ON CONJUGATE FUNCTIONS

YUNG-MING CHEN

1. Introduction. In a previous paper (3) generalizations of M. Riesz’s
theorem by the method of asymptotic approximation have been given. The
present paper is concerned with further generalizations for even and odd
functions. In Section 3, we consider a generalization of a theorem due to
Zygmund: If [f|logt|f] € L(—m, x), then f € L(—m, ) (10, p. 254). The
results in this paper include generalizations of results by K. K. Chen (2) and
T. M. Flett (4, Theorems 1, 2) as important special cases.

K. 1. Babenko (1) proved that if [f(x)[” |x|* € L(—m, ), for p > 1,
—1 <a < p —1, then

(1;1) f_: If(x) \p ‘xl“ dx < 4 f_: ‘f(x)lp lx‘“ dx,

where f is the conjugate function of f(x), and 4 depends on p and « only.
This result has been generalized in (3). Concerning even and odd functions,
stronger results have been obtained by K. K. Chen (2) and T. M. Flett (4).
We shall consider some more general results (Theorems 1 and 2). By complex
methods, V. F. Gapogkin (5) has generalized (1.1) in the following form:

(12) S rer sw ar < 4, [ 0P o) ax,
where ¢(x) € L(—m, w), ¢(x) > 0, and
(1.3) 8,5 > cly(r, ),

1—7°

R 1 T
(L.4) ¢@=¢@m=;hf¢ml+ﬁ_%mw_@w,

0<r<1, z=re and ¥(2) = ¢Y(r, x) is the conjugate function of ¢(rx),
c>0 (p>2), ¢ > |tan 3pr| (1 < p < 2).

The following classes of asymptotic approximation functions have been
defined in (3), but for the sake of completeness, we now reproduce the sim-
plified definitions and notation here.

(i) By ¢(x) ~ [a, 8], 0 < a < b, we denote any non-negative even function
¢(x), such that ¢(x)/x* is non-decreasing and ¢(x)/x® is non-increasing as x
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is increasing in (0, ). The class of functions ¢(x) ~ [a, b], where a < b < 0,
may be defined in a similar way.

(if) By ¢(x) ~ {a, b), where 0 < ¢ < bora < b < 0, we mean there exists
a small positive constant e such that ¢(x) ~[a + ¢ & — ¢]. Similarly
¢ (x) ~{a, b] and ¢(x) ~ [a, b) mean ¢(x) ~ [a + ¢ b] and ¢ (x) ~ [a, b—¢],
respectively, for some ¢ > 0.

(1ii) By ¢(x) € M(a, b),1 < a < b < =, we denote any non-negative con-
tinuous non-decreasing function ¢(x), 0 < x < =, satisfying ¢(0) = 0 and
the following conditions:

(1.5) ¢(2u) = Of{¢(u)},
(1.6) "’ﬁ? dt = 0{%},
0 6, _ ofstl,
for 4 — .

(iv) By ¢(x) € Z(a, b) C M (a, b), we denote any ¢ (x) satisfying the above
conditions (1.5), (1.6), (1.7) and the following conditions as # — +0:

(1.8) $(2u) = O[6(w)},
¢<t> ¢<u>}
(19) b+1 { ub ]
(1.10) "fff? dt = o{"s—(a@}.
0 u
Gapogkin’s result (1.2) is similar to a lemma in (3):
(111) J e erras < [ o) @l as,
(1.12) J s iera <k [ e el a,

where p > 1, a(x) ~ [0, p — 1), B(x) ~(—1,0].

Throughout this paper, K denotes a positive constant, and two different
positive constants may be denoted by the same K. We shall use the functions
¢(x) € M(ph P2)y ¢(x) S Z(ph P2)» a(x) ~ [O, a>’ B(x) ~ <—br 0] as defined
above. In this paper, each of the inequalities involving integrals has the
meaning: “If the integrals on the right are finite, then the integrals on the
left exist, and the inequality holds.”

2. Even and odd functions. The conjugate function f(x) of an even
function f(x) = f(—x) is given by
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@) 10 -p [ o et -nay =L [0

COSy — COS X

If f(x) is an odd function, then the conjugate function f(x) is given by

22) o =L [T gy

Ccosy — cos X

Moreover, when f is even, then f is odd, and when f is odd, then f is
even.

TuEOREM 1. If f(x) is even and belongs to L(—m, =), and if f(x) is the conjugate

function of f(x), B(x) ~ (= (p1+1),0], 1 < p1 < p» < @, ¢(x) € M(py, p2),
then

e3) | s eli@har <k [ s slliwl) s+ K,

where the constants are independent of f(x). In particular, if ¢(x) € Z(p1, p2),
then the second term K in the right member of (2.3) may be replaced by zero.

Remark. If we replace the ‘‘explicit form’” (2.3) by the “implicit form”
Jo(8@) [F)l} dx < K [¢{8(x) [f()]} dx + K, B(x) ~(=1/ps, 0],
the result remains true.
THEOREM 2. If f(x) is odd and belongs to L(—=, =), and if f(x) is the con-

jugate function of f(x), a(x) ~ [0, 2p1 — 1),1 < p1 < ps < o, ¢(x) € M (p1,p2),
then

e [ ew sllfwl i<k [ o) pllfe@l) dx + K,

-

where the constants are independent of f(x). In particular, if ¢(x) € Z(py, Do),
then the second constant K on the right may be replaced by zero.

For the proofs of Theorems 1 and 2, we need the following lemmas. Lemma 1
has been proved in (4).

LEMmMa 1. If 0 <x <7, 0 <y <, then

lcos x — cos y| _ |x* — 7]
> P .

(2.5) cos ix Z  or

LEMMA 2. If f(x) is even, B(x) ~{(—(p + 1),0], p > 1, and if f(x) is the
conjugate function of f(x) € L(—m, m), then

26) J s iwra<x [ se irras,

where K is independent of f(x).
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LemMA 3. If f(x) is odd and belongs to L(—w, ), and if f(x) is the conjugate
Sfunction of f(x), a(x) ~[0,2p — 1), p > 1, then

27) J ew wra <k [ aw e,
where K depends on p and a(x) only.

We consider a proof of Lemma 2 only, while the proof of Lemma 3 follows
in a similar way, since the kernels are respectively

sin x an sin y
COs Yy — COS X COS Y — COS X

We first introduce the following functions:
(2.8) W(x) = {B@)}17fx) — V(x),  Ulx) = {8(x)} f(x),
where V(x) is the conjugate function of U(x) defined by

1 sin x )
(2.9) Vix) =~ . (C—Osy eosx) V) @

It should be remarked that if f is even, then U is even and f, V, W are
odd, and that if f is odd, then U is odd and the corresponding f, V, W are
therefore even. So we may restrict ourselves to the range 0 < x < m,
0 <y < 7. Let M,[f] denote the p-norm in LP(—m, 7):

ks 1/p
(2.10) i = el = § f rrasf
(2.6) is equivalent to
(2.11) M, [F817] < KM, [U].

In virtue of Minkowski's inequality and M. Riesz’'s theorem, we have
(2.12) M, [f6177] < M,[V] + DM, [W] < KM, [U] + M, [W].

It remains to prove that

(2.13) M, (W] < KIM,[U].

In fact, we have

( 1 T sin x 1
2.14) W =1, <m>{f(y)3/(x)—U(y)}dy,

I

l 1 : <——Siﬂx—>{f(y)3””(x) — f(»)8"7 ()} dy.

T Cosy — Ccosx

In virtue of Lemma 1 and by Minkowski’s inequality, it follows that
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s 1/p
w011 = 1, = {2 f) 1w asf

dl " 4 1/p
K{ fo _fo I_xii—y"’l 18"7(x) — B ()| |f )] dy] dx}

T (" ? 1/p
K{f _fo o - S 1= (8@ /8ON ™1 87 ) ) dy] dx}

x|
X B'7(tx) |f(tx)] dt]p dx}lm

(2.15) 1 o (om0 .
<x [ P B) 1 = (5(:)/806s)) ™1 d

0

N

I

L ™ /z
LS = - ee/sen

0 L

X |1 — |7 dt
° i 1/p
<k f {f [f@)B )P £ |1 — P du} 11— & dt
0 0
@ 4 1/p
<K f {f U Pdy¢ 7)1 — 772 11 — 7 dt
0 0

<kl [T — e e ag o,

< KI,[U].

(Cf. formulas (2.28), (2.29), (2.30), (3.41), (3.42), (3.43) in (3), where
B(x) is equivalent to 1/a(x). Since B(x) ~{(—1 — p, 0], there exists ¢ > 0
such that Bx) ~[—1—p+¢0]. If [t <1, then B@x) > B(x),
xR (x) > (1) =B (tx), B(x)/B(tx) > and |1 —B(x)/B(tx)| <1<
If ¢t > 1, then 1 < B(x)/B(tx) < t7?~¢ and |1 — B(x)/B(tx)| < t1HP~¢ — 1 =
[1 — ¢+7=¢|.) This proves Lemma 2.

From Lemmas 2 and 3, and by a similar argument as given in (7; 9; 3,
p. 405), Theorems 1 and 2 follow at once.

3. Generalizations of Zygmund’s theorem.

TurorEM 3. Let f(x) be the conjugate function of f(x) € L(—m, w). If
B(x) ~(—1,0], then

61 f sw Fela <k | 66 1) log™8() @) ds + K.

If, in addition, f is even, then (3.1) remains true for B(x) ~ (—2, 0]. Moreover,
if, in addition, f is odd, then the inequality remains true when B(x) 1s replaced
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by a(x) ~ [0, 1]. The constants in the right member of (3.1) are independent
of f(x).
We need the following lemma. Although we shall not use the full strength

of the inequalities, for the sake of completeness, we consider the general case
here.

LEMMA 4. Let K(x,y) be non-negative and f(x) > 0, and suppose that
G(x,y) =vy.K(x,v) satisfies

(3.2) Glx,v) <K, 0<x<y<a<o,
z 1

(3.3) f K(x,y)dy = f xK (x, \x) d\ < K + K log* (1 /x)
0 0

Jor 0 <x <a <. Then

60 ["o{ [ ke <k [ 16 o0t a4k

where the constants on the right are independent of f(x).

Proof. We shall use the inequality
(3.5) uy < ulogtu 4+ ™1, u > 0.

(See Hardy, Littlewood, and Pélya: Inequalities (2nd ed., Cambridge Uni-
versity Press, 1952), p. 61, Theorem 63, p. 107, and p. 113.) By inverting the
order of integration, and from (3.5), we find that

I= f: dy{f:K(x, ) f(x) dx}
= f dy{(ﬁer f)qu y) f(x) dx}

_ f:d_;fc(x,y)f(x)dwr foaf(x)dx f;mx,y)dy

o <K :d—yy foyf (x) dx + K fo F(x) logt(1/x) dx + K foa F(x) da
< KJ; f(x) log(a/x) dx + K fo fx) log"(1/x) dx + KJ;af(x) dx
<&J "ot 1) ds + Kog'a [ 1) ax + & S s as

<K f 2f log*2f dx + K f AR gy L K J‘ f(x) dx
0 0 0

<K j‘oaf(x) log*f(x) dx + K.

This proves Lemma 4.
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Proof of Theorem 3. By Zygmund’'s theorem, it is sufficient to prove the
following inequality:

s [T weie < [ s e 05w @) b+ K,
where now W(y) is defined by

(3.8) W) =F»8G) — V),
and V(y) is the conjugate function of U(y) = f(»)B(y):

(3.9) V(y) = 51—7; J‘_: U(x) cot 3(y — x) dx.
We have, for even and odd functions,

w1 = ——{ J 7 186) — 8156 cot by — )
(3.10) J

' ™

L <K K86 )
where the kernel K (x, y) is defined by
@I Ky = HERBEEL 6 ~ (2,0
when f(x) is even, and

_x[1 a(y)/a(x)l

(3.12) Kus,y) = “E #2000 o) ~ 0,1),
or
@13 Ky = LB g6~ (10

when f(x) is odd. We next show that in each case, K,(x, y) satisfies the con-
ditions of Lemma 4.

Let us first consider K;(x, ¥). Then G1(x, v) = yK1(x,¥),0 <x <y <a <.
If 0 <p <1, then ¥28(y) > u2y2B(uy). It follows that

Gi(x, y) = - |ﬁ(3’_>/f|(uy)| ll — Bl(yl/f(y)#—2l .

Thus Gi(x, y) satisfies (3.2). Next, if [\| < 1, let ¥ = Ax. Then there exists
e > 0, such that y2=<B(y) < x2~¢6(x), and therefore

J:)l xK1(x, M) A\ < fol M1 _1‘88‘30)\)/3(95)1 ar

1 —2+e__ —1+e__
e e S A A
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Hence (3.3) is satisfied for Ki(x, y). In a similar way, it can be readily shown
that Ks(x, y) also satisfies (3.2) and (3.3).
It remains to consider K;(x, y). Let x = Ay, 0 < XA < 1. Then

AL — A -1
Gg(x,y) = ! la(_y))\/za( y)[ <>\li\_ )\2 lzl_*l_)\

Thus K;(x, v) satisfies (3.2). On the other hand,
z 1
J; Ki(x,y)dy = L xK3(x, ux) du

. 1
_ f Il a(#x)éa(x” dp < f 11 — ’u2 du = log 2.
0 0 ]

1—wu

<1

Hence K;(x, y) also satisfies the condition (3.3).

We may now apply Lemma 4. By this lemma the results for even and odd
functions in Theorem 3 follow at once. It remains to consider the general
case when f is neither even nor odd. Let us write

(3.14) @) = 2f®) + f(=0)} + 3{f(x) = F(=x)} = r(x) + s(x),

where 7(x) is even and s(x) is odd. Then both |r(x)| and |s(x)| are bounded
by |f(x)| + |f(—x)|. It follows that

J s ifelar < [ s rlas+ [ 8w 5w as
<K | 86) ()] log*8x) Ir(@)]
(315) +& | 860 51 log™8x) 1sx)| e + K

<K | 8@+ (=)} log $86x) ()] + lf(—x)]} dx + K

<K f B(x) If@)] log"B(x) |f)| dx + K.

This proves (3.1).

Finally it should be remarked that if we set the kernel in (3.10) equal to
[1 — B(y)/B8(x)|/|x — ¥|, then our method fails, for, in this case, (3.2) is not
satisfied.

4. Analogous theorems for Hilbert transforms.

THEOREM 4. If f(x) s even, B(x) ~{(—(p14+1),0], 1 < p1 < p» < »,
o (x) € Z(py, p2), and if

(4.1) glx) = % J’_“’ xf(i)tdt - % J‘O‘” <x2 - t2>f(t) dt

is the Hilbert transform of the even function f(x), then
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42) |7 8w sllewlyar <k [ ) slir))) ax,

where the positive constant K is independent of f(x). (For the corresponding
M. Riesz’s theorem for Hilbert transforms, see Titchmarsh (8, pp. 132-138).
In Formula (4.2) the u(R) measure and »(S) measure are both infinite, so
we cannot take ¢(x) € M (py, p2). The result is a consequence of an inter-
polation theorem due to S. Koizumi, cf. (3, p. 365, Theorem H).)

For the proof of Theorem 4, it is sufficient to consider the kernel
_
(43) K(xr y) ‘xZ — yzl ,
which is analogous to the kernel in (2.1). In fact this is exactly similar to
the case of conjugate functions of f(x) and the proof is essentially the same
as in Section 2. By a similar argument for odd functions, we deduce the
following theorem.

THEOREM 5. If f(x) is odd, a(x) ~[0,2p1 — 1), 1 < p; < ps < o,
¢(x) € Z(py, p), and

(44) e =1 [T I 2 [T
is the Hilbert transform of the odd function f(x), then
(@.5) [7 e stlewyax <k [ at) ol dx,

where the positive constant K is independent of f(x).

REFERENCES

1. K. I. Babenko, On conjugate functions (in Russian), Dokl. Akad. Nauk SSSR, 62 (1948),
157-160.
2. K. K. Chen, On the absolute Cesiro summability of negative order for a Fourier series at a
given point, Amer. J. Math., 66 (1944), 299-312.
. Y. M. Chen, Theorems of asymptotic approximation, Math. Ann., 140 (1960), 360-407.
. T. M. Flett, Some theorems on odd and even functions, Proc. London Math. Soc. (3), 8
(1958), 135-148.
5. V. F. Gaposkin, 4 generalization of M. Riesz's theorem on conjugate functions (in Russian),
Mat. Sb., 46 (1958), 359-372.
6. S. Koizumi, On the Hilbert transform, 1. J. Fac. Sci., Hokkaido Univ., Ser. I, 14 (1959),
153-224.
7. J. Marcinkiewicz, Sur l'interpolation d'opérations, C. R. Acad. Sci. Paris, 208 (1939),
1272-1273.
. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd ed. (Oxford, 1948).
9. A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operations, J. math.
pures appl., 35 (1956), 223-248.
Trigonometric series, vol. 1, 2nd ed. (Cambridge, 1959).

W

[

10.

University of Hong Kong

https://doi.org/10.4153/CJM-1963-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1963-053-5

