POSTERS

Are There Silicate – S Stars?

IRENE R. LITTLE-MARENIN

Wellesley College, Wellesley MA, U.S.A.

I have identified seven S stars with very strong silicate features in their IRAS LRS spectra at 10 and 18 μ m (LRS 25–29) (Chen et al. 1995, A & AS, 113, 51). This is highly unusual since S stars tend to have lower mass-loss rates and higher gas-to-dust ratios than M or C stars, implying less efficient dust formation in their circumstellar shells. Gas-to-dust ratios are estimated to be between 400 and 1000, at least a factor of two lower than for carbon stars, and hence strong dust emission features are not seen or expected. Also, pure S stars have a relatively weak emission feature which peaks in the 10–11 μ m region and is subtly different from the 10 μ m silicate or the 11.2 μ m SiC feature. However, all seven stars have been found to be either M or MS stars rather than pure S stars, and hence they reflect the mass-loss rates and dust content associated with M stars. The stars and their characteristics are listed below.

IRAS	Name	GCSS	LRS	l b	Sp. Class
07197 - 1451	TT CMa	341	27	230 - 0.2	not S, maybe MS (a)
11169 - 6111		738	29	292 - 0.5	M5.5, not S (b)
15347 - 5555		897	26	325 - 0.5	M3 (b)
16490 - 4618		944	25	340 - 1.5	M1.5 (b)
19545 - 1122	V1407 Aql	1175	29	30 - 19.6	M6S (c)
21029 + 4917		1259	28	90 + 1.7	M3 (d)
22512 + 6100	V386 Cep	1314	28	109 +1.6	M6 (c), M3 (a)

Table 1: S? Stars with Strong Silicate Emission Features

(a) Stephenson, private communication;
(b) Lloyd Evans & Catchpole 1989, MNRAS,
237, 219;
(c) Bidelman, private communication;
(d) Cohen et al. 1989, AJ, 97, 1759