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ANOTHER SINGLE LAW FOR GROUPS

B.H. NEUMANN

It has long been known that, in terms of right division, groups

can be defined by a single law. In this paper a single law

defining groups in terms of multiplication and inversion is

proposed. This law is in h variables, and it is conjectured

that no fewer than h variables will do, and that the proposed

law is of minimal length as well. Some extensions of the result,

and an alternative single law with the same length and number of

variables, are also discussed. By contrast, groups in terms of

multiplication, inversion, and a unit element can not be defined

by a single law. Most of these results were stated by Tarski at

the Logic Colloquium at Hannover in 1966, but apparently no proof

has yet been published.

1. Introduction

In [3, p. 280], Alfred Tarski states that groups can be defined by a

single law in terms of multiplication and inversion, but not in terms of

multiplication, inversion, and a unit element. However, I am not aware of

any published proof of these results, and in this paper I provide such a
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82 B.H. Neumann

proof. Tarski's approach is through logic, while mine is only algebraic;

our notations are rather different; and we even differ in terminology, as

Tarski calls "left-hand division" what I call "right division". I shall

therefore develop the subject in my own pedestrian manner.

It was first shown in [2] that groups can be defined by a single law

in a binary operation, namely right division. This raises the problem of

defining groups by a single law in a binary operation, namely

multiplication, and a unary operation, namely inversion; or in terms of a

binary multiplication, a unary inversion, and a nullary operation giving

the unit element. I denote operations by lower case Greek letters, and

use, in particular, p for right division, \i for multiplication, l for

inversion, and e for the nullary operation that gives the unit element

(though a different notation will be used, most of the time, for the unit

element, because elements and element variables will be denoted by lower

case italic litters). I use what is now called the "inverse Polish"

notation; thus

abp , ab\i , a\ , e

stand for the results of operating on the (ordered) pair (a, b) with p ,

or with p , or on a with \ , or on the empty sequence with £ ,

respectively. However, e will be used in Appendix B only.

Now in a group with multiplication y and inversion I , right

division is given by

(1.1) xyP = »/lH ;

and \i and i can be expressed in terms of p by

(1.2) xi = xxpxp ,

(1.3) xy\i = xyypypp .

Thus the law

zxxpi/pspxzfjxpappp = y ,

proved in [2] to define the variety of groups, can be immediately

translated into a law in \i and i , by simply replacing p by IU at

each of its occurrences, namely

( l . U ) xxxi\iy\\iz\\jxxi\ix\\iz\\ii\i\\i = y •
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Another single law for groups 83

But though the variety so defined is the variety of groups in some sense,

it is not the variety of groups in terms of u as multiplication and l

as inversion: it is the variety of groups in terms of a new multiplication

\i* , say, and a new inversion I* , say, defined, in analogy to (1.2) and

(1.3) by

There is no reason why (l.U) should imply i* = l or \i* = \i ; and indeed

the following model shows that such an implication is not true:

Let G be a group with multiplication u* and inversion l* , and

assume the centre of G contains an element a of order 2 . Define

an = x\*c\i* ,

xy\i = xy\i* .

Then the law (l.U) will be satisfied in G , because though at each

occurrence of l an extra factor a is inserted in the left-hand side,

all these factors can be combined to a single power of c , because o is

central. Note that some of the factors c may be inverted by some of the

operations l that occur: but as a is of order 2 , this does not

change them. The final power of a that collects is even, because there

are 8 occurrences of l in (l.U); but as o is of order 2 , this even

power equals the neutral element, and thus can be omitted. Thus (l.U) is

satisfied; but l manifestly is not inversion with respect to u as

multiplication.

This same model shows more generally:

LEMMA 1. If a set of laws in y and i defines the variety of

growp8, then the number of occurrences of \ in at least one of the laws

must be odd. II

Various modifications of the law (l.U) have been tried, without

success. I propose, therefore, a quite different law, which involves U

variables as against only 3 in the law (l.U):

THEOREM 1. The variety of groups is defined, in terms of

multiplication u and inversion \ , by the single law

(1 .5) xyix\t\i\i\z\iyz\il\i\\i = t .
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Here, as always, x, y, z, t are variables that range over the set of

elements, or carrier, of the (u, i) algebra considered, and a law like

(1.5) is interpreted as the sentence that results from binding all

variables by universal quantifiers.

The law (1.5) is not the only one that will serve to define the

variety of groups; another can readily be derived from it by the

observation that a (y, l) group is also a (y~ , l) group, where u~

is defined by

xyv~ = yxv ;

and there are other ways of shuffling variables and operations.

There is, however, a different single law in \i and I that can not

be so derived from (1.5):

THEOREM 2. The variety of groups is defined, in terms of

multiplication u and inversion \ , by the single law

(1.6) zz\\iixt\iy\i^-x\i\yiw = t .

The proofs of Theorems 1 and 2 are similar in some respects, different

in others. One point of similarity is that neither of them is interesting.

Nevertheless I shall give the proof of Theorem 1 later in this paper; the

proof of Theorem 2 is relegated to Appendix A.

2. Other varieties of groups

A subvariety of the variety of all groups that can be defined by a

finite system of group laws can also be defined by a single group law.

Such varieties, which I call mononomic varieties of groups, were treated in

[2] simultaneously with the variety of all groups; they were of greater

interest when [2] was written than they are now, because then no other

group varieties were known yet.

Theorem 1 can be extended to mononomic varieties of groups. So can

Theorem 2, though some slight extra complication seems then to become

necessary.

Let

(2.1) u = V
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be a group law, where u and V are (y, l) words in variables

x , x , , x . Put MIHU = w , so that w is also a (y, l) word in

x , x , ..., x , and the law (2.1) is equivalent to

(2.2) w = e ,

where e is the unit element (whose existence is yet to be established).

Denote by w' the word obtained from w by replacing x , x^ x by

x', x' x' , respectively. Then the analogue of Theorem 1 is:

THEOREM 3. The mononomie variety of groups with the least (2.1) is

defined, in terms of multipliaation y and inversion \ , by the single

law

(2.3) xj/ixityyisuj/zyiyuu'iyiyiy = t .

The law (2.3) differs from (1.5) by the insertion of a factor

ww'iyi , which will later be shown to be constant with value e (before e

has been shown to be the unit element of y ). The form of the factor is

designed to ensure that the total number of occurrences of l on the left-

hand side of the law remains odd, as by Lemma 1 it has to be.

To modify Theorem 2 analogously, a further additional variable z' is

required:

THEOREM 4. The mononomie variety of groups with the law (2.1) is

defined, in terms of multipliaation y and inversion \ , by the single

law

(2.U) zz\\i\z 'z 'xyiwu'iyixtyyyixyiz/iyyyy = t .

The proof of this theorem is, like that of Theorem 2, relegated to

Appendix A.

The variety of abelian groups, in particular, can be defined by a

single law of the form (2.3) or (2.U), with w = x x2yx2x yiy . In [Z], a

shorter and simpler law in terms of right division p was shown to

suffice. I have not been able to find a corresponding shorter or simpler

law to define the variety of abelian groups in terms of y and i , though

a minor simplification is possible by replacing the factor uu'iyi in

(2.3) or (2.U) by a factor w* defined by
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86 B.H. Neumann

(2.5) w* = x

The question naturally arises whether the variety of groups can be

defined by a single law in terms of a binary multiplication \i , a unary

inversion I , and a nullary unit element e . This is, in fact not the

case, as already stated by Tarski [33; a proof is presented in Appendix B.

3. The quasi group property

Mappings of the carrier of a (y, i) algebra into itself are denoted

by capital letters, and in particular the identity mapping is I . If a

mapping P has both a left inverse and a right inverse, then P is a

permutation of the carrier, and its (unique left and right) inverse is

denoted by P~ . The following well-known fact is used repeatedly.

LEMMA 2. If

ABCD = E 3

where A, D , and E are permutations, then B has a right inverse and C

has a left inverse. II

The binary operation ]i gives rise to the right multiplications R ,

defined for every element a of the carrier by

xR = xa\i ,

and %he left multiplications L , defined correspondingly by

xL = axii .

The unary operation i defines a mapping 0 , the opposition (mapping x

to its opposite),

xO = xi .

In terms of these mappings, the law (1.5) can be reformulated as

(3.1) L L OR R OL = I .

x\ y\ z yz\i\ x

Similarly the law (2.3) becomes

(3.2) L L OR R R , OL = I .
x\ y\ z yz\i\ wu>'\\i\ x

These two laws can be combined in the form
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(3.3) L L OR R XOL = I ,
xi y\ z yz\ii x

where X = I in (3.1) and X = R , in (3.2), so that almost all of

ww iyi

the proofs of Theorems 1 and 3 can proceed simultaneously, starting from

(3.3).
The first step is to prove the following fact:

LEMMA 3. A (y, i) algebra subject to the law (3.3) is a auasigroup

with respect to y , and 0 is a permutation of its carrier.

Note. For terms such as auasigroup, loop, or inverse property, the

survey [J] by Bruck may he consulted.

Proof of Lemma 3. Repeated use of Lemma 2 applied to (3.3) shows that

L has a left inverse, for every x , and L has a right inverse: thus

L is a permutation, and so then, of course, is L Then 0 has a
x\ y\

right inverse. Choose x = x'\ , so that L is also a permutation; then

0 has a left inverse for this choice of x , on which, however, it does

not depend: so opposition is a permutation. In particular then x

ranges over the whole carrier, and thus all left multiplications are

permutations. This means that, for every a, b in the carrier, the

equation

xLa = b ,

or

ax]i = b ,

has a unique solution x .

Again Lemma 2 is used repeatedly: first R has a right inverse for
z

every z , and X has a left inverse. If X = S , , then X is thus

a permutation; if X = I , then X is trivially also a permutation. Thus

,̂,,in h a s a left inverse. But yjsyi = zL 0 ranges over the whole
"^ y
carrier: thus all right multiplications are permutations. This means

that, for every a, b in the carrier, the equation

xRa = b ,
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xa\i = b ,

has a unique solution x . The algebra is then a quasigroup with respect

to y , and Lemma 3 follows. //

From now on, the inverses of left and right multiplications and of

opposition can be freely used. In particular, for any elements a, b, o

of the carrier, the implications

(3.1*) if abv = ac\i , then b = c ,

(3.5) if ba\i = ca]i , then b = a , and

(3.6) if b\ = a\ , then b = a

will be used frequently.

4. An idempotent element

Note that RE does not depend on z , because

R R = 0~XL~1L~1L'1O~1X~1 ,

3 yz\i\ y\ x\ x '

and z does not occur on the right-hand side. Hence

(U.oi) tzvyz\i\\i = tsvysuiv .

Here put y = t and choose z and s so that, for arbitrari ly given u

and V ,

tz\i = u , ts]l = V ;

that is to say, put z = uL, , s = vL . Then (U.Ol) becomes

uuiu = vv\\i .

This is thus a constant element, say

(U.02) uu\\l = / .

Putting f\ = e and fCT1 = g , then

(U.03) gfV = fev = f .

These elements will later be shown to be all equal.

Next observe that, as the variables in W and in w' are distinct
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from the variables without suffixes, X is a constant element,

X = R~X R~XO~XL~1L~XL~XO~X .i/2ui 2 yx xx x

In the case of Theorem 1, this is the identity permutation, X = I . In

the case of Theorem 3 i t is

X = Rwu>'xiix '

which will eventually turn out to be the identity permutation, too.

However, it follows already now that uw'iui is a constant element. To

evaluate it, put x' = x , x' = x^, ..., x' = x , so that W' = w . Then

WUiy = / , uwiyi = e , and thus also ww'iui = e , and

(it.OU) X = Rg .

It is clear, incidentally, that w must be itself be a constant element,

whose evaluation will, however, have to wait.

Transform (3.3) by L , and note that

x xi yz\i\ z y\

does not depend on x , and thus is a constant permutation. To evaluate

it, consider

zL L = zL L ,
x x\ y y\ '

that is

xixzw = yiyzw ,

and choose y = zO , so that y\ = z . Then

xxxzw = zyyiw = zfv ,

that is to say

(U.05) LxLxx - Rf .

With this, (3.3) transformed by L becomes

(lt.06) RJJ OR R XO = I .
Ty\ z yziix

Put z = yx here, so that yzvix = e ; then (U.06) becomes
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(U.OT) R^OR^R^O = J .

Now

L OR = i?"1^"1^"1/?"1

is independent of y , that is to say, a constant permutation. To evaluate

it, consider

that is

y\z\i\y\\i = xizuixiy ,

and choose x so that xi i = z , or xi = 30 . Then

that is

yiz\iiy\\i = x\x\i\i\zO~ u = ezO u ,

L OR = 0~XL .
2/1 2 / 1 e

Substitute this in (U.OT) to get

or

(U.08) L R XOR~ = 0 .

Here the value of X needs to be used. As X = I in the case of (3.1)

(or Theorem l) and X = R in the case of (3.2) (or Theorem 3) - see

(U.oU) - , put X = RP , where p = 0 or p = 1 . Then (U.09) becomes

L RP+ OR- = 0 ,
e e f

ez\ie]i ... eui/V = 21 ,

where ep ... eu stands for p + 1 factors ep . In this, put z = e\ ,

so that ezv = eei\i = f , then

/eu ... eyi/u = en .
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Note that fe\i . . . e\i = f , however many factors ev there are. Thus

f\f\i = e\\ ,

or, finally,

(U.09) efv = e\\ .

N e x t u s e ( I t . 0 2 ) , ( U . 0 3 ) , C t . O 5 ) , ( 3 . U ) :

xixnu = f = gf\i = gRf = g^L^ = xixgw ,

so that

(It.10) x\i = xg\i ,

that i s

(U.ll) 02 = R .

Apply (It.10) to (It.09), and then (3A) :

ef\i = e\\ = egy ,

whence f = g ; and applying opposition to both sides, also e = f . This

proves

(U.12) e = / = g ,

and thus also

(U.13) eev = ei = e .

To sum up:

LEMMA 4. A (y, i) algebra subject to the law (3.3) contains an

idempotent element e with respect to v which is invariant under \ and

satisfies, for all x ,

(it.lit) xxw = e . II

5. The inverse loop property

Return briefly to the situation of Theorem 3. It has already been

remarked that w = w[x, x , , x ) is a constant element, and, of

course, equal to w' . To evaluate this constant, put

x = x_ = ... = x = e . Repeated application of Lemma k then shows that
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(5.1) w = e ,

which is (2.2) - except that it still remains to be proved that e is the

y unit element. To prove this, start from (It. 07), with / replaced by e

and X replaced by ir :

(5.2) R L OR i?P+10 = J ,

e y\ y\ e

and apply this to e :

. . . e\i\ = e ,
where again eu . . . e\i stands for p + 1 factors e\i . This immediately

simplifies, by Ct.13) and the permutation properties of R and 0 , to

y\e\i\yi\i = e = yy\\i

b y ( i t . l i t ) . App ly ( 3 - 5 ) t o o b t a i n

y\e\i\ = y ,

or

OR 0 = I .e

This combines with (It.11), with g replaced by e , to

and it also implies that R and 0 commute. Use this commutativity in

(5-2) with y\ = e , transformed by i? , together with (It.11), to get

Llf+3 =1 .
e e

This gives

(5.3) Le = Re

if p is even,

(5.U) L&-I

if p is odd. Wow (U.05), with x = x\ = / = e , that is

(5.5) L2e=Re,
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combines with (5-3) t o give

(5.U) £ e = I

also in the case that p is even; and (5.^0 and (5.5) combine to give

also

(5.6) Re = I .

Thus e is the (unique) unit element of y , and from (U.ll) then

(5.7) 02 = J .

This shows:

LEMMA 5. A (y, i) algebra subject to the law (3-3) is an inverse

property loop with unit element e and inversion i . //

6. Associativity

Now (it.05) becomes

and (U.06), with y = e and all identity permutations on the left-hand

side omitted, becomes

OR R 0 = 1,
3 Z\ '

which after transformation by 0 and application of (5-7) gives

(6.2) RzRzx = J .

Now (5.2), with all factors R = I omitted, is

L OR 0 = 1,

or, with the involutory property (5-7) of opposition

L OR = 0 .y\ y\

Apply this to xi to get

y\x\\i\y\\i = aril = x .

Then

y\xi]iiyx\iy]i = xyii .
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The left-hand side is

y\xl\l\R R = yixim ,
u i y

by (6.2) with 3 = t/l . Thus

(6.3) j / is ipi = xy\l .

Now return to (k .06) , with the factors R- = X = I omitted:

L OR R 0 = 1 ,
y\ z yz\\\

and apply this to x\ :

y\x\\i\z\iyz]i\\i\ = x\ ,

o r , u s i n g ( 3 . 6 ) a n d ( 6 . 3 ) ,

xy\iz\iyz\i\\i = x .

Then

xy\izvys]i\\iyzw = xyz\x\x .

Here the left-hand side i s , by (6.2) with yz\il in place of z ,

xy\izuR R = xyuz\i •a yz\i\ yz\i a '

so finally the associative law

(6.1t) • xy\iz\i = xj/2yy

for li is proved. This shows that the (u, l) algebra is a group with y

as multiplication and I as inversion.

To complete the proof of Theorem 1, it is necessary to verify that the

law (1.5) is satisfied in groups; this verification is straightforward and

omitted. //

In the case of Theorem 3, it has already been shown that the law (2.2)

follows from the law (2.3) - see (5.1). Thus again it only remains to

verify that the law (2.3) is satisfied in groups with the law (2.1) or

equivalently (2.2); again this verification is straightforward and

omitted. //

Appendix A. Proof of Theorems 2 and 4

The laws (1.6) in Theorem 2 and (2.k) in Theorem 1» can be
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reformulated, in analogy with (3 .3) , in the form

where X = I in the case of Theorem 2 and X = L , L , , in the
wu'iui z'z'\\i\

case of Theorem h.

As before, the u quasigroup property and the fact that opposition is

a permutation are established first, by repeated application of Lemma 2.

First all L have right inverses, and all L have left inverses,
X ZB \\i\

too, and thus are permutations. Then X , being either the identity and

thus trivially a permutation, or a product of two permutations of the form

L , is also a permutation. Put x = x'x'\\i\ , so that L becomes a
ZZIUI X

permutation. Then R has a right inverse and R a left inverse - but

y and y\ do not depend on the particular choice of x ; thus all R

have right inverses, and all R are permutations. Put y = y'\ to

ensure that R is also a permutation; then 0 , which does not depend on

the special choices of x and y , is seen to have both right and left

inverses and thus is also a permutation. In particular y = y'\ ranges

with y' over the whole carrier; hence all right multiplications are

permutations. Return to (A.01) with arbitrary x ; now all mappings that

occur, except the left-most factor L , have been shown to be

permutations. It follows that L^ is also a permutation, that is all left

multiplications are permutations, and the analogue of Lemma 3, with the law

(A.01) in place of (3.3), is established.

Next observe that

L = r WWW1

ssiui y\ x y x

is seen to be independent of z , hence a constant permutation; and again

it follows that

33XUI = e ,

say, is a constant element. As before, put / = eO~ , g = fO , so that

again
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zsiu = f = gfv -

In the situation of Theorem k, put x' = x. , x' = x_, . . . , x' = x , so
-L J- c. d tl 71

that w' = u . Then ww'iyi = e ; and as also z'z'i\i\ = e , then

in this situation. In the case of the variety of all groups, that is in

Theorem 2, X = I , so

with p = 0 or p = 2 will cover both cases. Note that p is even:

this fact will be used later . (A.01) now simplifies to

(A.02) L*mxonyxi^ - i .

Here

LROR = L"(P+1 W 1

x y x e i/i

is seen to be independent of x ; thus

arsut/yixu = tzvyv\t\i .

Put t = z0~ , so that 3 = t\ . Then

xtiyi/uizu = ft/uity .

Here put x = y = e , and observe that then fy]ii - fe\x\ = e . Then

et\\ie\i\e\i = ety ,

or

(A.03) 0L R OR = L .
e e e e

Returning to (A.02), notice that

R OR OR = L"V(P+1)

y x y\ x e

is independent of y ; thus

si/yixyii/nj = zt\i\x\i\t\\i .

Put t = z\ , so that zt\i\ = aaiyi = e ; thus
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(A.OU) zy\i\x\iiy\\i = ex]iiz\\\i .

Here put 2 = ex\x , so that the right-hand side reduces to / :

ex\iy\x\x\x\y\\i = f = yyw .

Cancelling on the right, that is to say, applying (3.5), which is available

because the analogue of Lemma 3 has already been established, then

(A. 05) exuj/yixui = y ,

and with y = e in particular

exueuucui = e = f\ ?

and by (3.6),

ex\ie\i\x\i = f = xO x\i .

Again by (3-5) then

exyeui =

exuevm

w2

OL R 0
e e

ive

R =e

to'1 ,

= x .

= I .

= I .

L .
e

This means that

(A.06)

Transform by 0 to obtain

(A.07)

This combines with (A.03) to give

(A.08)

Note that as fev = f , that is to say fR = f , also now for all n ,

(A.09) fRn = fr? = f.

In particular

(A.10) efv = / = gfv ,

whence, by (3-1*),

e = g = en ,
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and so also

(A.11) f\\ = e\ = g\ = f .

Return to (A.02), applied to a variable z :

xz\iy\i\xv\yi\ilP+ = z ,

and put y = xspx , so that xz\iy\i\ = e . Then

ex\i\xz\i\\\ilP = z .

Here put x = / and z = e and use (A. 10) and (A.11) to get

efvifevwvlP*1 = ef\\\ilP+1 = e ,

that is

and by (A.09) finally

/ = « •

This establishes, as before,

e = f = g

and

eeu = e\ = e ,

and t h e analogue of Lemma k, with t he law (A.01) i n p lace of ( 3 . 3 ) .

In (A.05) , put x = e , and ob ta in

ey\i\e\i\ = y ,

or

I OR 0 = I .
e e

Compare th is with (A.07) to see that L , which by (A.08) equals R ,

commutes with 0 :

(A.12) L 0 = 0L .
e e

In (A.OU), put x = y = e , to get
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seuieuiey = ez\\\i ,

R OR OR = L 02 .e e e e

Using (A.08) and the commutativity (A.12), this gives

(A.13) h\ = I ,

and with (A.06) and again (A.08) also

(A.lM 02 = I .

Now put x = y = e in (A.02) to get

L R OR OR lP+1 = I .
e e e e e

Use (A.08), (A.12), (A.13), and (A.lU) to deduce

= I
e

from this; and now recall that p is even, namely p = 0 or p = 2 , and

apply (A.13) to obtain finally

(A.15) Lg = I .

Now the analogue of Lemma 5, with the law (3.3) replaced by (A.01),

follows; and (A.02) further reduces to

(A.16) LxRy0Rx0Ryx = J '

Put x = e and use (A.15) and (A.lit):

(A.17) RyByx = I .

Thus also R R = I , and multiplying the two sides of (A.16) by R

gives

L R OR 0 = R .
x y x y

Then

(A.18) xz\iy\iix\i\ = zy\i .

Put z = xi , so that, by (A.lU), x = z\ , and observe that the factor
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xz\l = e can be omitted:

(A.19) yiziyi = zyv ,

which, but for the name of one of the variables, is (6.3). Now apply I

to both sides of (A.l8), observing (A.lli):

xz\iy\i\x\i = zy\ii .

Next

xz\iy\i\x\ix\\i = zyviany .

Here the left-hand side simplifies, using (A.17),

xz\iy\i\R R = xz\iy\i\ ,

whence

xz\iy\x\ = zy\x\x\\x .

A p p l y o p p o s i t i o n t o b o t h s i d e s , o b s e r v i n g ( A . l U ) :

xz\iy]i = zy)i\x\\i\ ,

and apply (A.19) to this , with zy\x in place of y and x in place of

z , to get finally

X2\xy\i = xsyw •

This is the associative law for y , completing the proof of the group

property. To complete the proof of Theorems 2 and h, it is again necessary

to verify that the law (1.6) holds in groups, and that the law {2.h) holds

in groups with the law (2.1) or equivalently (2.2). Again this

verification is routine, and omitted. //

Appendix B. A nirtlary unit element

One might hope to be able to go one step further and define groups

also by a single law in a binary multiplication y , a unary inversion l ,

and a nullary unit element £ ; this is, however, not possible, as stated

by Tarski [3], and as I shall now show.

THEOREM 5. Let

(B.I) w[x, yv y2, . .., yn) = x

be a law in variables x, y , y , ..., y with operations y (binary), i
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(unary), e (nullary) that is satisfied in groups when u is interpreted

as multiplication, i as inversion, and e as the unit element. Then

this law is also satisfied in a group with u as multiplication, but e

not as unit element; in this model i may or may not be inversion.

It is well known that if a single law is to define the variety of

groups, it must be of the form u = V where either u or V is just a

single variable; thus no generality is sacrificed by assuming the law to

be of the form (B.l).

The model will be a suitable cyclic group, written additively, so that

x + y , -x , 0 denote the binary, unary, and mullary operations in it.

Put

xy\i = x + y ,

x\ = -x + c ,

e = d ,

where a, d , and the order p of the group are still to be determined.

Then the left-hand side of (B.l) will become

u(«, y±, y2, •••> yn) = x + kc + id ,

where k and I are integers that depend on the number and manner of

occurrences of i and e in w . Using Lemma 1, k may be assumed to be

odd. If 1=0, put a = 0 , d = 1 , and p = 2 . Then the law (B.l)

will be satisfied, but e will not be the unit element of the group; in

this case l is inversion. If I # 0 , let p be a prime number greater

than \k\ and \l\ , and choose c, d so that

kc + Id i 0 mod p , d | 0 mod p ;

for example, d = 1 . Again the law (B.l) is satisfied, and again e is

not the unit element; in this case I is not inversion, either. //
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