrary stress-free strain

*

€15

corresponds to a strain €*

2 *
Ui = C"_j.'um.(,,,_,,IL'GU.‘.'I ) (1 )

=
where C is the stiffness tensor of the HEM, x are
Cartesian coordinates in the reference frame defined by
the (geometrical) principal axes of the inclusion, and the
Glijiw components are integrals, over the surface of the
inclusion, which depend only on the elastic moduli of the
HEM and on the inclusion-shape ratio.

Following Gilormini and Vernusse (1992), we use the
results obtained by Mura (1987) for an ellipsoidal
inclusion with a geometrical symmetry axis parallel to
the symmetry axis of a transversely isotropic HEM. The
major advantage of this approach is that the expressions
for Gjjiy can be integrated analytically. However, this is a
further restriction on the model, and we will consider only
the simplest case of spherical grains which are assumed to
remain spherical during their deformation.

In the following, all macroscopic variables related to
the HEM are overlined.

The displacement gradient inside the inclusion is
derived from Equation (1) in the framework of infinite-
simal strain and rotation. By applying the superposition
principle, it [ollows that when the HEM is submitted to a
prescribed strain € at infinity, corresponding to a stress @,
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the strain € in the inclusion is

€e=¢€+S:e", (2)

where 8 is the Eshelby’s tensor of components,

1 -
Sij.-nu —— (GM‘_H Sl G_,n‘.‘h’)cf»'.'um . (3)
38m
In order to satisty static equilibrium, the stress o in the
inclusion must be

o=+ Ci(8—-1):¢, (4)

where I denotes the identity tensor.

When considering a heterogeneous inclusion (inho-
is defined by
of the

mogeneity), the stress-free strain €

Equations (2), (4)
inhomogeneity

and the behaviour law

a= e, (5)

After some algebra, the classical interaction formula is
obtained as

6:(I+S:(6—I:Cfl))_l:6. (6)

The rotation tensor in the inhomogeneity, for a rotation @
prescribed at infinity on the HEM, is

w=w+w, (1)

where w” is a consequence of the interaction between the
inhomogeneity and the HEM. The components ol w*
derive [rom Equation (1) as

W= e, (8)

where is the tensor of components

Qi_,"mn " (Gikj[ - G_,‘A'r:')ci'n'zrlrﬁ (9)

b
Using relatons (7), (8) and (2), the rotation in the
inclusion becomes

=K o 1l

The aim of the following sections is to develop analytical
forms for relations (6) and (10), then to apply these
relations for ice by using the principle of correspondence.

Transverse isotropy

In the following, two Cartesian reference frames, {R;}
and {R;}, are used (see Fig. 1):

{Ry} is a fixed global frame whose Z axis is the HEM
symmetry axis,

{R};} is a local frame attached to a grain, whose z axis
coincides with the ¢ axis.

Any (non-scalar) quantity, expressed as x in {R,}, is
noted as x" when expressed in {R] }. The orientation of a
grainisgiven by the twoanglesf and o, defined in Figure 1.

The components a and a’ of the same vector with

| R
(S}
(&3]
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Fig. 1. Macroscopic {Ry,}, and grain {R}}, Cartesian
reference frames: angles 0 and @ define the c-axis
ortentation of a grain.

respect to {Ry,} and {R}} are velated by a = R.-a’, with

cosfcosy —sing sinfcosyp
R = | cosfsing cose sinfsing |. (11)
—sin @ 0 cos @

Using Voigt's notation (the stress and strain tensors are
(‘K])I‘(‘SS(‘(‘I as Weclorsy o= {O’| O3, 03,093,731, (J';g}, €=
{€1, €2, €3, 2623, 2€51, 2613} ), the elastic compliance of the
transversely isotropic HEM, expressed in IR}, is noted

[ "3'715 —
_pa a -v (0)
— -7 - 1
g it T B (12)
B o/ B
(0) iy /3

where 7I; = 2a(l + 7). @ is the ratio of the Young’s
modulus E along the symmetry axis (Z in Figure 1) to that
in the plane of isotropy (T,7). 7 and 7 are the Poisson’s
ratios in the planes parallel and perpendicular to the
symmetry axis, respectively, 3 is the ratio of the shear
modulus in a plane which contains the symmetry axis to
that in the plane of isotropy (71, /E).

The elastic compliance of the inhomogencity, ex-
pressed in { R} }, takes a similar form in which E. @, B, [y,
vy, U, arc replaced with E, a, 3, 1, 11, V.

Incompressibility

Incompressibility is obtained by preseribing the values of

v, 7, 111 and 7 as

all—wn)=1-v, a(l-7)=1-7,

so that

1—2i
~—==p, @ =8-——p,(14)
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where p and P denote the isotropic pressures in the
inclusion and the HEM, then letting ¥ = v approach 1/2.
The analytical expressions for the Eshelby’s tensor
components, at order zero in the small parameter
1 — 2u, can be found in Gilormini and Vernusse (1992),
who studied the case of an isotropic incompressible
inhomogeneity in a transversely isotropic HEM. Taking
the general symmetry relations into account, the non-zero
components of § are

Siiiiliii )

Soozs = Siiaz,  Sssin = Sz,

Siz12 = Sapig = S = S1a01

Sagas = Saao3 = Saome = Sasse,

Sia13 = Sanis = Sz = Sz = Saas - (15)

S22 = So911 -

Additional relations which are useful to achieve results in
closed form are
St + Stz + Samn = 1+ 01 — 2v)
25133 + Sazs = 1+ O(1 — 2v) ,
Siinn + Siize + Sszi1 — (251133 + Saza)
= 2(S1133 — Ssan) (1 — 2v),
Siitn — Shizz = 281212 - (16)

The expressions for the S are given in the Appendix.
Interaction formulae for the ice polycrystal

The results obtained for elastic behaviours ol the
inhomogeneity and the HEM can be transposed o
lincarly viscous materials, of axial viscosities 7 and 7
along the respective symmetry axes, by imposing in-
compressibility and replacing the strain € with the strain
rate €, the rotation w with the rate of rotation w, the stress
o with the deviatoric stress s, and the Young’s moduli E
and E with 35 and 37, in relation (5)-(12). This is valid
for infinitesimal strains and rotations from the current
state and hence determines the instantaneous response
from any delormed state.

Matrix C given by relations (12) is now a viscosity
matrix, and macroscopic parameter @ is the ratio of the
axial viscosity 7j; = 7] along the symmetry axis (Zaxis) of
the ice polycrystal (HEM) to the axial viscosity 7 in the
plane of isotropy (i.e., the viscosity which would be
measured in uniaxial compression along the @ or ¥ axis).
Macroscopic parameter /3 is the ratio of the shear viscosity
Tjay in the (Z-Z) or (J-Z) plane to the shear viscosity 75 in
the plane of isotropy. This is summarized by

n 31

5 M=

=0 G = oy = B2 - (17)
The same definitions apply to the grain (inclusion)
parameters 77, o and /3,

The development of relation (6), using relations (12),
expressed in frame {I_?J,}. and relations (13)-(16), is
lengthy but straightforward. Additional simplification
was obtained by making o =1 in the grain-behaviour
form of relation (12); this does not conform to Pimienta’s
(1987) results but preserves the essential feature of the
grain hehaviour (i.e., a weak resistance to shear parallel
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The
(17) for the grain is then

to the basal plane, obtained with < 1). corre-

sponding form of relation

M =ML =nN2=1, I =/0m. (18)

By using the correspondence principle and separating the
isotropic and deviatoric parts, the resulting interaction
formulae, expressed in {R,}, give the strain rate € and the
isotropic pressure p in a grain of e-axis orientation (6, @),
as a function of the strain rate € and of the isotropic
pressure p in the HEM. They are

Sizs — Szan ),

L — .

1 s
€3 = {;{f;; — byI'3y sin 20) ,
1

p=p+27

6;1 — é-_g = - (;1 == ;2 = (1.[](2F2;5 sin A sin 2Q
(4
— Iy sin 20 cos 2¢))
) [
€93 = = (F'z:; + (T3 cos @ cos @ + I'y; cos 20 sin L,-:’)) 5
: Uit = :
€31 = = (e_-“ — ¢p(Laz cosfsin g — Iy cos 20 cos ;,:)) s

T
€15 = —(élg + (T3 sin 6 cos 2 +1T'3; sin 26 sin 2-,9)) :
a 4

(19)
where
nAa—1)(1-73) .
ay==————""""523,;
] 3
1-
by = ? (b-;'m — 85311},
n(da —1)(1 - B)
R N
€y 7 33 1313 »
2(1.”
— — 2851919,
a == =3 Si212
2l
b =1+ g _J”d (Sa333 — Saann)
)
=1+ ]—(IL —~ 251313, (20)

and I'ag, I'y; arve the expressions for the shear-strain rates
2¢4, and 2¢€}, in the grain, expressed in {R}} by
Loy = 2‘.;;:5
1 { (€ — é)sin2yp — 2é3 cos 2p
=l

sin#

(4]

N 2€23 COS (p — 2é3; 5in - 6)
=
T3 = 2¢4,
1 (€ 1—f:)(05)~,.9+261>51112,9
-5 (

sin 26

a

2(:‘2;; sin

35 . o+ 2:;; | COS @
— !—*Hm 20 + 2 i T cos2d ) |
h ¢

(21)
with
oy = QECUSZ 6+ 2@51112 gd—1,
& a
by = (%—H}%):w'iuj?HJrJ(:II]CD::"’EB—Q. (22)
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Self-consistency

an ODF (Orientation

@), which gives the density of

To describe the fabric, we use
Distribution Function) f(0,

caxes with orientation (6. @), i.e. the relative number of
caxis intersections with the unit sphere per unit area of
the sphere. The relative number of
orientations lie in the interval (0,0 + dé: ¢, p + dyp) is

grains whose

dN; = — f(8,¢)sinfdide. (23)

27
Assuming that there is no correlation between the volume
ol a grain and its orientation, dN, is also a volume
fraction.

By definition,
For a wransversely isotropic HEM, f does not depend on

@, i.e., f(0,¢)= f(0). The weighted
quantity x(f, p) is then defined as

5[]+

For an isotropic HEM: f(0,¢) = 1.
The self-consistency of the model is achieved by setting
the averages of the isotropic pressure and of the strain

f 0, ¢)sinfdfdp=1. (24)

average of a

Jf(8)sinfddde. (25)

rates equal to their corresponding macroscopic quantities,
that is

(‘EIJ) s éi.y 4 (26)
Using expressions (19) for p and €;;, with the comple-
mentary relations (15), (16) and (20)—(22), relations (25)
and (26) result in the following non-linear set of three

(p) =P,

equations for the unknowns 7, @, 3

ag [™?/sin?f sin220
4 +— +—_—
0

a (50'5 2@;;1

)f(()’) sinfdf =1,

% 2
R ("“‘ )f(a) sinfdf =1,
b Jy b3
X /2 2 Ly J—
oy 0 (“’“ L M) F(O)smBdd=1. (27)
c Jy O3 D34

The solution of Equations (27) found
numerically, except for the simple isotropic fabric. In
this case @ = 7 = 1 and the [ollowing relations hold:
Saazs — Saz11 = 281012 = 251313 = 2/5,
) = b() =0y = (?]/i’_])(l = -f)/xr)
a=b=c=(34+2n/7)/5.
2003 = 031 = (4ag/a — 2)

can only be

(28)

- oy T e .
I'hen system (27) reduces to the equation 3(1/n)” —5/n
—2/3 = 0, which has only one positive root 7., given by

Tiso =M1+ 14+ 243)/6. (29)

Thus, for small values of 3, the macroscopic viscosity of
the HEM is controlled by the grain viscosity along the c-
axis direction.


https://doi.org/10.3189/S0260305500013513

https://doi.

Meyssonnier and Philip: Model for tangent viscous behaviour of anisotropic polar ice

Fabric evolution

According to Equation (11), the components ¢ and ¢ of

the c-axis vector of a grain are linked by
c=R-c. (30)

Under the velocity gradient L in the grain, ¢ transforms
into ¢ 4 de such that

de=L.cdt=L-R-c'dt. (31)

Differentiating Equation (30) with respect to time leads to

de=R-cldt+R-L'-c'dt. (32)

It follows that

R1-R+LI-R1-L-R)-¢'=0. (33)

By introducing the rate of rotation tensor w, defined by
L =é+w, and using the transformation formula € =
R-é - R, expression (11) for R and ¢’ = {0,0, 1}, the
change in the orientation of a grain follows from
Equation(33) as

0 = —w\; + (w13 coS @ + wazsin ) ,
@ sinf = —u}g:‘ - ((.FJ]-_; sin @

+ (Wig sin p — Wz cos @) cos 9) . (34)

Assuming that the basal planes of a grain remain parallel

to each other during the deformation, the component of

the velocity in a grain along the zaxis (caxis) is a function
of z only, so that

*1

: . . I's
g = v ) Z
lilg == T =

log =633 = 5 (35)

The components of the rate-of-rotation tensor in the
global reference frame {R,} are given by Equation (10)
(written for rates). The € components which appear in
this equation, not given by Gilormini and Vernusse
(1992), need to be calculated [rom relation (9) and
Mura’s (1987) expressions [or the Gjjy. For a transversely
isotropic HEM, the only non-zero components are

Qigis = —Qans = Qigzr = — gz = Sz — Sz,

Qogog = — 003 = Qogge = — gz = g (36)

From Equations (10) and (36), the non-zero components
of win {Ry} are
Siizs

1313

Wiy = —Wy = Wiy + (l =

) s ~ By

SR S B . =
woz + (l = Slm) (€23 — €23) ,
1313

Wi = —Wy = Wiz

I

Wog = —Ws3
(37)

Using LEquations (35), (37) and the interaction ﬁ'n'n_ullaw
(19)—(22) in relations (34), completely determines # and
P.

The ODF evolution derives from the continuity
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equation (24), by requiring that the net flux of grains
which enters the interval (6,0 + df; ¢, + dp) during a
unit time is equal to the increase in the number of grains
in this time, i.c.

A(fsinf) " A(0f sin 6) 4 Npfsind)

ot 90 e D

(38)

This equation, associated with Equations (34), describes
the evolution of the fabric.

APPLICATION TO COMPRESSION AND
TENSION

Calculation procedure

The equations to be solved are the self-consistent system
(27), which gives the mechanical behaviour of the HEM
(T’}.E.B). and Equation (38) for the evolution of the ODF,
using Equation (34).

Under uniaxial compression or tension along the
HEM symmetry axis, the velocity gradient prescribed at
infinity, on the HEM boundary, is such that

€3 = const., € = €3 = —€3/2,

€12 = €93 = €31 =0,

w=0. (39)
Under these conditions, equation (34) simplifies to
] 1 «a ( Sl]:i:i) )
= || e ]l cos20 | Ty,
( 2 ¢ S1313
p =0, (40)

As I'3; does not depend on ¢, these equations confirm that
the symmetry is maintained when compression, or
tension, is exerted along the symmetry axis of the HEM.

Even though the present model is only valid for small
strain and rotation, in this uniaxial geometry with no
macroscopic rotation, a finite uniaxial strain can be
reached by summing the small strain increments which
arise in small time increments. The results can only be
achieved by numerical computation, as the sell-consistent
set of Equation (27) is non-lincar and the ODF is not
explicited analytically. Starting [rom an isotropic config-
uration (f(0) =1, 7 = iy @ = B = 1), system (27) was
solved by Newton’s method which was found to be always
convergent. At the end of each time step, the macroscopic
parameters 7, o, 3. then the components of Eshelby’s
tensor and the ODF were updated. Solution of Equation
(38) was achieved by discretizing f(#), then balancing the
net flux of grains entering each interval (8, 8 + dff) during
the time step dt with the increase in f(#) by using an
upwind scheme which takes into account the sign of 0 at
the ends of each € interval.

Results

Figure 2a, and b shows the evolution of the ODF, under
compression and tension, respectively, as a function of the
cquivalent strain €, = llEsl|t. This equivalent strain has
no physical meaning, as the model does not hold for finite
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0 15 30 45 60 75 90
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Fig. 2. Orientation distribution function f(0) computed for
different values of €eq = ||€||t. with grain parameter
3 = 0.04, under (a) uniaxial compression, (b) uniaxial
tension.

strain, but it is a convenient reference measure for
intercomparison between different models. As expected,
the caxes tend to gather around the compression axis, or
to fall in the plane perpendicular to the direction of
tension, respectively, with increasing equivalent strain. As
the relative number of grains in the interval (6, 6 4 d8) is
f(0)sinf@df (see Equation (23)), the usual representation
of these [abrics by a Schmidt’s diagram would be two
girdles, the radii of which decrease or increase respec-
tively, with increasing equivalent strain. These curves
were computed with 3= 0.04 which is the solution of
A =7,.,/10, with 7;,, given by Equation (29). With
such a wvalue of
polyeryst
shear parallel to the basal plane ol the grains, would

3, according to Lquations (18), a
al with all its caxes parallel, undergoing simple

deform ten times [aster than an isotropic polycrystal, in
accordance with Pimienta and others’ (1987) estimate (all
other directional viscosities being equal to that of a grain
along its symmetry axis).
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Fig. 3. Evolution of the macroscopic paramelers n/n, o,
B3, as a function of the equivalent strain €.. for grain
parameter 3 = 0.04, under (a) uniaxial compression, (h)
uniaxtal lension.

The evolution of the mechanical parameters 7/n, @
and 3, are shown on Figure 3a and h. Under comp-
ression, in the extreme case of aligned caxes, the
behaviour of the polyerystal should be that of the isolated
grain (i.e., f=71=2.5%,, a=a=1, A= F=0.04).
This final state seems difficult to reach: at ¢, = 1, the
macroscopic parameters are found to be 7= 0.7y,
@ =0.9, 3=0.13. Taking the viscosity of the isotropic
polycrystal as a reference, the corresponding viscosities at
€y = 1 are, according to Equations (17): 73 =7 = L7974,
T = L9Wi0s e = 2,000, oy = 0.257;,,. Under tension, in
the extreme case ol coplanar ¢ axes, the viscosity along the
polyerystal symmetry axis tends towards the axial
viscosity of the grain. At €, =1, the macroscopic
parameters are 7} = 0.97y, @ = 2.62, 4 =105, and the
corresponding viscosities are: 7j; = 1) = 2.437,,. 1; = 0.937,,,,
Mo = 0.777i0, Tay = 0.817;,.

The influence of the grain parameter 3 on the
evolution rate of the fabric, under uniaxial compression,
is shown in Figure 4a. The influence of 3 on the
mechanical parameters of the HEM is shown in Figure
4b: the stronger effect is on 3. Note, however, that at an

equivalent strain of 1, the values of 3 computed for
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A =10.1 and 3 = 0.01 are only in a ratio of 3, so that this
influence is not too great.

ODF parameterization

All of these results were obtained by discretizing the ODF
on 90 intervals between 0 and 7/2. By doing so, there is
little advantage in using an ODF formulation rather than
discretizing the polycerystal in a finite number of grains, as
has been done in Castelnau and others (in press) model.
To remedy this situation, an attempt was made to
parameterize the ODF with a small number of para-
meters. By analogy with the results of Giessen and Houtte
(1992), who derived analytical formulations for the ODF
in a model based on Taylor’s assumption, it was found
that, both in compression and tension, the present ODF
can be very accurately fitted with a function of the form

1
}= qo + q1 €08 260 + g2 cos? 26

e (41)

A theoretical demonstration of this, in the framework of
the present model, is not straightforward, as the
coeflicients in Equation (40) [or 7 depend on @ and B
which are implicit functions of f(8).

The ODFs obtained, with an evolving discretization of
the ODF, or by using approximation (41) at the end of
cach time step to replace the actual ODI" with f*, then
discretizing f* at the beginning of the next time step
(which mimics what should be done during a flow
simulation), are practically identical, either under com-
pression or tension, even at a large equivalent strain.

The generalization ol such a parameterization, for
loading conditions other than compression or tension, will
retain the storage capacity required to solve a [flow
problem (o a minimum.

CONCLUSION

An attempt to construct a simple model for the evolution
of the anisotropy in polar ice has been made. The
phenomenological approach has been limited to the
description of a grain, in a polyerystal, as a transversely
isotropic medium exhibiting linear viscous behaviour and
weak resistance to shear parallel to the basal plane
(general VPSC models restrict the phenomenological
description to that of a gliding relation on crystal-
lographic planes). Current ongoing work is attempting
to achieve interaction formulae in closed form for a more
elaborate model of a grain (non-linear behaviour and
a # 1). The additional assumptions or restrictions which
were made, mainly considering a transversely isotropic
polyerystal, allowed analytical relations which give the
state of strain acting at the grain level, while preserving
the theoretical framework of the self-consistent method
which has served as a good guideline,

In its current form, the model provides the mechanical
parameters which describe the viscous behaviour, at time
t and for a given (fixed) fabric, of a transversely isotropic
polyerystal submitted to any velocity gradient at infinity.
It can also predict the evolution df(#,¢) ol the ODF
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which represents the fabric but only for a (short) time step
df. In that sense, the model gives the tangent behaviour ol
this polyerystal.

Applications of the model, for houndary conditions
which preserve the transverse isotropy of a polyerystal
(compression, tension), have been presented.

Further work is needed o see how the ODF, f+df,
which results from a strain increment applied to a
transversely isotropic polyerystal with boundary condi-
tions which do not preserve the symmetry, could be
“symmetrized™ at ¢ 4 dt, that is, how an approximate
transversely isotropic HEM (whose symmetry axis would
differ from that at tme ¢) could be found.
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APPENDIX

ESHELBY’S TENSOR FOR AN INCOMPRESSIBLE
TRANSVERSELY ISOTROPIC MEDIUM

The Sjj components derive form relation (3) in which
the Gy for an ellipsoidal inclusion in a transversely
isotropic medium have been given by Mura (1987,
p. 139-40). The results for an incompressible medium
and any inclusion-shape ratio, at order zero in the small
parameter (1-21) have been given by Gilormini and
Vernusse (1992).
The expressions for a spherical inclusion are:

3 — (B — 120 — Blda — 48 +3)Jo— 3B Js

Stn = 1

S5990 = Sin

Syyaz = (da — B)J) + Blda — B+ 1).Jo + ,‘?lh 3
Sun = —(B— 17 - BB-2)h+8 Js,

5:1322 = SZL’HI +
1-(4@-B)h-Ba-B+1)h-B &
- . :

82233 = Sll.‘lii 3

1+ (B +28—-3)4 +BUa—5)0h— B Js
- ‘

Sos11 = St .

1 =B =D —Blda=28— 1B &
51212 = 1
4
_ | —(a—B ) — 2B+ Js
Sia13 = .

4
Sa393 = S1313

where
| 2n 2y (3—n)
% 1 — 2
i = / — J_ (, — - ———d% .
Jo (1 + (lj = 1).1"2) (,H -+ 4(5 == j'f).‘l‘z(l — :'l")))
The other non-zero components derive from
i = S = Sijt -
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