ON LATTICE-ORDERED RINGS IN WHICH THE SQUARE OF EVERY ELEMENT IS POSITIVE

STUART A. STEINBERG

(Received 4 April 1974; revised 10 September 1975)

Abstract

It is shown that a unital lattice-ordered ring in which the square of every element is positive is embeddable in a product of totally ordered rings provided it is archimedean, semiperfect, or π-regular. Also, some canonical examples of unital l-domains with squares positive that are not totally ordered are discussed.

1. Introduction

Diem (1968) has shown that a lattice-ordered ring (l-ring) which satisfies the identity $x^{+} x^{-}=0$ and has no nilpotent l-ideals is an f-ring. In this paper it is shown that a unital l-ring in which the square of every element is positive is an f-ring provided it is either archimedean, semiperfect, or an algebraic l-algebra over a partially-ordered field.

Diem proved the theorem mentioned above by showing that an l-prime l-ring that satisfies $x^{+} x^{-}=0$ is a (totally ordered) domain. Birkhoff and Pierce (1958, Theorem 15) have shown that an l-ring with a positive unit satisfies this identity if and only if 1 is a weak order unit (i.e., $1 \wedge x=0$ implies $x=0$). Since the identity $x^{+} x^{-}=0$ implies that all squares are positive [Birkhoff and Pierce (1958), p. 59, Lemma 2], the question of whether or not there exists a unital l-prime l-ring with squares positive that is not totally ordered, i.e., in which 1 is not a weak order unit, arises naturally from Diem's result. We exhibit some canonical examples of unital l-domains with squares positive that are not totally ordered.

The reader is referred to Birkhoff and Pierce (1958) and Johnson (1960) for the general theory of l-rings. If M is a partially-ordered abelian group (po-group), then $M^{+}=\{x \in M: x \geqq 0\}$ will denote its positive cone; and if M is an l-group (i.e., M is also a lattice), the positive part, the negative part, and the absolute value of $x \in M$ are $x^{+}=x \vee 0, x^{-}=(-x) \vee 0$, and $|x|=x \vee-x=$
$x^{+}+x^{-}$, respectively. By a convex l-subgroup of the l-group M we mean a subgroup N which is convex (i.e., $0 \leqq a \leqq b$ with $b \in N$ implies $a \in N$) and a sub-lattice of M. By a po-ring we mean a direct partially-ordered ring, and by an l-ring we mean a po-ring which is also a lattice. An l-ideal of an l-ring is a convex l-subgroup that is also an ideal. The direct sum of a family $\left\{M_{\alpha} \mid \alpha \in A\right\}$ of po-groups is the group direct sum $\Sigma \bigoplus M_{\alpha}$ supplied with the positive cone $\Sigma \bigoplus M_{\alpha}^{+} \cdot \boldsymbol{Z}$ and \boldsymbol{Q} will denote the totally ordered rings of integers and rational numbers, respectively. A ring will be called unital if it has an identity element.

The class of l-rings in which all squares are positive is the variety determined by the identity $\left(x^{2}\right)^{-}=0$. It has already been mentioned that this variety contains that determined by the identity $x^{+} x^{-}=0$, which in turn contains the variety of f-rings [Birkhoff and Pierce (1958), pp. 55-57]: An f-ring is an l-ring that is a subring and a sublattice of a product of totally ordered rings, or, equivalently, which satisfies the identity $\left(x^{+} a^{+} \wedge x^{-}\right) \vee\left(a^{+} x^{+} \wedge x^{-}\right)=0$. We will often use the following characterization of a unital f-ring [Birkhoff and Pierce (1958), Corollary 1, p. 59]: A unital l-ring is an f-ring if and only if it satisfies the identities $x^{+} y^{+}=\left(x y^{+}\right)^{+}=\left(x^{+} y\right)^{+}$.

Portions of this paper formed part of the author's dissertation written at the University of Illinois under the direction of Elliot Weinberg, and portions developed while the author held a University of Toledo Summer Faculty Fellowship.

2. A canonical construction

Let F be a po-ring and let M be an l-group. M is called a left l-module over F if M is a left F-module and $F^{+} M^{+} \subseteq M^{+}$. If F is unital we also require that $1 \cdot x=x$ for each $x \in M$. If M is a left l-module over F and if $\alpha x \wedge y=0$ whenever $x \wedge y=0$ in M and $\alpha \in F^{+}, M$ is called an f-module. Over a totally ordered division ring every l-module is an f-module. This is a consequence of

Lemma 1. Let M be an l-module over the po-division ring F. Then M is an f-module over F if and only if $\alpha^{-1} M^{+} \subseteq M^{+}$for each nonzero $\alpha \in F^{+}$.

Proof. If M is an f-module over F, then scalar multiplication by $0 \neq \alpha \in F^{+}$ is an automorphism of the l-group M. Since the inverse of this automorphism is scalar multiplication by $\alpha^{-1}, \alpha^{-1} M^{+} \subseteq M^{+}$.

Conversely, suppose $\alpha^{-1} M^{+} \subseteq M^{+}$for all $0<\alpha \in F$: If $x \wedge y=0$ in M and $0<\alpha \in F$, then $0 \leqq \alpha(x \wedge y) \leqq \alpha x \wedge \alpha y$ implies

$$
0 \leqq x \wedge y \leqq \alpha^{-1}(\alpha x \wedge \alpha y) \leqq \alpha^{-1}(\alpha x) \wedge \alpha^{-1}(\alpha y)=x \wedge y=0
$$

Thas $\alpha x \wedge \alpha y=0$. Since F is directed there exists $\beta \in F^{+}$with $\beta \geqq 1, \alpha$. Then the inequalities $0 \leqq \alpha x \wedge y \leqq \beta x \wedge \beta y=0$ show that M is an f-module.

If a and b are two elements of the f-module M, then a is called infinitely smaller than b with respect to F, written $a \ll b$, if $\alpha|a| \leqq|b|$ for each $\alpha \in F$ (since F is directed, this is equivalent to $\alpha|a| \leqq|b|$ for each $\alpha \in F^{+}$). If $a \ll b$ and $b \neq 0$, then $\alpha|a|<|b|$ for each $\alpha \in F$. For if $|b|=\left|\alpha_{0}\right| a$, then $2 \alpha_{0}|a| \leqq \alpha_{0}|a|$ implies $|b|=\alpha_{0}|a| \leqq 0$; so $b=0 . M$ is called archimedean over F if $a=0$ whenever $a \ll b$. Note that if F is unital and M is F-archimedean (or $a \ll b$ with respect to F), then M is \boldsymbol{Z}-archimedean ($a \ll b$ with respect to \boldsymbol{Z}). When no confusion is likely we will suppress the phrase "over F."

Let F be a commutative unital po-ring. By an l-algebra over F we mean an algebra R over F which is also an f-module over F. If R is an l-algebra and an f-ring it will be called an f-algebra. If the unital l-algebra R has squares positive, then each nilpotent element of R is, in absolute value, $\leqq 1$ [Diem (1968), Theorem 3.3]. Since, for $\alpha \in F, \alpha a$ is nilpotent whenever a is, we have $a^{2} \ll a$ for each nilpotent element a of R. The elements disjoint from 1 behave in just the opposite way.

Lemma 2. If the unital l-algebra R has squares positive, then $1 \wedge a=0$ implies $a \ll a^{2}$.

Proof. For each $\alpha \in F^{+}, 0 \leqq(\alpha-a)^{2}=\alpha^{2}-2 \alpha a+a^{2}$ yields $2 \alpha a \leqq \alpha^{2}+a^{2}$. Hence

$$
2 \alpha a=2 \alpha a \wedge\left(\alpha^{2}+a^{2}\right) \leqq 2 \alpha a \wedge \alpha^{2}+2 \alpha a \wedge a^{2}=2 \alpha a \wedge a^{2}
$$

Thus $\alpha a \leqq a^{2}$.
In Birkhoff and Pierce (1958), Corollary 3, p. 61 it is shown that a unital archimedean l-ring is an f-ring provided 1 is a weak order unit. This result, together with Lemma 2, gives

Corollary 1. An archimedean l-algebra with an identity element is an f-algebra if and only if it has squares positive.

The following example [see Example 2.3 of Diem (1968)] shows that Corollary 1 is false for an l-ring without an identity element. In fact, this example can serve as a counterexample to many of the results of this paper if the identity element is dropped. Let $R=\boldsymbol{Q} a \oplus \boldsymbol{Q} b$ as an l-group with multiplication defined by $a^{2}=a b=b a=b^{2}=a$.

An l-domain is an l-ring R in which the semigroup R^{+}has no zero divisors. Note that a unital l-domain R with squares positive must be a domain. For if $C(1)$ is the convex l-subgroup of R generated by 1 , then by Diem's theorem $C(1)$ contains all the nilpotent elements of R. But $C(1)$, being an f-ring and an l-domain, is a domain.

We present next some canonical examples of unital l-domains with squares positive in which 1 is not a weak order unit. First we need some lemmas.

Lemma 3. Let M be an f-module over the unital po-ring F. If $x_{1} \ll x_{2} \ll x_{3} \ll$ \cdots in M, then for each $n \in Z^{+}$and for all $\alpha_{1}, \cdots, \alpha_{n} \in F, \alpha_{1} x_{1}+\cdots \alpha_{n} x_{n} \ll x_{n+1}$.

Proof. We prove this for $n=2$. An easy induction argument will then complete the proof. Since F is directed $\alpha_{1}=\beta_{1}-\beta_{2}$ with $\beta_{j} \in F^{+}$. So $\left|\alpha_{i} x_{i}\right| \leqq$ $\left(\beta_{1}+\beta_{2}\right)\left|x_{i}\right|=\gamma_{i}\left|x_{i}\right|$ with $\gamma_{i} \in F^{+}$. Thus, for any $\beta \in F^{+}$there exist $\gamma_{1}, \gamma_{2} \in F^{+}$ with

$$
\beta\left|\alpha_{1} x_{1}+\alpha_{2} x_{2}\right| \leqq \beta \gamma_{1}\left|x_{1}\right|+\beta \gamma_{2}\left|x_{2}\right| \leqq\left|x_{2}\right|+\beta \gamma_{2}\left|x_{2}\right|=\left(1+\beta \gamma_{2}\right)\left|x_{2}\right| \leqq\left|x_{3}\right| .
$$

Let M be a module over the commutative integral domain F. An element $x \in M$ is called torsion (or F-torsion) if $\alpha x=0$ for some nonzero $\alpha \in F$. The set $T=T(M)$ of torsion elements of M is a submodule of M, called the torsion submodule, and M / T is torsion-free in the sense that $T(M / T)=0$. If, in addition, F is totally ordered and M is an f-module over F, then T is a convex l-submodule of M. (More generally, if F is merely partially ordered and $T_{1}=\{x \in M: \alpha x=0$ for some $0<\alpha \in F\}$, then T_{1} is a convex l-submodule of M and $T_{1}\left(M / T_{1}\right)=0$.) Let Q be the totally ordered field of quotients of the totally ordered integral domain F and let M be a torsion-free f-module over F; then the module of quotients of M with respect to $S=F \backslash\{0\}$,

$$
M_{s}=\left\{\frac{x}{a}: x \in M, a \in S\right\}
$$

can be made in a unique way into an f-module over Q that contains M. The Q -f-module M_{s} is constructed, of course, exactly as in the case $F=\boldsymbol{Z}$ and can be identified with the tensor product $M \bigotimes_{F} Q$. We summarize this discussion in

Lemma 4. Let M be an f-module over the commutative totally ordered domain F, and let Q be the totally ordered quotient field of F. Then the torsion submodule of M is a convex l-submodule of M. If M is torsion-free, then the module of quotients of M with respect to $S=F \backslash\{0\}$ is an f-module over Q containing M.

The partially-ordered module ${ }_{F} M$ is called semi-closed (or F-semi-closed) if $\alpha x \in M^{+}$implies $x \in M^{+}$, where $0 \neq \alpha \in F^{+}$and $x \in M$. If M is a torsion-free f-module over F, then M is semi-closed. For if $\alpha x \in M$ with $0 \neq \alpha \in F^{+}$then $0=(\alpha x)^{-}=\alpha x^{-}$; so $x^{-}=0$ and $x \in M^{+}$. This will be used in the next theorem.

Let S be a totally ordered domain and let $T=S[x]$ be the polynomial ring over S in the indeterminate x. Let

$$
P_{0}=P_{0}(S)=\left\{\sum_{i=0}^{n} \alpha_{i} x^{i}: \alpha_{0} \geqq 0 \text { and if } n>1, \alpha_{n}>0\right\}
$$

and let

$$
\begin{gathered}
P_{1}=P(S)=\left\{\sum_{i=0}^{n} \alpha_{i} x^{i}: n>1 \text { and } \alpha_{n}>0\right\} \\
\cup\left\{\alpha_{0}+\alpha_{1} x: \alpha_{0} \geqq 0 \text { and } \alpha_{1} \geqq 0\right\} .
\end{gathered}
$$

Note that $P_{0} \subseteq P_{1}$.
Theorem 1. (a) P_{0} and P_{1} are partial orders for the ring $T=S[x]$. Moreover, $\left(T, P_{0}\right)$ and $\left.T, P_{1}\right)$ are l-domains with squares positive in a which the identity element (if it exists) is not a weak order unit.
(b) Let R be a unital l-algebra with squares positive over the commutative totally ordered domain F. Suppose that a is a positive element of R that is disjoint from 1 and that a is not F-torsion. Then
(i) $\left(F[a], F[a]^{+}\right)$is isomorphic to (T, P) where $T=F[x]$ and P is a partial order contained in P_{1}.
(ii) If If $\left(F[a], F[a]^{+}\right)$is F-semi-closed (this is true, in particular, if R is a torsion-free F-module), then P contains P_{0}.

Proof. That $\left(T, P_{0}\right)$ and $\left(T, P_{1}\right)$ have the stated properties is a straightforward calculation which we will omit. To prove (b) we first assume that R is a torsion-free F-module. Let Q be the totally ordered field of quotients of F, and let R_{1} be the module of quotients of R, as in Lemma 4. Then R_{1} is an l-algebra over Q with squares positive which contains R. By Lemma $2, a \ll a^{2} \ll a^{3} \ll \cdots$ with respect to Q. Thus, for $0 \neq \alpha_{n}, \alpha_{1} a+\cdots+\alpha_{n} a^{n} \in Q[a]^{+}$if and only if $\alpha_{n}>0$. For if $\alpha_{n}>0$, then by Lemma $3 a^{n}>-\alpha_{n}^{-1}\left(\alpha_{n-1} a^{n-1}+\cdots+\alpha_{1} a\right)$, so $\alpha_{1} a+\cdots+\alpha_{n} a^{n}>0$. And if $\alpha_{n}<0$, then $-\left(\alpha_{1} a_{1}+\cdots+\alpha_{n} a^{n}\right)>0$. But then a is transcendental over Q; for if $p(x) \in Q[x]$ is any nonzero polynomial, then we have just seen that either $a p(a)>0$ or $a p(a)<0$.

Let $P_{i}(a)=\left\{f(a): f(x) \in P_{i}(Q)\right\}$. We claim that $P_{0}(a) \subseteq Q[a]^{+} \subseteq P_{1}(a)$. To see the first inclusion, take $p(a)=\alpha_{0}+\cdots+\alpha_{n} a^{n} \in Q[a]$ with $\alpha_{0} \geqq 0$ and $\alpha_{n}>0$. Then $\alpha \geqq 0 \geqq-\left(\alpha_{1} a+\cdots+\alpha_{n} a^{n}\right)$, so $p(a) \in Q[a]^{+}$. To see the second inclusion, suppose that $p(a)=\alpha_{0}+\alpha_{1} a+\cdots+\alpha_{n} a^{n} \in Q[a]^{+}$with $\alpha_{n} \neq 0$. Since $a p(a) \in Q[a]^{+}, \alpha_{n}>0$ by the previous paragraph. If $n>1$, then $p(a) \in P_{1}(a)$. If $n=1$, then $\alpha_{0}<0$ implies $-\alpha_{0} \wedge \alpha_{1} a=0$. This contradicts $\alpha_{1} a>-\alpha_{0}$, and hence $\alpha_{0} \geqq 0$. It is now easy to see that (b) is true if R is torsion-free.

For the general case let A be the torsion submodule of R. Then A is an l-ideal of R (Lemma 4), $\bar{R}=R / A$ is torsion-free, and $1 \wedge \bar{a}=0$ (\bar{a} is the image of a in \bar{R}). So (b) is true for ($F[\bar{a}], F[\bar{a}]^{+}$). By the first paragraph of the proof \bar{a} is transcendental over F, and hence so is a. Furthermore, if $p(a) \in F[a]^{+}$, then
$p(\bar{a}) \in F[\bar{a}]^{+} \subseteq P_{1}(\bar{a})$. Hence if $\left(F[a], F[a]^{+}\right)$is isomorphic to (T, P), then $P \subseteq P_{\mathrm{t}}$. This establishes (i).

Since $F^{+} \cdot 1 \subseteq R^{+}$, to prove (ii) it suffices to show that $\alpha_{n}>0$ implies $b=\alpha_{1} a+\cdots+\alpha_{n} a^{n} \in F[a]^{+}$. But $\bar{b} \in F[\bar{a}]^{+}$, so there exists $t \in A$ with $b+$ $t \geqq 0$. If $0<\alpha \in F$ with $\alpha t=0$, then $\alpha b=\alpha(b+t) \geqq 0$. Since $\left(F[a], F[a]^{+}\right)$is semi-closed, $b \in F[a]^{+}$.

REmark. The construction which appears in Theorem 1 may be generalized. An l-algebra ${ }_{F} R$ is called supertessimal if for each $x \in R x \ll x^{2}$ with respect to F. The class of supertessimal l-algebras is a variety each member of which has no nonzero nilpotent elements. If F is an f-ring and R is a supertessimal l-algebra with squares positive over F, let S be the l-algebra obtained by freely adjoining F to R. Thus, as an f-module over $F, S=F \oplus R$; and multiplication is given by $(\alpha, x)(\beta, y)=(\alpha \beta, \alpha y+\beta x+x y)$. Then ${ }_{F} S$ is a unital l-algebra with squares positive in which 1 is not a weak order unit.

Note that S could contain nonzero nilpotent elements. To be explicit, let G be a totally ordered field and let $G[t]$ be the ring of polynomials over G in the indeterminate t, ordered lexicographically so that the constant term dominates. Because of the homomorphism $F_{n}=G[t] /\left(t^{n}\right) \rightarrow G$ any l-algebra over G can be made into an l-algebra over F_{n}. If F_{n} is used above with $n \geqq 2$, then an S will be produced with nontrivial nilpotent elements.

In general, the set of nilpotent elements of S will be an l-ideal (as is the case for an l-ring that satisfies the identity $x^{+} x^{-}=0$ [Diem (1968)]). For if $\alpha \in F$ is nilpotent and $x \in R$, then $\alpha x=0$ since R has no nilpotent elements. So if $(\alpha, x) \in S$ is nilpotent with $0=(\alpha, x)^{n}=\left(\alpha^{n}, \sum_{k \geq 1}\binom{n}{k} \alpha^{n-k} x^{k}\right)=\left(\alpha^{n}, x^{n}\right)$, then $x=0$ and $\alpha^{n}=0$. Thus the set A of nilpotent elements of S is precisely the set of nilpotent elements of F, and hence A is a convex l-subgroup of S (F is an f-ring). Also, if $(\alpha, 0)$ is nilpotent and $(\beta, x) \in S$, then $(\alpha, 0)(\beta, x)=(\alpha \beta, 0)$; so A is an ideal, whence an l-ideal.

3. Semiperfect l-rings

Let R be a unital ring with Jacobson radical $N . R$ is called semiperfect if R / N is left artinian and idempotents may be lifted modulo N, and R is called local if R / N is a division ring. In a semiperfect ring a finite set of orthogonal idempotents may be lifted modulo N [Lambek (1966), p. 73]. The next lemma is known for f-rings.

Lemma 5. If R is a unital l-ring with squares positive, then every idempotent element is central. Consequently, a right (left) ideal generated by an idempotent is an l-ideal.

Proof. Let $S=C(1)$ be the convex l-subgroup generated by 1 . If e is an idempotent, then so is $1-e$; hence $e \in S$. Since S is an f-ring the idempotents of S are central elements of S [Henriksen and Isabell (1962), 2.1]. Thus all the idempotents of R commute and so they are all central [Divinsky (1965), p. 25].

Let $A=R e$ be an ideal of R where $e=e^{2}$, and let $f=1-e$. Suppose $|x| \leqq|r e|=|r| e$ for some $r \in R$. Then $|x f| \leqq|r| e f=0$. Hence $x f=0$ and $x=x e+x f=x e$. Thus A is an l-ideal.

Theorem 2. A semiperfect l-ring R with squares positive is an f-ring.
Proof. We first reduce to the case that R is local. Since the idempotents of R, and hence of R / N, are central, $R / N=D_{1} \oplus \cdots \oplus D_{n}$ (ring direct sum), where each D_{i} is a division ring. Let $\left\{e_{i}\right\}$ be an orthogonal set of idempotents of R such that $e_{i}+N$ is the identity of D_{i}. Then $1=e_{1}+\cdots+e_{n}$, so, by Lemma 5 , R is a direct sum of local l-rings.

Now assume that R is local. Suppose that $x \wedge y=0$ and $a \in R^{+}$. Let $b=a \vee 2$. If $b \notin N$, then $b^{-1} \in R$ and $b^{-1}=b b^{-2} \in R^{+}$. Since b and b^{-1} are both positive, multiplication by b is a lattice homomorphism of R [Steinberg (1972), Lemma 1], so $b x \wedge b y=0$. If $b \in N$, then $(b-1)^{-1} \in R^{+}$, whence

$$
(b-1) x \wedge(b-1) y=0
$$

So

$$
0 \leqq(b-1) x \wedge y \leqq(b-1) x \wedge(b-1) y=0
$$

Hence

$$
0 \leqq b x \wedge y=[(b-1) x+x] \wedge y \leqq(b-1) x \wedge y+x \wedge y=0
$$

In either case, $b x \wedge b y=0$. Thus $a x \wedge a y=0$, and similarly $x a \wedge y a=0$; i.e., R is an f-ring.

Birkhoff and Pierce [(1968), p. 62, Corollary 5] have shown that R is an f-algebra provided it is a finite dimensional real l-algebra with an identity element that is a weak order unit. Since an artinian ring is semiperfect we get the following generalization of this result.

Corollary 2. A finite dimensional unital l-algebra over a totally ordered field that has squares positive is an f-algebra.

Note that the l-algebra (T, P_{1}) of Theorem 1 , where $T=Q[x]$, is a commutative l-algebra with squares positive and an identity element. It has the maximum condition on ideals and is l-simple, but is not an f-ring.

Next we consider algebraic l-algebras. The element a in the ring R is called regular if there exists x in R with $a=a x a$; equivalently, the right (left) ideal
generated by a has an idempotent generator. R is called regular if each of its elements is regular, and it is called π-regular if a power of each of its elements is regular. It is well-known (and easily verified) that an algebraic algebra over a field is π-regular.

Corollary 3. A unital π-regular l-ring R that has squares positive is an f-ring

Proof. Since the conditions of the corollary are inherited by each l homomorphic image of R, and since R is a subdirect product of subdirectly irreducible l-rings, we may assume that R itself is subdirectly irreducible. But then R is local. To see this, let L be the set of non-units of R and let N be the Jacobson radical of R. If $a \in R$, then there exists a positive integer n and an idempotent e such that $R \cdot a^{n}=R e$. By Lemma $5 e=0$ or $e=1$. If $a \in L$, then $e=0$ and a is nilpotent. If $x \in R$, then $x a$ is also nilpotent; otherwise $x a$, and hence a, is a unit. Thus $R a \subseteq N$ and $L=N$; i.e., R is local. Whence R is an f-ring by Theorem 2 .

An algebra over a field is locally finite is each of its finitely generated subalgebras is finite dimensional. As an analogue of the fact that an algebraic algebra that satisfies a polynomial identity is locally finite [Herstein (1968), p. 167] we have

Corollary 4. A unital algebraic l-algebra R (over a po-field) that has squares positive is a locally finite f-algebra. It is commutative modulo its Jacobson radical.

Proof. By Corollary 3 and the remarks preceding it, R is an f-algebra. Recall that in an f-ring the set $Z_{n}=\left\{x: x^{n}=0\right\}$ is a nilpotent l-ideal [Birkhoff and Pierce (1968), Theorem 16, p. 63]. Since the Jacobson radical N of R is nil [(1964), p. 19], N is the set of nilpotent elements of R and thus is locally finite. It is well-known [Arens and Kaplansky (1948), Theorem 3.3] (and can easily be seen) that an algebraic algebra without nilpotent elements is strongly regular. Thus $\bar{R}=R / N$ is a regular f-algebra, whence each one-sided ideal of \bar{R} is an l-ideal. If \bar{P} is a prime ideal of \bar{R}, then \bar{R} / \bar{P} is totally ordered division ring. Since \bar{R} / \bar{P} is algebraic over its center, a theorem of Albert (1940) or Herstein (1968), p. 103 tells us that \bar{R} / \bar{P} is a field. Thus R / N is commutative, and hence locally finite. Finally, since N and R / N are locally finite, so is R [Jacobson (1964), p. 241].

The ring R is left π-regular if for each $a \in R$ there exists an integer n and an $x \in R$ with $a^{n}=x a^{n+1}$; equivalently, each chain of principal left ideals $R a \supseteq R a^{2} \supseteq \cdots$ is finite. It is not surprising that a unital left π-regular l-ring R with squares positive is an f-ring: To see this let $a \in R^{+}$and let $b=a \vee 1$. If
$x \in R$ with $b^{n}=x b^{n+1}$, then $(1-x b) b^{n}=0$. Since b^{n} is not a zero divisor in R^{+} and since $(1-x b)^{2} b^{n}=0,(1-x b)^{2}=0$. Thus $x b=1-(1-x b)$ is invertible and hence so is b. But then left (right) multiplication by b, and hence a, is a lattice homomorphism of \boldsymbol{R}.

Added in proof: The example $\left(Z[x], P_{1}\right)$ of Theorem 1 appears as Example 1.7 in [T. M. Viswanathan (1969), 'Ordered Modules of Fractions', J. f. d. reine u. angew. Math. 235, 78-107].

References

A. A. Albert (1940), 'On ordered algebras', Bull. Amer. Math. Soc. 46, 521-522.
R. F. Arens and I. Kaplansky (1948), 'Topological representation of algebras', Trans. Amer. Math. Soc. 63, 467-48.
G. Birkhoff and R. S. Pierce (1958), 'Lattice-ordered rings', An. Acad. Brasil. Ci. 28, 41-69.
J. E. Diem (1968), 'A radical for lattice-ordered rings', Pacific J. Math. 25, 71-82.
N. Divinsky (1965), 'Rings and Radicals', (University of Toronto Press, Toronto).
M. Henriksen and J. Isabell (1962), 'Lattice-ordered rings and function rings', Pacific J. Math. 12, 533-565.
I. N. Herstein (1968), 'Noncommutative Rings', Carus Mathematical Monographs 15, Math. Assoc. of America (Wiley).
N. Jacobson (1964), 'Structure of Rings', rev. ed. Colloquium Publications No. 36, (Amer. Math. Soc., Providence).
D. G. Johnson (1960), 'A Structure theory for a class of lattice-ordered rings', Acta. Math. 104, 163-215.
J. Lambek (1966), Lectures on Rings and modules', (Blaisdell Publishing Co., Waltham, Mass.)
S. A. Steinberg (1972), 'An embedding theorem for commutative lattice-ordered domains', Proc. Amer. Math. Soc. 31, 409-416.

University of Toledo, Toledo, Ohio, 43606, U.S.A.

