(C) Canadian Mathematical Society 2013

On the Comaximal Graph of a Commutative Ring

Karim Samei

Abstract

Let R be a commutative ring with 1. In a 1995 paper in J. Algebra, Sharma and Bhatwadekar defined a graph on $R, \Gamma(R)$, with vertices as elements of R, where two distinct vertices a and b are adjacent if and only if $R a+R b=R$. In this paper, we consider a subgraph $\Gamma_{2}(R)$ of $\Gamma(R)$ that consists of non-unit elements. We investigate the behavior of $\Gamma_{2}(R)$ and $\Gamma_{2}(R) \backslash \mathrm{J}(R)$, where $\mathrm{J}(R)$ is the Jacobson radical of R. We associate the ring properties of R, the graph properties of $\Gamma_{2}(R)$, and the topological properties of $\operatorname{Max}(R)$. Diameter, girth, cycles and dominating sets are investigated, and algebraic and topological characterizations are given for graphical properties of these graphs.

1 Introduction

The study of algebraic structures by way of graph theory has become an exciting research topic in the last decade. There are many papers on assigning a graph to a ring. In [5], Beck introduced the idea of a zero-divisor graph of a commutative ring R with 1 . He defined $\Gamma_{0}(R)$ to be the graph whose vertices are elements of R and in which two vertices a and b are adjacent if and only if $a b=0$. In [4], Anderson and Livingston introduced and studied the subgraph $\Gamma_{0}(R)$ whose vertices are the nonzero zero-divisors, and the authors studied the interplay between the ring-theoretic properties of a commutative ring and the graph-theory properties of its zero-divisor graph. The total graph of a ring was introduced in [2] and was also investigated in [1].

In [14], Sharma and Bhatwadekar defined a graph $\Gamma(R)$, with elements of R as vertices and where two distinct vertices a and b are adjacent if and only if $R a+R b=$ R. With this definition, they showed that $\chi(\Gamma(R))<\infty$ if and only if R is a finite ring, where $\chi(G)$ is the chromatic number of a graph G. Later, Maimani et al. [10] characterized the connectedness and the diameter of the graph $\Gamma_{2}(R) \backslash J(R)$, where $\Gamma_{2}(R)$ is the subgraph of $\Gamma(R)$ induced by non-unit elements and $\mathrm{J}(R)$ is the Jacobson radical of R. Recently, Wang [15] characterized those rings R for which $\Gamma_{2}(R)$ is a forest and those rings R for which $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is Eulerian. He found all finite rings R such that the genus of $\Gamma_{2}(R)$ (resp., $\Gamma(R)$) is at most one. He also studied the comaximal graph of a non-commutative ring [16]. The goal of this paper is to study the behavior of $\Gamma_{2}(R)$ (resp., $\Gamma_{2}(R) \backslash J(R)$). Inasmuch as the subgraph of $\Gamma_{2}(R)$ whose vertices are in $\mathrm{J}(R)$ is the empty graph, some results $\Gamma_{2}(R)$ are valid for $\Gamma_{2}(R) \backslash \mathrm{J}(R)$.

[^0]For example, when R is a Gelfand ring,

$$
\operatorname{diam} \Gamma_{2}(R)=\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=\min \{|\operatorname{Max}(R)|, 3\}
$$

In the third section we study cycles in $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ and characterize when $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is triangulated or hypertriangulated. We prove that $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is a triangulated graph if and only if $\operatorname{Max}(R)$ has no isolated points. Also, when R has no strongly isolated maximal ideal, every cycle in $\Gamma(R)$ has length 3 or 4 and every edge of $\Gamma(R)$ is an edge of a cycle with length 3 or 4.

It is interesting that some results of this paper for the graph $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ are similar to the results in [12] for the zero divisor graph of R. But note that these two graphs usually are not isomorphic (even the number of vertices can be different). In fact if the zero divisor graph of R is isomorphic to $\Gamma_{2}(R) \backslash \mathrm{J}(R)$, then R must be a quasi regular ring, i.e., every element of R is either a unit or a zero divisor.

Throughout this paper, R is a commutative ring, $|R| \neq 4$, and it is not a local ring (when R is local, $\Gamma_{2}(R) \backslash \mathrm{J}(R)=\varnothing$). We say R is semiprimitive if $\cap \operatorname{Max}(R)=(0)$. For any ideal I of R and $a \in R$, we set

$$
\mathrm{M}(a)=\{M \in \operatorname{Max}(R): a \in M\}, \quad \mathrm{D}(a)=\operatorname{Max}(R) \backslash \mathrm{M}(a)
$$

Then the sets $\mathrm{M}(I)=\bigcap_{a \in I} \mathrm{M}(a)$, where I is an ideal of R, satisfy the axioms for the closed sets of a topology on $\operatorname{Max}(R)$, called the Stone topology (see [9, 7M]). The operators cl and int denote the closure and the interior in $\operatorname{Max}(R)$.

A ring R is called Gelfand ($p m$-ring) if every prime ideal of R is contained in a unique maximal ideal. When the Jacobson radical and the nilradical of a ring R coincide, DeMarco and Orsatti [6] show that R is Gelfand if and only if $\operatorname{Max}(R)$ is Hausdorff and if and only if $\operatorname{Spec}(R)$ is normal (in general, not Hausdorff). This class of rings contains the class of von Neumann regular ring, local rings, zero dimensional rings, and the rings $C(X)$ of continuous functions.

A maximal ideal M of R is called isolated if $\{M\}$ is a clopen (closed and open) subset of $\operatorname{Max}(R)$. If R is semiprimitve, M is isolated if and only if $M=(e)$, for some idempotent $e \in R$ (see [13, Theorem 2.6]).

We first need the following lemmas.
Lemma 1.1 Let R be a ring. If A and B are disjoint closed subsets of $\operatorname{Max}(R)$, then there exists $a \in R$ such that $A \subseteq \mathrm{M}(a)$ and $B \subseteq \mathrm{M}(a-1)$. Furthermore, if A is clopen, then there exists $a \in R$ such that $A=\mathrm{M}(a), A^{c}=\mathrm{M}(a-1)$ and $a^{2}-a \in \mathrm{~J}(R)$.

Proof There are the ideals I and J such that $A=\mathrm{M}(I)$ and $B=\mathrm{M}(J)$. Obviously, $I+J=R$ (for $A \cap B=\varnothing$), so $a+b=1$ for some $a \in I$ and $b \in J$. Thus $A \subseteq \mathrm{M}(a)$ and $B \subseteq \mathrm{M}(a-1)$. The second part is trivial.

The following lemma is well known.
Lemma 1.2 Let R be a semiprimitive ring. Then R is a zero dimensional ring if and only if $\mathrm{M}(a)$ is a clopen subset of $\operatorname{Max}(R)$ for each $a \in R$.

Proof Suppose that R is a zero dimensional ring, hence R is von Neumann regular. So for every $a \in R$, there exists $b \in R$ such that $a=a^{2} b$. Therefore $\mathrm{M}(a) \cup$ $\mathrm{M}(1-a b)=\operatorname{Max}(R)$, i.e., $\mathrm{M}(a)$ is clopen. Conversely, suppose that $\mathrm{M}(a)$ is clopen. Inasmuch as $\mathrm{J}(R)=0$, Lemma 1.1 implies that $\mathrm{M}(a)=\mathrm{M}(e)$ for some idempotent $e \in R$. Hence $R a=R e$, i.e., R is von Neumann regular.

2 Distance in $\Gamma_{2}(R)$

Recall that for two vertices a and b of a graph $G, \mathrm{~d}(a, b)$ is the length of the shortest path from a to b. The diameter of G is denoted by $\operatorname{diam} G$ and is defined by diam $G=$ $\sup \{\mathrm{d}(a, b): a, b \in G\}$. The girth of $G, \operatorname{gr} G$, is defined as the length of the shortest cycle in G ($\operatorname{gr} G=\infty$ if G contains no cycles). The reader is referred to [7] for undefined terms and notations.

The following fact is [10, Theorem 3.1].
Theorem 2.1 The graph $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is connected and $\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right) \leq 3$.
The following proposition characterizes the concept of distance in $\Gamma_{2}(R) \backslash \mathrm{J}(R)$.
Proposition 2.2 Let $a, b, c \in \Gamma_{2}(R) \backslash J(R)$ be distinct elements.
(i) c is adjacent to both a and b if and only if $\mathrm{M}(c) \subseteq \mathrm{D}(a b)$.
(ii) $\mathrm{d}(a, b)=1$ if and only if $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$.
(iii) $\mathrm{d}(a, b)=2$ if and only if $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \notin \mathrm{~J}(R)$.
(iv) $\mathrm{d}(a, b)=3$ if and only if $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \in \mathrm{~J}(R)$.

Proof (i) c is adjacent to both a and b if and only if $\mathrm{M}(a) \cap \mathrm{M}(c)=\mathrm{M}(b) \cap \mathrm{M}(c)=\varnothing$, if and only if $\mathrm{M}(c) \subseteq \mathrm{D}(a b)$.
(ii) is evident.
(iii) We note that $a b \notin \mathrm{~J}(R)$ if and only if there exists $c \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$ such that $\mathrm{M}(c) \subseteq \mathrm{D}(a b)$. To see this, let $M \in \mathrm{D}(a b)$. Hence $a b r+c=1$, for some $c \in M$ and $r \in R$. Therefore $\mathrm{M}(a b) \cap \mathrm{M}(c)=\varnothing$, i.e., $\mathrm{M}(c) \subseteq \mathrm{D}(a b)$.
(iv) By Theorem 2.1, $\mathrm{d}(a, b)=3$ if and only if $\mathrm{d}(a, b) \neq 1,2$, if and only if $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \in \mathrm{~J}(R)$, by (ii) and (iii).

The following theorem characterizes the diameter and the girth of $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ according to the number of maximal ideals of R.

Theorem 2.3 Let R be a Gelfand ring.
(i) $\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=\min \{|\operatorname{Max}(R)|, 3\}$.
(ii) $I f|\operatorname{Max}(R)|=2$, then $\operatorname{gr}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=4$ or ∞; otherwise, $\operatorname{gr}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=$ 3.

Proof (i) First we prove that $|\operatorname{Max}(R)| \geq 3$ if and only if $\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=3$. Suppose that $|\operatorname{Max}(R)| \geq 3$, and M_{1}, M_{2}, M_{3} are distinct maximal ideals in R. Inasmuch as $\operatorname{Max}(R)$ is Hausdorff, there are $a_{i} \in R$ such that $M_{i} \in \mathrm{D}\left(a_{i}\right)$ and $a_{i} a_{j} \in \mathrm{~J}(R)$, for $i \neq j$ and $i, j=1,2,3$. Thus $M_{3} \in \mathrm{M}\left(a_{1}\right) \cap \mathrm{M}\left(a_{2}\right) \neq \varnothing$ and $a_{1} a_{2} \in \mathrm{~J}(R)$. Therefore $\mathrm{d}\left(a_{1}, a_{2}\right)=3$ by Proposition 2.2(iv), and this shows that $\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=3$. Also by Lemma 1.1, there are $a_{i}^{\prime} \in \Gamma_{2}(R) \backslash \mathrm{J}(R), \mathrm{i}=1,2,3$ such that

$$
M_{i} \in \mathrm{M}\left(a_{i}^{\prime}\right) \quad \text { and } \quad \mathrm{M}\left(a_{i}\right) \subseteq \mathrm{M}\left(a_{i}^{\prime}-1\right)
$$

Hence $\mathrm{M}\left(a_{i}^{\prime}\right) \subseteq \mathrm{D}\left(a_{i}\right)$, so $\mathrm{M}\left(a_{i}^{\prime}\right) \cap \mathrm{M}\left(a_{j}^{\prime}\right) \subseteq \mathrm{D}\left(a_{i}\right) \cap \mathrm{D}\left(a_{j}\right)=\varnothing$, and this implies that $\mathrm{d}\left(a_{i}^{\prime}, a_{j}^{\prime}\right)=1$. This shows that $\operatorname{gr}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=3$.

Conversely, if $\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=3$, then there are $a, b \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$ such that $\mathrm{d}(a, b)=3$. By Proposition 2.2(iv), $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \in \mathrm{~J}(R)$. So there are maximal ideals M_{1}, M_{2}, M_{3} such that

$$
M_{1} \in \mathrm{D}(b) \backslash \mathrm{D}(a) \quad \text { and } \quad M_{2} \in \mathrm{D}(a) \backslash \mathrm{D}(b) \quad \text { and } \quad M_{3} \in \mathrm{M}(a) \cap \mathrm{M}(b)
$$

Thus M_{1}, M_{2}, M_{3} are distinct maximal ideals in R, i.e., $|\operatorname{Max}(R)| \geq 3$.
Now suppose that $|\operatorname{Max}(R)|=2$. Since $|R|>4$, we can consider the maximal ideal M and $a, b \in M \backslash \mathrm{~J}(R)$. Consequently, $\mathrm{d}(a, b)>1$, i.e., $\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)>1$. Thus $\operatorname{diam}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=2$, and (i) holds.
(ii) By the proof of part (i), $|\operatorname{Max}(R)| \geq 3$ implies that $\operatorname{gr}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=3$. Now suppose $|\operatorname{Max}(R)|=2$, hence $R / \mathrm{J}(R) \simeq F_{1} \times F_{2}$, where F_{1} and F_{2} are fields. If either $\left|F_{1}\right|=2$ or $\left|F_{2}\right|=2$, then $\operatorname{gr}\left(\Gamma_{2}(R)\right)=\operatorname{gr}\left(\Gamma_{2}(R / \mathrm{J}(R))=\infty\right.$. Otherwise, it is easy to see that $\operatorname{gr}\left(\Gamma_{2}(R)\right)=\operatorname{gr}\left(\Gamma_{2}(R / \mathrm{J}(R))=4\right.$; see [15, Lemma 3.3].
Corollary 2.4 Let R be a Gelfand ring.
(i) $\operatorname{diam} \Gamma_{2}(R)=\min \{|\operatorname{Max}(R)|, 3\}$.
(ii) $I f|\operatorname{Max}(R)|=2$, then $\operatorname{gr} \Gamma_{2}(R)=4$ or ∞; otherwise, $\operatorname{gr} \Gamma_{2}(R)=3$.

The associated number $\mathrm{e}(a)$ of a vertex a of a graph G is defined to be $\mathrm{e}(a)=$ $\max \{\mathrm{d}(a, b): a \neq b\}$. A center of G is defined to be a vertex a_{0} with the smallest associated number. The associated number $\mathrm{e}\left(a_{0}\right)$ is called the radius of G and is denoted by $\rho(G)$.

Remark Suppose that R is a commutative semiprimitive ring. By [13, Lemma 2.12], for every $a \in R$, int $\mathrm{M}(a)=\mathrm{D}(\operatorname{Ann}(a))$. Thus for any ring R we have $(\mathrm{J}(R): a) \neq \mathrm{J}(R)$ if and only if $a+\mathrm{J}(R)$ is a zero divisor in $R / \mathrm{J}(R)$, if and only if int $\mathrm{M}(a+\mathrm{J}(R)) \neq \varnothing$, if and only if int $\mathrm{M}(a) \neq \varnothing$.

Theorem 2.5 Let R be a ring and $a \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$.
(i) $\mathrm{e}(a)=1$ if and only if $R a \in \operatorname{Max}(R)$ and $|R a|=2$.
(ii) $\mathrm{e}(a)=2$ if and only $f(\mathrm{~J}(R): a)=\mathrm{J}(R)$ or $\mathrm{Ra} \notin \operatorname{Max}(R)$.
(iii) $\mathrm{e}(a)=3$ if and only if $(\mathrm{J}(R): a) \neq \mathrm{J}(R)$ and $|\mathrm{M}(a)|>1$.

Proof (i) Suppose that $\mathrm{e}(a)=1$. Hence $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$, for all $b \in\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)$ with $b \neq a$. This shows that $\mathrm{M}(a)=\{M\}$ and $|M|=2$.
(ii) and (iii) By hypothesis and Theorem 2.1, $\mathrm{e}(a)=2$ or 3 . We consider two cases.
Case 1. Suppose that $(\mathrm{J}(R): a) \neq \mathrm{J}(R)$. If $|\mathrm{M}(a)|>1$, then by the above remark there are $M \in \operatorname{int} \mathrm{M}(a)$ and $M^{\prime} \in \mathrm{M}(a) \backslash\{M\}$. Therefore by Lemma 1.1, there exists $b \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$ such that

$$
M \in \mathrm{M}(b-1) \quad \text { and } \quad(\operatorname{Max}(R)-\operatorname{int} \mathrm{M}(a)) \cup\left\{M^{\prime}\right\} \subseteq \mathrm{M}(b)
$$

Thus $a b \in \mathrm{~J}(R)$ and $M^{\prime} \in \mathrm{M}(a) \cap \mathrm{M}(b)$, and Proposition 2.2(iv) implies that $\mathrm{d}(a, b)=3$, i.e., $\mathrm{e}(a)=3$. Now if $|\mathrm{M}(a)|=1$, then $\mathrm{M}(a)=\{M\}$. So for every
$c \in M \backslash \mathrm{~J}(R), M \in \mathrm{M}(a) \cap \mathrm{M}(c)$ and $a c \notin \mathrm{~J}(R)$. Thus $\mathrm{d}(a, c)=2$, by Proposition 2.2(iii), i.e., $\mathrm{e}(a) \leq 2$. Now if $R a \notin \operatorname{Max}(R)$, then $\mathrm{e}(a) \neq 2$, hence $\mathrm{e}(a)=2$.

Case 2. Suppose that $(\mathrm{J}(R): a)=0$, then Proposition 2.2(iii) implies that $\mathrm{e}(a) \leq 2$. If $\mathrm{e}(a)=1$, then $|R a|=2$, so a is idempotent. Consequently, $1-a \in(\mathrm{~J}(R): a)$, i.e., $a=1$, and this is impossible. Therefore $\mathrm{e}(a)=2$.

Corollary 2.6 Let R be a ring and $a \in \Gamma_{2}(R)$.
(i) $\mathrm{e}(a)=0$ if and only if $a \in \mathrm{~J}(R)$.
(ii) $\mathrm{e}(a)=1$ if and only if $R a \in \operatorname{Max}(R)$ and $|R a|=2$.
(iii) $\mathrm{e}(a)=2$ if and only if $(\mathrm{J}(R): a)=\mathrm{J}(R)$ or $R a \notin \operatorname{Max}(R)$.
(iv) $\mathrm{e}(a)=3$ if and only if $(\mathrm{J}(R): a) \neq \mathrm{J}(R)$ and $|\mathrm{M}(a)|>1$.

Corollary 2.7 Let R be a semiprimitive ring and $a \in \Gamma_{2}(R)$.
(i) $\mathrm{e}(a)=1$ if and only if $R a \in \operatorname{Max}(R)$ and $|R a|=2$.
(ii) $\mathrm{e}(a)=2$ if and only if a is a non-zero divisor or $R a \notin \operatorname{Max}(R)$.
(iii) $\mathrm{e}(a)=3$ if and only if a is a zero divisor and $|\mathrm{M}(a)|>1$.

A ring R is called quasi regular if every element of R is either a unit or a zero divisor. Clearly every von Neumann regular ring is a quasi regular ring, but a quasi regular ring is not necessary a regular ring (see [11, Proposition 2.3]).

Corollary 2.8 Let R be a ring.
(i) $\rho\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=1$ if and only if R has a maximal ideal of cardinal 2 .
(ii) $\rho\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=3$ if and only if $R / \mathrm{J}(R)$ is a quasi regular ring and R has no isolated maximal ideal.

Otherwise, $\rho\left(\Gamma_{2}(R) \backslash J(R)\right)=2$.
Proof (i) follows from Theorem 2.5(i).
(ii) By Lemma 1.1, Theorem 2.5(iii), and [11, Proposition 2.3(2)], we have $\rho\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=3$ if and only if for each $a \in \Gamma_{2}(R) \backslash \mathrm{J}(R),(\mathrm{J}(R): a) \neq \mathrm{J}(R)$ and $|\mathrm{M}(a)|>1$, if and only if $R / \mathrm{J}(R)$ is a quasi regular ring and R has no isolated maximal ideal.

3 Cycles in $\Gamma_{2}(R) \backslash \mathrm{J}(R)$

A graph G is called triangulated (hypertriangulated) if each vertex (edge) of G is a vertex (edge) of a triangle.

Theorem 3.1 Let R be a ring.
(i) $\quad \Gamma_{2}(R) \backslash J(R)$ is a triangulated graph if and only if R has no isolated maximal ideals.
(ii) $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is a hypertriangulated graph if and only if R has no non-trivial idempotent elements.

Proof (i) Let $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ be a triangulated graph and suppose R has an isolated maximal ideal M. Hence $\mathrm{D}(a)=\{M\}$, for some $a \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$. By hypothesis there are $b, c \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$ such that $\mathrm{M}(a) \cap \mathrm{M}(b)=\mathrm{M}(a) \cap \mathrm{M}(c)=\mathrm{M}(b) \cap \mathrm{M}(c)=\varnothing$. This implies that $\mathrm{M}(b)=\mathrm{M}(c)=\{M\}$, a contradiction. Conversely, suppose that
R does not contain an isolated maximal ideal, and take $a \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$. Therefore there exist two different points $M, M^{\prime} \in \mathrm{D}(a)$. By Lemma 1.1 there exists $b \in R$ such that

$$
M \in \mathrm{M}(b) \quad \text { and } \quad \mathrm{M}(a) \cup\left\{M^{\prime}\right\} \subseteq \mathrm{M}(b-1)
$$

Thus $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$, i.e., a and b are adjacent. There also exists $c \in R$ such that

$$
M^{\prime} \in \mathrm{M}(c) \quad \text { and } \quad \mathrm{M}(a) \cup \mathrm{M}(b) \subseteq \mathrm{M}(c-1)
$$

This implies that $\mathrm{M}(c) \subseteq \mathrm{D}(a b)$, i.e., c is a vertex adjacent to both a and b. Therefore a is a vertex of the triangle with vertices a, b, and c.
(ii) Let $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ be a hypertriangulated graph. If R has an non-trivial idempotent e, then $\mathrm{D}(e(1-e))=\mathrm{D}(0)=\varnothing$, so by Proposition 2.2(i), there is no vertex adjacent to both e and $e-1$, a contradiction.

Conversely, let $a-b$ be an edge in $\Gamma_{2}(R) \backslash \mathrm{J}(R)$. Since $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$ and $\operatorname{Max}(R)$ is connected, $\mathrm{M}(a) \cup \mathrm{M}(b) \neq \operatorname{Max}(R)$, i.e., $\mathrm{D}(a b) \neq \varnothing$. Thus by Proposition 2.2(i), there exists a vertex adjacent to both a and b, i.e., $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is a hypertriangulated graph.

Definition 3.2 It follows from Lemma 1.1 that if M is an isolated maximal ideal, then $\mathrm{M}(a)=\{M\}$, for some $a \in R$. In this case, if a is unique, then M is called a strongly isolated maximal ideal of R.

The most important rings have no strongly isolated maximal ideals. For example, rings for which 2 is a unit, non-semiprimitve rings (for which $\mathrm{M}(a)=\mathrm{M}(a+r)$ for each $a \in R$ and $r \in \mathrm{~J}(R)$), and semiprimitive rings, as follows.

Proposition 3.3 Let R be a semisimple ring, then R has strongly isolated maximal ideals if and only if $R \simeq F \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$, where F is a field.

Proof Suppose that R has a strongly isolated maximal ideal M. Inasmuch as M is semisimple and it is generated by an idempotent, $|\operatorname{Max}(R)|$ is finite. Hence $R \simeq$ $F_{1} \times F_{2} \times \cdots \times F_{n}$, where the F_{i} are fields. With less generality, we can consider $M=0 \times F_{2} \times \cdots \times F_{n}$. If for example $F_{2} \neq \mathbb{Z}_{2}$, then there exists a unit $u \neq 1$ in F_{2}. Put $a=(0,1,1, \ldots, 1)$ and $a^{\prime}=(0, u, 1, \ldots, 1)$. Then $\mathrm{M}(a)=\mathrm{M}\left(a^{\prime}\right)=\{M\}$, a contradiction. So $F_{i}=\mathbb{Z}_{i}$, for all $i \geq 2$. Conversely, $M=0 \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ is always a strongly isolated maximal ideal.

Corollary 3.4 Let R be a semiprimitive ring and $|\operatorname{Max}(R)|<\infty$. Then R has strongly isolated maximal ideals if and only if $R \simeq F \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$, where F is a field.

Theorem 3.5 Let $a \in \Gamma_{2}(R)$. Then a is an endpoint if and only if $\mathrm{D}(a)=\{M\}$, where M is a strongly isolated maximal ideal.

Proof (\Leftarrow) Suppose that $\mathrm{D}(a)=\{M\}$, and M is a strongly isolated maximal ideal. If a is adjacent to both b and c, then $\mathrm{M}(a) \cap \mathrm{M}(b)=\mathrm{M}(a) \cap \mathrm{M}(c)=\varnothing$, i.e., $\mathrm{M}(b)=$ $\mathrm{M}(c)=\{M\}$. Therefore $b=c$, by hypothesis.
(\Rightarrow) If $|\mathrm{D}(a)|>1$, then there are the distinct maximal ideals $M_{1}, M_{2} \in \mathrm{D}(a)$ and $M \in \mathrm{M}(a)$. Set $F_{1}=\mathrm{M}(a) \cup\left\{M_{2}\right\}$ and $F_{2}=\mathrm{M}(a) \cup\left\{M_{1}\right\}$. Then there are $a_{i} \in \Gamma_{2}(R)$
($i=1,2$) such that $M_{i} \in \mathrm{M}\left(a_{i}\right)$ and $F_{i} \subseteq \mathrm{M}\left(a_{i}-1\right)$. Thus $\mathrm{M}(a) \cap \mathrm{M}\left(a_{1}\right)=$ $\mathrm{M}(a) \cap \mathrm{M}\left(a_{2}\right)=\varnothing$. Hence a is adjacent to both a_{1} and a_{2}, i.e., a is not an endpoint. Now suppose that $\mathrm{D}(a)=\{M\}$, and M is not a strongly isolated maximal ideal. Hence there are $b, c \in R$ such that $\mathrm{M}(b)=\mathrm{M}(c)=\{M\}$. This implies that a is adjacent to both b and c.

If M is a strongly isolated maximal ideal, then there is an $a \in R$ such that $\mathrm{D}(a)=$ $\{M\}$, i.e., a is an endpoint. Thus we have the following corollary.

Corollary 3.6 $\quad \Gamma_{2}(R)\left(\right.$ also $\left.\Gamma_{2}(R) \backslash J(R)\right)$ has an endpoint if and only if R has a strongly isolated maximal ideal.

Lemma 3.7 Let R be a ring that has no strongly isolated maximal ideals, and let $a, b, c \in \Gamma_{2}(R)$. If a is adjacent to both b and c, then there exists $a \neq a^{\prime} \in \Gamma_{2}(R)$ such that a^{\prime} is adjacent to both b and c.

Proof There exists $M \in \mathrm{M}(a)$. Suppose that $|\mathrm{M}(a)|=1$. If $a^{2} \neq a$, then we put $a^{\prime}=a^{2}$, otherwise M is isolated, so by hypothesis there exists $a \neq a^{\prime} \in M$ such that $\mathrm{M}\left(a^{\prime}\right)=\mathrm{M}(a)=\{M\}$. Hence a^{\prime} is adjacent to both b and c by Proposition 2.2(i). If $|\mathrm{M}(a)|>1$, then there exists $M^{\prime} \in \mathrm{M}(a) \backslash\{M\}$. Put $F=\mathrm{M}(b c) \cup\{M\}$. Hence there exists $a^{\prime} \in R$ such that $M^{\prime} \in \mathrm{M}\left(a^{\prime}\right)$ and $F \subseteq \mathrm{M}\left(a^{\prime}-1\right)$. Thus $\mathrm{M}\left(a^{\prime}\right) \subseteq \mathrm{D}(b c)$. This shows that $a \neq a^{\prime}$ and a^{\prime} is adjacent to both b and c.

Corollary 3.8 Let R be a ring that has no strongly isolated maximal ideals. Then every vertex of $\Gamma_{2}(R) \backslash J(R)$ is a 4-cycle-vertex.

Proof By Theorem 3.5, no vertex a is an endpoint, so the proof follows from Lemma 3.7.

If a and b are two vertices in $\Gamma_{2}(R) \backslash \mathrm{J}(R)$, then by $\mathrm{c}(a, b)$ we mean the length of the smallest cycle containing a and b. For every two vertices a and b, all possible cases for $c(a, b)$ are given in the following theorem.

Theorem 3.9 Let R be a ring that has no strongly isolated maximal ideals and $a, b \in$ $\Gamma_{2}(R) \backslash \mathrm{J}(R)$.
(i) $\mathrm{c}(a, b)=3$ if and only if $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$ and $a b \notin \mathrm{~J}(R)$.
(ii) $c(a, b)=4$ if and only if $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \notin \mathrm{~J}(R)$, or $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$ and $a b \in \mathrm{~J}(R)$.
(iii) $\mathrm{c}(a, b)=6$ if and only if $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \in \mathrm{~J}(R)$.

Proof (i) We have $\mathrm{c}(a, b)=3$ if and only if $\mathrm{d}(a, b)=1$ and there exists $c \in R$ such that c is adjacent to both a and b, and this holds if and only if $\mathrm{D}(a b) \neq \varnothing$ by Proposition 2.2(i).
(ii) If $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$ and $a b \in \mathrm{~J}(R)$, then there exists $a^{\prime} \in R$ such that $M\left(a^{\prime}\right) \subseteq$ $\mathrm{M}(a)$. Hence b is adjacent to both a and a^{\prime}. So by Lemma 3.7, there is $c \in R$ such that c is adjacent to both a and a^{\prime}. Therefore the path with vertices a, b, a^{\prime}, and c is a cycle with length 4, i.e., $\mathrm{c}(a, b) \leq 4$. Now (i) implies that $\mathrm{c}(a, b)=4$. If $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \notin \mathrm{~J}(R)$, then by Proposition 2.2(i), there exists $c \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$ such that c is adjacent to both a and b. Thus by Lemma 3.7, there is $c^{\prime} \in R$ such that the
path with vertices a, c, b, and c^{\prime} is a cycle with length 4 . The converse follows from Proposition 2.2.
(iii) Inasmuch as $\mathrm{c}(a, b)=6$, then parts (i) and (ii) imply that $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \in \mathrm{~J}(R)$. Conversely, since $\mathrm{M}(a) \cap \mathrm{M}(b) \neq \varnothing$ and $a b \in \mathrm{~J}(R)$, by Proposition $2.2(\mathrm{iv}) \mathrm{d}(a, b)=3$ and this implies that $\mathrm{c}(a, b)>5$. Hence there are vertices c and d such that $R a+R c=R c+R d=R b+R d=R$. By Lemma 3.7, there is $c^{\prime} \in R$ such that c^{\prime} is adjacent to both a and d. Therefore $\mathrm{M}(a) \cap \mathrm{M}\left(c^{\prime}\right)=\varnothing$, so $\mathrm{M}\left(c^{\prime}\right) \subseteq \mathrm{M}(b)$, by hypothesis. Thus $\mathrm{M}\left(c^{\prime}\right) \cap \mathrm{M}(d) \subseteq \mathrm{M}(b) \cap \mathrm{M}(d)=\varnothing$, i.e., c^{\prime} is adjacent to d. Again by Lemma 3.7, there is $d^{\prime} \in R$ such that d^{\prime} is adjacent to both b and c^{\prime}. Thus the path with vertices a, c, d, b, d^{\prime}, and c^{\prime} is a cycle with length 6 , i.e., $\mathrm{c}(a, b)=6$.

As in [3], for distinct vertices a and b in a graph G we say that a and b are orthogonal, written $a \perp b$, if a and b are adjacent and there is no vertex c of G which is adjacent to both a and b. A graph G is called complemented if for each vertex a of G, there is a vertex b of G (called a complement of a) such that $a \perp b$, and that G is uniquely complemented if G is complemented and whenever $a \perp b$ and $a \perp c$, then $b \sim c$ (i.e., b and c are adjacent to exactly the same vertices). By Proposition 2.2(i), for the distinct vertices a and b in $\Gamma_{2}(R) \backslash \mathrm{J}(R), a \perp b$ if and only if $\mathrm{M}(a) \cap \mathrm{M}(b)=\varnothing$ and $\mathrm{D}(a b)=\varnothing$ if and only if $\mathrm{M}(a)=\mathrm{D}(b)$. Thus we have the following propositions.

Proposition $3.10 \quad \Gamma_{2}(R) \backslash \mathrm{J}(R)$ is complemented if and only if $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is uniquely complemented.

Proposition $3.11 \Gamma_{2}(R) \backslash \mathrm{J}(R)$ is complemented if and only if $R / J(R)$ is a zero dimensional ring.

Proof By Lemmas 1.1 and 1.2 we have that $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is complemented if and only if for all $a \in \Gamma_{2}(R) \backslash \mathrm{J}(R), \mathrm{M}(a)$ is an clopen subset of $\operatorname{Max}(R)$, if and only if for all $a \in \Gamma(R), \mathrm{M}(a+\mathrm{J}(R))$ is an clopen subset of $\operatorname{Max}(R / \mathrm{J}(R))$, if and only if $R / \mathrm{J}(R)$ is a zero dimensional ring.

4 Dominating Sets and Complete Subgraphs

In a graph G, a dominating set is a set of vertices D such that every vertex outside D is adjacent to at least one vertex in D. The dominating number of G denoted by $\mathrm{dt} G$ is the smallest cardinal number of the form $|D|$ where D is a dominating set. A complete subgraph of G is a subgraph in which every vertex is adjacent to every other vertex. The smallest cardinal number α such that every complete subgraph G has cardinality $\leq \alpha$, denoted by ωG, is called the clique number of G.

The set of all cardinal numbers of the form $|\mathcal{B}|$, where \mathcal{B} is a base for the open sets of a topological space X, has a smallest element; this cardinal number is called the weight of the topological space X and is denoted by $\mathrm{w}(X)$. The density of a space X is defined as the smallest cardinal number of the form $|Y|$, where Y is a dense subspace of X; this cardinal number is denoted by $\mathrm{d}(X)$. For every topological space X we have $\mathrm{d}(X) \leq \mathrm{w}(X)$; see [8, Theorem 1.3.7].

The next proposition follows from [15, Corollary 3.6].

Proposition 4.1 The following are equivalent for $\Gamma_{2}(R) \backslash \mathrm{J}(R)$.
(i) $\quad \operatorname{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=1$.
(ii) $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is a star graph.
(iii) R is isomorphic to $\mathbb{Z}_{2} \times F$, where F is a field.
(iv) $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is a tree.

Theorem 4.2 The following are equivalent.
(i) $R \nsucceq \mathbb{Z}_{2} \times F$, where F is a field.
(ii) $\quad \mathrm{d}(\operatorname{Max}(R)) \leq \operatorname{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right) \leq \mathrm{w}(\operatorname{Max}(R))$.

Proof (i) \Rightarrow (ii) Suppose that D is a minimal dominating set. For every $a \in D$, take $M_{a} \in \mathrm{M}(a)$. We show that the set $\mathcal{A}=\left\{M_{a}: a \in D\right\}$ is dense in $\operatorname{Max}(R)$. Otherwise, Lemma 1.1 implies that $\mathcal{A} \subseteq \mathrm{M}\left(a^{\prime}\right)$, for some $a^{\prime} \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$. Inasmuch as D is a minimal dominating set, then $a^{\prime} \notin D$ (for if $a^{\prime} \in D$, then by Proposition 4.1, $D \backslash\left\{a^{\prime}\right\} \neq \varnothing$ is a dominating set, and this is impossible). Therefore a^{\prime} is not adjacent to any element of D, a contradiction. Thus \mathcal{A} is dense in $\operatorname{Max}(R)$. This implies that $\mathrm{d}(\operatorname{Max}(R)) \leq|\mathcal{A}| \leq|D|$ for every dominating set D and hence $\mathrm{d}(\operatorname{Max}(R)) \leq$ $\mathrm{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)$. In order to show that $\operatorname{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right) \leq \mathrm{w}(\operatorname{Max}(R))$, suppose $\mathfrak{B}=\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ is a base for the open subsets of $\operatorname{Max}(R)$. By Lemma 1.1 there are $a_{\lambda} \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$ such that $\mathrm{M}\left(a_{\lambda}\right) \subseteq B_{\lambda}$. We claim that $D=\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ is a dominating set. To see this, let $b \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$; then there exists $B_{\lambda} \in \mathfrak{B}$ such that $B_{\lambda} \subseteq \mathrm{D}(b)$. Therefore $\mathrm{M}\left(a_{\lambda}\right) \subseteq \mathrm{D}(b)$, i.e., b is adjacent to a_{λ}. Consequently D is a dominating set. Now $\operatorname{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right) \leq|D| \leq|\mathfrak{B}|$ for every base \mathfrak{B} for open subsets of $\operatorname{Max}(R)$. This means that $\mathrm{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right) \leq \mathrm{w}(\operatorname{Max}(R))$.
(ii) \Rightarrow (i) If R is isomorphic to $\mathbb{Z}_{2} \times F$, where F is a field, then $\operatorname{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=1$. Hence $\mathrm{d}(\operatorname{Max}(R))=1$, and this implies that R is a local ring, a contradiction.

It is well known that $\omega\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=|\operatorname{Max}(R)|$ [15, Theorem 3.9]. Also if $|\operatorname{Max}(R)|$ is finite, $\mathrm{d}(\operatorname{Max}(R))=|\operatorname{Max}(R)|$. Thus we have the following corollary.

Corollary 4.3 If $|\operatorname{Max}(R)|$ is finite, then

$$
\omega\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=\operatorname{dt}\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right)=\mathrm{d}(\operatorname{Max}(R))=\mathrm{w}(\operatorname{Max}(R))=|\operatorname{Max}(R)|
$$

Proof Suppose that $\operatorname{Max}(R)=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$. For any $1 \leq i \leq n$, there is $a_{i} \in R$ such that $\mathrm{D}\left(a_{i}\right)=\left\{M_{i}\right\}$. Hence the set $\left\{\mathrm{D}\left(a_{1}\right), \mathrm{D}\left(a_{2}\right), \ldots, \mathrm{D}\left(a_{n}\right)\right\}$ is a base for $\operatorname{Max}(R)$, i.e., $\mathrm{w}(\operatorname{Max}(R)) \leq|\operatorname{Max}(R)|$. Therefore the proof follows from Theorem 4.2.

Theorem 4.4 Let R be a ring that has no maximal ideal of order 2 . Then the following statements are equivalent.
(i) $\quad \Gamma_{2}(R) \backslash \mathrm{J}(R)$ is not triangulated and the set of centers of $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is a dominating set.
(ii) The set of isolated points of $\operatorname{Max}(R)$ is dense in $\operatorname{Max}(R)$.
(iii) Every intersection of essential ideals of $R / \mathrm{J}(R)$ is an essential ideal in $R / \mathrm{J}(R)$.

Proof (i) \Rightarrow (ii) Since $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ is not triangulated, then by Theorem 3.1, $\operatorname{Max}(R)$ has at least one isolated point M_{0}. By Lemma 1.1 there exists $a_{0} \in \Gamma_{2}(R) \backslash J(R)$ such that $\mathrm{M}\left(a_{0}\right)=\left\{M_{0}\right\}$ and $a_{0}^{2}-a_{0} \in \mathrm{~J}(R)$. Therefore $\mathrm{e}\left(a_{0}\right)=2$, by Theorem 2.5. If we denote the set of centers of $\Gamma_{2}(R) \backslash \mathrm{J}(R)$ by D, we have $D=\{a \in \Gamma(R): \mathrm{e}(a)=2\}$. For every $a \in D$, take $M_{a} \in \mathrm{M}(a)$, and put $\mathcal{A}=\left\{M_{a}: a \in D\right\}$. We claim that $|\mathcal{A}|>1$. To see this, suppose $|\operatorname{Max}(R)|<\infty$; then there exists an isolated maximal ideal $M \in D\left(a_{0}\right)$. So $M(a)=\{M\}$ for some $a \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$. Thus $\mathrm{e}(a)=2$, i.e., $a \in D$ and $M_{a} \in \mathcal{A} \backslash\left\{M_{0}\right\}$. If $|\operatorname{Max}(R)|=\infty$, then there are the distinct maximal ideals $M, M^{\prime} \in D\left(a_{0}\right)$ and $a \in M \cap \mathrm{M}^{\prime} \backslash M_{0}$. Hence $a \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$ and $R a \notin \operatorname{Max}(R)$, consequently, $\mathrm{e}(a)=2$, by Theorem 2.5. This implies that $a \in D$ and $M_{a} \in \mathcal{A} \backslash\left\{M_{0}\right\}$. Now we show that $\mathcal{A}=\left\{M_{a}: a \in D\right\}$ is a dense subset in $\operatorname{Max}(R)$. Otherwise, Lemma 1.1 implies that $\mathcal{A} \subseteq \mathrm{M}\left(a^{\prime}\right)$, for some $a^{\prime} \in \Gamma_{2}(R) \backslash \mathrm{J}(R)$. Since

$$
\operatorname{Max}(R)=\mathrm{M}\left(a_{0}\right) \cup \mathrm{M}\left(a_{0}-1\right) \subseteq \mathrm{M}\left(a^{\prime}\right) \cup \mathrm{M}\left(a_{0}-1\right)
$$

we have $a_{0}-1 \in\left(\mathrm{~J}(R): a^{\prime}\right)$, and Theorem 2.5 implies that $\mathrm{e}\left(a^{\prime}\right)=3$, i.e., $a^{\prime} \notin D$. On the other hand, for each $a \in D$ we have $M_{a} \in \mathrm{M}(a) \cap \mathrm{M}\left(a^{\prime}\right)$, and this implies that a^{\prime} is not adjacent to any element of D, a contradiction. Thus \mathcal{A} is dense in $\operatorname{Max}(R)$.
(ii) \Rightarrow (i) Let $\mathcal{A}=\left\{M_{\lambda}: \lambda \in \Lambda\right\}$ be the set of isolated points of $\operatorname{Max}(R)$. By Theorem 2.5, $\Gamma(R)$ is not triangulated. Consider $D=\left\{a_{\lambda} \in R: \mathrm{M}\left(a_{\lambda}\right)=\left\{M_{\lambda}\right\}\right\}$. By Theorem 2.5, e $(a) \geq 2$ for all $a \in \Gamma(R)$, and $\mathrm{e}\left(a_{\lambda}\right)=2$ for all $\lambda \in \Lambda$. Hence every element of D is a center of $\Gamma_{2}(R) \backslash \mathrm{J}(R)$. Now suppose that $b \in\left(\Gamma_{2}(R) \backslash \mathrm{J}(R)\right) \backslash D$. Since \mathcal{A} is dense in $\operatorname{Max}(R)$, there exists $M_{\lambda} \in \mathrm{D}(b) \cap \mathcal{A}$. Therefore $\mathrm{M}\left(a_{\lambda}\right) \subseteq \mathrm{D}(b)$, which implies that a_{λ} is adjacent to b, i.e., D is a dominating set.
(ii) \Leftrightarrow (iii) follows from [13, Proposition 2.9].

References

[1] S. Akbari, D. Kiani, F. Mohammadi, and S. Moradi, The total graph and regular graph of commutative ring. J. Pure Appl. Algebra 213(2009), no. 12, 2224-2228. http://dx.doi.org/10.1016/j.jpaa.2009.03.013
[2] D. F. Anderson and A. Badawi, The total graph of commutative ring. J. Algebra 320(2008), no. 7, 2706-2719. http://dx.doi.org/10.1016/j.jalgebra.2008.06.028
[3] D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180(2003), no. 3, 221-241. http://dx.doi.org/10.1016/S0022-4049(02)00250-5
[4] D. F. Anderson and P. S. Livingston, The zero-divisor graph of commutative ring. J. Algebra 217(1999), no. 2, 434-447. http://dx.doi.org/10.1006/jabr.1998.7840
[5] I. Beck, Coloring of commutative rings. J. Algebra 116(1988), no. 1, 208-226. http://dx.doi.org/10.1016/0021-8693(88)90202-5
[6] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Amer. Math. Soc 30(1971), 459-466. http://dx.doi.org/10.1090/S0002-9939-1971-0282962-0
[7] R. Diestel, Graph theory. Second ed., Graduate Texts in Mathematics, 173, Springer-Verlag, New York, 2000.
[8] R. Engelking, General topology. Second ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
[9] L. Gillman and M. Jerison, Rings of continuous functions. Graduate Texts in Mathematics, 43, Springer-Verlag, New York-Heidelberg, 1976.
[10] H. R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings. J. Algebra 319(2008), no. 4, 1801-1808. http://dx.doi.org/10.1016/j.jalgebra.2007.02.003
[11] K. Samei, z^{0}-ideals and some special commutative rings. Fund. Math 189(2006), no. 2, 99-109. http://dx.doi.org/10.4064/fm189-2-1
[12] , The zero-divisor graph of a reduced ring. J. Pure Appl. Algebra 209(2007), no. 3, 813-821. http://dx.doi.org/10.1016/j.jpaa.2006.08.008
[13] On the maximal spectrum of semiprimitive multiplication modules. Canad. Math. Bull 51(2008), no. 3, 439-447. http://dx.doi.org/10.4153/CMB-2008-044-8
[14] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings. J. Algebra 176(1995), no. 1, 124-127. http://dx.doi.org/10.1006/jabr.1995.1236
[15] H.-J.Wang, Graphs associated to co-maximal ideals of commutative rings. J. Algebra 320(2008), no. 7, 2917-2933. http://dx.doi.org/10.1016/j.jalgebra.2008.06.020
[16] , Co-maximal graph of non-commutative rings. Linear Algebra Appl. 430(2009), no. 2-3, 633-641. http://dx.doi.org/10.1016/j.laa.2008.08.026

Department of Mathematics, Bu Ali Sina University, Hamedan, Iran and
School of Mathematics, Institute for Research in Fundamental Science (IPM), Tehran, Iran e-mail: samei@ipm.ir

[^0]: Received by the editors August 16, 2012; revised August 14, 2013. Published electronically December 23, 2013.
 This research was in part supported by a grant from IPM (No 89130043).
 AMS subject classification: 13A99.
 Keywords: comaximal, diameter, girth, cycles, dominating set.

