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Abstract

We propose a new derivative-free conjugate gradient method for large-scale nonlinear systems
of equations. The method combines the Rivaie–Mustafa–Ismail–Leong conjugate gradient method
for unconstrained optimisation problems and a new nonmonotone line-search method. The global
convergence of the proposed method is established under some mild assumptions. Numerical results using
104 test problems from the CUTEst test problem library show that the proposed method is promising.
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1. Introduction

In this paper, we consider the nonlinear system of equations

F(x) = 0 x ∈ Rn, (1.1)

where F : Rn → Rn is continuously differentiable. Newton and quasi-Newton methods
(see the survey [1]) are the most widely used methods to solve such problems because
they have very attractive theoretical and practical properties. However, they are not
usually suitable for large-scale nonlinear systems of equations because they require
the solution of a large system of linear equations using a Jacobian matrix, or an
approximation to it, at every iteration.

La Cruz and Raydan [6] presented the spectral algorithm for nonlinear equations
(SANE). At each iteration, SANE systematically uses the residual ±F(xk) as search
direction. La Cruz et al. [5] proposed a new nonmonotone line-search technique and
developed the derivative-free spectral residual method for solving large-scale nonlinear
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systems of equations (DF-SANE). An extensive set of numerical experiments
indicated that DF-SANE was competitive and frequently better than SANE and well-
known Newton–Krylov methods for large-scale problems. Cheng and Li [3] extended
the nonmonotone line search proposed by Zhang and Hager [15] to the spectral
residual method for solving nonlinear systems of equations (N-DF-SANE).

Conjugate gradient methods are successful methods for solving unconstrained
optimisation problems. They are particularly efficient for solving large-scale problems
due to their simplicity and low storage (see [11]). Among these is the Polak–Ribière–
Polyak method (PRP), which has many variants. Some recent examples of PRP
conjugate gradient methods for which the numerical results are very encouraging are
studied in [9, 13, 14].

The PRP conjugate gradient methods have been adapted to solve problem (1.1).
Li [10] developed a derivative-free PRP method to solve large-scale nonlinear systems
of equations with a nonmonotone line search (DF-PRP). Cheng et al. [4] proposed a
family of derivative-free conjugate gradient methods for large-scale nonlinear systems
of equations, based on a steepest descent algorithm (DF-SDCG). These methods come
from two modified conjugate gradient methods (TTPRP [16] and TMPRP [2]).

Quite recently, Rivaie et al. [12] proposed a new class of nonlinear conjugate
gradient methods for unconstrained optimisation problems (RMIL, named after its
developers Rivaie, Mustafa, Ismail and Leong). Numerical results show that the
RMIL conjugate gradient method is superior and more efficient when compared with
other conjugate gradient methods for unconstrained optimisation problems (see [12,
pages 11329–11331]).

Motivated by the efficiency of the RMIL conjugate gradient method [12], the
structure of the spectral residual method for solving large-scale nonlinear systems of
equations [5] and the ideas of the nonmonotone line search [3, 15], we propose here a
derivative-free nonmonotone RMIL conjugate gradient method for solving large-scale
nonlinear systems of equations (DF-RMIL).

This paper is organised as follows. In Section 2, we present the algorithm. In
Section 3, we prove its convergence. In Section 4, we report some numerical results
comparing the methods DF-SANE [5], N-DF-SANE [3], DF-SDCG [4] and DF-
PRP [10] with the new method DF-RMIL.

The default norm used in this paper is the Euclidean norm.

2. Algorithm
We first consider the nonlinear conjugate gradient method for the unconstrained

optimisation problem

min
x∈Rn

f (x), (2.1)

where the function f is assumed to be continuously differentiable from Rn into R, and
the gradient ∇ f (xk) is available. The nonlinear conjugate gradient method generates a
sequence {xk} by the recursive relation

xk+1 = xk + αkdk k = 0, 1, . . . , (2.2)
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where αk is the steplength and the search direction dk is updated by

dk =

−∇ f (xk) if k = 0,

−∇ f (xk) + βkdk−1 if k ≥ 1,

where βk is a scalar.
In 2012, Rivaie et al. [12] proposed a new class of nonlinear conjugate gradient

methods (RMIL), in which the parameter βk is defined by

βk = βRMIL
k =

∇ f (xk)T (∇ f (xk) − ∇ f (xk−1))
‖dk−1‖

2 .

The RMIL conjugate gradient method is generally believed to be an efficient method
because it possesses the restart property. The numerical results in [12] show that this
method is superior when compared with other nonlinear conjugate gradient methods
for unconstrained optimisation problems.

The steplength αk of (2.2) is obtained by a line-search rule. In 2004, Zhang and
Hager [15] proposed a new nonmonotone line search method, using the weighted
average function value Ck to replace the largest function value: that is,

Ck+1 =
λkQkCk + f (xk+1)

Qk+1
, (2.3)

where Qk+1 = λkQk + 1,Q0 = 1,C0 = f (x0), 0 ≤ λk ≤ 1. Cheng and Li [3] extended
(2.3) to a derivative-free nonmonotone line-search method, where Ck is given by

Ck+1 =
λkQk(Ck + ηk) + f (xk+1)

Qk+1
, (2.4)

with Qk+1 = λkQk + 1,Q0 = 1,C0 = f (x0), 0 ≤ λk ≤ 1, and the positive sequence {ηk}

satisfies
∑∞

k=0 ηk = η < ∞. In this paper, we propose a new nonmonotone line-search
method which extends (2.3) and (2.4). The Ck are updated by the rule

Ck+1 = λk(Ck + ηk) + (1 − λk) f (xk+1), (2.5)

with C0 = f (x0), 0 ≤ λk < 1, and the positive sequence {ηk} satisfies
∑∞

k=0 ηk = η <∞.
We now describe a derivative-free RMIL conjugate gradient method (DF-RMIL) for

solving large-scale nonlinear systems of equations (1.1). The new method is based on
the RMIL nonlinear conjugate gradient method for unconstrained optimisation [12],
the derivative-free spectral residual method for solving large-scale nonlinear systems
of equations [5] and the new nonmonotone line search method (2.5).

In the remainder of this paper, we let

f (x) = 1
2‖F(x)‖2. (2.6)

Note that if, instead, we start with the problem (2.1), we can view the problem (1.1) as
the first-order optimality condition of the problem (2.1), where F(x) is the gradient of
f : Rn → R.
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Algorithm 2.1 (DF-RMIL).
Step 0. Initialisations. Choose the initial point x0 ∈ R

n and set C0 = f (x0) (where f
is defined by (2.6)). Suppose that 0 < ρ < 1, 0 ≤ λmin < λmax < 1 and 0 < αmin < αmax.
Select a positive sequence {ηk} such that

∞∑
k=0

ηk = η <∞. (2.7)

Step 1. Determination of the search direction. Set Fk = F(xk). Compute dk by

dk =

−Fk if k = 0,

−Fk + βERMIL
k dk−1 if k ≥ 1,

(2.8)

where

βERMIL
k =

FT
k (Fk − Fk−1)
‖dk−1‖

2 .

Step 2. Determination of the steplength. Choose the steplength αk ∈ [αmin, αmax].
Step 3. Nonmonotone line search. If

f (xk + αkdk) ≤ Ck + ηk − γα
2
k f (xk), (2.9)

then set xk+1 = xk + αkdk and go to step 4. Else if

f (xk − αkdk) ≤ Ck + ηk − γα
2
k f (xk), (2.10)

then set xk+1 = xk − αkdk and go to step 4. Otherwise set αk = ραk and go to step 3.
Step 4. Check the stopping condition. If the stopping condition is not met, then go to
step 5. Otherwise output xk+1, F(xk+1) and stop.
Step 5. Update the parameters. Choose λk ∈ [λmin, λmax] and compute

Ck+1 = λk(Ck + ηk) + (1 − λk) f (xk+1). (2.11)

Set k = k + 1 and go to step 1.

Remark 2.2. In step 5, if λk = 0 for all k, then Ck+1 = f (xk+1). If λk → 1 for all k, then
Ck+1 → f (x0) +

∑k
i=0 ηi.

The main differences between Algorithm 2.1 and the algorithms DF-SDCG [4] and
DF-PRP [10] are as follows.

(i) The search direction of Algorithm 2.1 follows the approach used in the RMIL
conjugate gradient method.

(ii) The nonmonotone line search used in the algorithms DF-SDCG and DF-PRP
is f (xk ± αkdk) ≤ Ck + ηk − t1α2

k‖dk‖
2 − t2α2

k f (xk). In Algorithm 2.1, we use
a simpler line-search technique ((2.9) or (2.10)) to benefit from the special
structure of the RMIL conjugate gradient method and to assure the global
convergence. This simpler line-search technique may make Algorithm 2.1 more
efficient.
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The following lemma shows that the line-search process of Algorithm 2.1 is well
defined.

Lemma 2.3. If the sequences {Ck}, { f (xk)} are generated by Algorithm 2.1, then

Ck ≤ Ck−1 + ηk−1 (2.12)

and

f (xk) ≤ Ck ≤ max
0≤i≤k

f (xi) +

k−1∑
i=0

ηi, (2.13)

for all k > 0.

Proof. First, from step 3 of Algorithm 2.1,

f (xk) ≤ Ck−1 + ηk−1. (2.14)

Using this and (2.11),

Ck ≤ λk−1(Ck−1 + ηk−1) + (1 − λk−1)(Ck−1 + ηk−1) = Ck−1 + ηk−1.

Second, from (2.11) and (2.14),

f (xk) = λk−1 f (xk) + (1 − λk−1) f (xk) ≤ λk−1(Ck−1 + ηk−1) + (1 − λk−1) f (xk) = Ck.

(2.15)

By successive applications of (2.11) and induction,

Ck = λk−1(Ck−1 + ηk−1) + (1 − λk−1) f (xk)

=

k−2∑
j=0

( k−1∏
i= j+1

λi

)
(1 − λ j) f (x j+1) +

k−1∏
i=0

λi f (x0) + (1 − λk−1) f (xk) +

k−1∑
j=0

( k−1∏
i= j

λi

)
η j

≤max
0≤i≤k

f (xi) +

k−1∑
i=0

ηi, (2.16)

where we use C0 = f (x0). From (2.15) and (2.16), we have (2.13). �

3. Convergence analysis

In order to prove the convergence of Algorithm 2.1, we make the following
assumption.

Assumption 3.1.

(1) The level set Ω = {x | f (x) ≤ f (x0) + η} is bounded, where η is a positive constant
such that

∑∞
k=0 ηk ≤ η.

(2) The function F(x) is Lipschitz continuous in some neighbourhood Γ of Ω:
namely, there exists a positive constant L such that

‖F(x) − F(y)‖ ≤ L‖x − y‖ for all x, y ∈ Γ.
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Assumption 3.1 implies that there is a positive constant δ such that

‖F(x)‖ ≤ δ for all x ∈ Ω.

Lemma 3.2. The sequence {xk} generated by Algorithm 2.1 is contained in Ω.

Proof. By step 3 of Algorithm 2.1, (2.12), (2.7) and induction,

f (xk+1)≤Ck + ηk ≤ Ck−1 + ηk−1 + ηk ≤ · · ·

≤ f (x0) +

k∑
i=0

ηk ≤ f (x0) + η. (3.1)

Thus the assertion follows from the definition of Ω. �

Lemma 3.3. Let {xk} be the sequence generated by Algorithm 2.1. If Assumption 3.1
holds, then

lim
k→∞

α2
k f (xk) = 0. (3.2)

Proof. By step 3 of Algorithm 2.1,

f (xk+1) ≤ Ck + ηk − γα
2
k f (xk) for all k ≥ 0.

Using this and (2.11),

Ck+1 = λk(Ck + ηk) + (1 − λk) f (xk+1) ≤ Ck + ηk − (1 − λk)γα2
k f (xk).

By (2.6), (2.7) and Assumption 3.1,
∞∑

i=0

(1 − λk)γα2
k f (xk) <∞.

Because 0 ≤ λmin ≤ λk ≤ λmax < 1 and γ > 0, this implies that limk→∞ α
2
k f (xk) = 0. �

Lemma 3.4. Suppose that Assumption 3.1 holds and let {xk} and {dk} be the sequences
generated by Algorithm 2.1. Then

|βERMIL
k | ‖dk−1‖ ≤ δLαk−1 for all k ≥ 1

and

‖dk‖ ≤ δ(1 + Lαk−1) for all k ≥ 1. (3.3)

Moreover, if there is a constant ε > 0 such that

‖Fk‖ ≥ ε for all k ≥ 0, (3.4)

then

lim
k→∞
|βERMIL

k | ‖dk−1‖ = 0. (3.5)
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Proof. First, from step 1 of Algorithm 2.1 and Assumption 3.1,

|βERMIL
k | ‖dk−1‖ =

|FT
k (Fk − Fk−1)|
‖dk−1‖

2 ‖dk−1‖ ≤
Lαk−1‖Fk‖ ‖dk−1‖

‖dk−1‖
≤ δLαk−1. (3.6)

Second, from step 1 of Algorithm 2.1, Assumption 3.1 and (3.6),

‖dk‖ ≤ ‖Fk‖ + |βERMIL| ‖dk−1‖ ≤ δ(1 + Lαk−1).

Third, using (2.6), (3.2) and (3.4) and by taking limits in (3.6),

lim
k→∞
|βERMIL

k | ‖dk−1‖ ≤ lim
k→∞

δLαk−1‖Fk−1‖

‖Fk−1‖
= lim

k→∞

δL
√

2α2
k−1 f (xk−1)

‖Fk−1‖
= 0. �

Theorem 3.5. Suppose Assumption 3.1 holds and let {xk} and {dk} be the sequences
generated by the Algorithm 2.1. Then either

lim inf
k→∞

‖Fk‖ = 0, (3.7)

or every limit point x∗ of the sequence {xk} satisfies

F(x∗)T J(x∗)F(x∗) = 0, (3.8)

where J(x∗) denotes the Jacobian of F at x∗. In particular, if F or −F is strictly
monotone, then every bounded subsequence of {xk} converges to the solution of (1.1).

Proof. Let x∗ be an arbitrary limit point of {xk} and let K1 be an infinite sequence of
indices such that

lim
k∈K1,k→∞

xk = x∗. (3.9)

From (2.6) and (3.2),

lim
k∈K1,k→∞

α2
k f (xk) = lim

k∈K1,k→∞
1
2α

2
k‖Fk‖

2 = 0. (3.10)

Then, we have two cases.

Case 1. If
lim sup

k∈K1,k→∞
αk , 0,

then there is an infinite sequence of indices K2 ∈ K1 such that {αk}K2 is bounded away
from zero. From (3.10),

lim
k∈K2,k→∞

‖Fk‖ = 0.

Since F is continuous and limk∈K2,k→∞ xk = x∗, we have (3.7).
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Case 2. Suppose that

lim
k∈K1,k→∞

αk = 0. (3.11)

From step 3 of Algorithm 2.1, ρ−1αk satisfies neither (2.9) nor (2.10) when k ∈ K1 is
sufficiently large. Thus

f (xk + ρ−1αkdk) > Ck + ηk − γρ
−2α2

k f (xk) (3.12)

and

f (xk − ρ
−1αkdk) > Ck + ηk − γρ

−2α2
k f (xk). (3.13)

By (3.12), (2.13) and (3.1),

f (xk + ρ−1αkdk) − f (xk)
αk

> −γρ−2αk( f (x0) + η).

Using the mean-value theorem and (2.6), there exists ξk ∈ (0, 1) such that

ρ−1F(xk + ξkρ
−1αkdk)T J(xk + ξkρ

−1αkdk)dk > −γρ
−2αk( f (x0) + η). (3.14)

Substituting (2.8) into (3.14) gives

ρ−1F(xk + ξkρ
−1αkdk)T J(xk + ξkρ

−1αkdk)(−Fk + βERMIL
k dk−1) > −γρ−2αk( f (x0) + η).

(3.15)

By (3.3) and (3.11) and since αk ≤ αmax,

lim
k∈K1,k→∞

‖ξkρ
−1αkdk‖ ≤ lim

k∈K1,k→∞
ξkρ
−1αkδ(1 + Lαk−1) = 0. (3.16)

Using (3.9), (3.16) and (3.5) and by taking limits in (3.15),

F(x∗)T J(x∗)F(x∗) ≤ 0. (3.17)

Using (3.13) and proceeding in the same way, yields

F(x∗)T J(x∗)F(x∗) ≥ 0. (3.18)

The inequalities (3.17) and (3.18) imply (3.8). �

4. Numerical experiments

In this section, we discuss numerical test results for Algorithm 2.1 (DF-RMIL) and
compare these with DF-SANE [5], N-DF-SANE [3], DF-SDCG [4] and DF-PRP [10].
The benchmark problems in our experiments are the 104 problems in the CUTEst
library [8]. The dimensions of the benchmark problems vary from 50 to 100 000. Our
tests were performed on a PC (Intel Core i3 CPU M 380 @2.53GHz 2.53GHz, 2 GB
RAM) with Ubuntu Kylin 14.04 using MATLAB R2012a(7.14) 64-bit(glnxa64). All
numerical results are listed on the website http://url.cn/43DkkxW.
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To compare our method with the other methods, we use performance profiles as
described in Dolan and Moré [7]. We give three separate comparisons, made on the
basis of the number of iterations, the number of function evaluations and the CPU
time required to solve the problem. Let P be the set of benchmark problems and let S
be the set of algorithms. We define tp,s to be the number of iterations (or the number
of function evaluations, or the CPU time in seconds) required to solve the problem
p ∈ P by algorithm s ∈ S . Comparison of each of the three measures is based on the
performance ratio defined by

rp,s =
tp,s

min{tp,s : s ∈ S }
.

The performance profile is

ρs(τ) =
|{p ∈ P : log2(rp,s) ≤ τ}|

|P|
,

where |P| is the number of benchmark problems. We use the termination condition

‖F(xk)‖
√

n
≤ ea + er

‖F(x0)‖
√

n
,

where ea = 10−5, er = 10−4 and n is the number of variables of the test problem. This
termination condition comes from [5].

The parameters used for each of the five methods are as follows.

DF-SANE. nexp = 2, σmin = 10−10, σmax = 1010, σ0 = 1, τmin = 0.1, τmax = 0.5, γ =

10−4,M = 10, ηk = ‖F(x0)‖/(1 + k)2.

N-DF-SANE. ηk = 0.85, σmin = 10−10, σmax = 1010, ρmin = 0.1, ρmax = 0.5, γ = 10−4,
εk = ‖F(x0)‖/(1 + k)2.

DF-SDCG. ρmin = 0.1, ρmax = 0.5, σmin = 10−10, σmax = 1010, γ1 = γ2 = 10−4, λk = 0.5,
M = 10, εk = ‖F(x0)‖/(1 + k)2.

DF-PRP. ρ = 0.5, λk = 0.6, αmin = 10−10, αmax = 1010, t1 = t2 = 10−4, ηk =

‖F(x0)‖/(1 + k)2.

DF-RMIL. ρ = 0.5, λk = 0.5, αmin = 10−10, αmax = 1010, γk = 10−4 and ηk =

‖F(x0)‖/(1 + k)2.
We choose the steplength αk in step 2 of DF-RMIL as in [5] and [4]: namely,

αk =


σ if σ ∈ [αmin, αmax],

1 if σ < [αmin, αmax] and ‖dk‖ > 1,

‖dk‖
−1 if σ < [αmin, αmax] and 10−5 ≤ ‖dk‖ ≤ 1,

105 if σ < [αmin, αmax] and ‖dk‖ < 10−5,

where σ = −FT
k dk/dT

k zk, zk = (F(xk + εdk) − F(xk))ε and ε = 10−8.
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Figure 1. Iteration performance profiles on a log2 scale.

Figure 2. Function evaluation performance profiles on a log2 scale.

Figure 1 shows the performance profiles for the number of iterations for the five
methods. DF-RMIL outperforms the other methods when τ ≥ 0.8. Figure 2 shows the
performance profiles for the number of function evaluations. When τ < 3.4, DF-SDCG
uses the smallest number of function evaluations, but DF-RMIL gives the best results
when τ ≥ 3.4. Figure 3 shows the performance profiles for CPU time. Here, DF-RMIL
gives better results than the other methods for τ ≥ 0.8 as it solves a higher percentage
of problems for a given CPU time. On the whole, DF-RMIL may be a competitive
method.
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Figure 3. CPU time performance profiles on a log2 scale.
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