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On the Comaximal Graph of a
Commutative Ring

Karim Samei

Abstract. Let R be a commutative ring with 1. In a 1995 paper in J. Algebra, Sharma and Bhatwadekar
defined a graph on R, Γ(R), with vertices as elements of R, where two distinct vertices a and b are
adjacent if and only if Ra + Rb = R. In this paper, we consider a subgraph Γ2(R) of Γ(R) that consists
of non-unit elements. We investigate the behavior of Γ2(R) and Γ2(R)\J(R), where J(R) is the Jacobson
radical of R. We associate the ring properties of R, the graph properties of Γ2(R), and the topological
properties of Max(R). Diameter, girth, cycles and dominating sets are investigated, and algebraic and
topological characterizations are given for graphical properties of these graphs.

1 Introduction

The study of algebraic structures by way of graph theory has become an exciting
research topic in the last decade. There are many papers on assigning a graph to a
ring. In [5], Beck introduced the idea of a zero-divisor graph of a commutative ring
R with 1. He defined Γ0(R) to be the graph whose vertices are elements of R and in
which two vertices a and b are adjacent if and only if ab = 0. In [4], Anderson and
Livingston introduced and studied the subgraph Γ0(R) whose vertices are the non-
zero zero-divisors, and the authors studied the interplay between the ring-theoretic
properties of a commutative ring and the graph-theory properties of its zero-divisor
graph. The total graph of a ring was introduced in [2] and was also investigated in
[1].

In [14], Sharma and Bhatwadekar defined a graph Γ(R), with elements of R as
vertices and where two distinct vertices a and b are adjacent if and only if Ra + Rb =
R. With this definition, they showed that χ(Γ(R)) < ∞ if and only if R is a finite
ring, where χ(G) is the chromatic number of a graph G. Later, Maimani et al. [10]
characterized the connectedness and the diameter of the graph Γ2(R) \ J(R), where
Γ2(R) is the subgraph of Γ(R) induced by non-unit elements and J(R) is the Jacobson
radical of R. Recently, Wang [15] characterized those rings R for which Γ2(R) is a
forest and those rings R for which Γ2(R) \ J(R) is Eulerian. He found all finite rings
R such that the genus of Γ2(R) (resp., Γ(R)) is at most one. He also studied the
comaximal graph of a non-commutative ring [16]. The goal of this paper is to study
the behavior of Γ2(R) (resp., Γ2(R)\J(R)). Inasmuch as the subgraph of Γ2(R) whose
vertices are in J(R) is the empty graph, some results Γ2(R) are valid for Γ2(R) \ J(R).
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For example, when R is a Gelfand ring,

diam Γ2(R) = diam(Γ2(R) \ J(R)) = min{|Max(R)|, 3}.

In the third section we study cycles in Γ2(R)\J(R) and characterize when Γ2(R)\J(R)
is triangulated or hypertriangulated. We prove that Γ2(R) \ J(R) is a triangulated
graph if and only if Max(R) has no isolated points. Also, when R has no strongly
isolated maximal ideal, every cycle in Γ(R) has length 3 or 4 and every edge of Γ(R)
is an edge of a cycle with length 3 or 4.

It is interesting that some results of this paper for the graph Γ2(R)\J(R) are similar
to the results in [12] for the zero divisor graph of R. But note that these two graphs
usually are not isomorphic (even the number of vertices can be different). In fact if
the zero divisor graph of R is isomorphic to Γ2(R) \ J(R), then R must be a quasi
regular ring, i.e., every element of R is either a unit or a zero divisor.

Throughout this paper, R is a commutative ring, |R| 6= 4, and it is not a local ring
(when R is local, Γ2(R) \ J(R) = ∅). We say R is semiprimitive if ∩Max(R) = (0).
For any ideal I of R and a ∈ R, we set

M(a) = {M ∈ Max(R) : a ∈ M}, D(a) = Max(R) \M(a).

Then the sets M(I) =
⋂

a∈I M(a), where I is an ideal of R, satisfy the axioms for the
closed sets of a topology on Max(R), called the Stone topology (see [9, 7M]). The
operators cl and int denote the closure and the interior in Max(R).

A ring R is called Gelfand (pm-ring) if every prime ideal of R is contained in a
unique maximal ideal. When the Jacobson radical and the nilradical of a ring R
coincide, DeMarco and Orsatti [6] show that R is Gelfand if and only if Max(R) is
Hausdorff and if and only if Spec(R) is normal (in general, not Hausdorff). This class
of rings contains the class of von Neumann regular ring, local rings, zero dimensional
rings, and the rings C(X) of continuous functions.

A maximal ideal M of R is called isolated if {M} is a clopen (closed and open)
subset of Max(R). If R is semiprimitve, M is isolated if and only if M = (e), for some
idempotent e ∈ R (see [13, Theorem 2.6]).

We first need the following lemmas.

Lemma 1.1 Let R be a ring. If A and B are disjoint closed subsets of Max(R), then
there exists a ∈ R such that A ⊆ M(a) and B ⊆ M(a− 1). Furthermore, if A is clopen,
then there exists a ∈ R such that A = M(a), Ac = M(a− 1) and a2 − a ∈ J(R).

Proof There are the ideals I and J such that A = M(I) and B = M( J). Obviously,
I + J = R (for A ∩ B = ∅), so a + b = 1 for some a ∈ I and b ∈ J. Thus A ⊆ M(a)
and B ⊆ M(a− 1). The second part is trivial.

The following lemma is well known.

Lemma 1.2 Let R be a semiprimitive ring. Then R is a zero dimensional ring if and
only if M(a) is a clopen subset of Max(R) for each a ∈ R.
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Proof Suppose that R is a zero dimensional ring, hence R is von Neumann regu-
lar. So for every a ∈ R, there exists b ∈ R such that a = a2b. Therefore M(a) ∪
M(1− ab) = Max(R), i.e., M(a) is clopen. Conversely, suppose that M(a) is clopen.
Inasmuch as J(R) = 0, Lemma 1.1 implies that M(a) = M(e) for some idempotent
e ∈ R. Hence Ra = Re, i.e., R is von Neumann regular.

2 Distance in Γ2(R)

Recall that for two vertices a and b of a graph G, d(a, b) is the length of the shortest
path from a to b. The diameter of G is denoted by diam G and is defined by diam G =
sup{d(a, b) : a, b ∈ G}. The girth of G, gr G, is defined as the length of the shortest
cycle in G (gr G = ∞ if G contains no cycles). The reader is referred to [7] for
undefined terms and notations.

The following fact is [10, Theorem 3.1].

Theorem 2.1 The graph Γ2(R) \ J(R) is connected and diam(Γ2(R) \ J(R)) ≤ 3.

The following proposition characterizes the concept of distance in Γ2(R) \ J(R).

Proposition 2.2 Let a, b, c ∈ Γ2(R) \ J(R) be distinct elements.

(i) c is adjacent to both a and b if and only if M(c) ⊆ D(ab).
(ii) d(a, b) = 1 if and only if M(a) ∩M(b) = ∅.
(iii) d(a, b) = 2 if and only if M(a) ∩M(b) 6= ∅ and ab 6∈ J(R).
(iv) d(a, b) = 3 if and only if M(a) ∩M(b) 6= ∅ and ab ∈ J(R).

Proof (i) c is adjacent to both a and b if and only if M(a)∩M(c) = M(b)∩M(c) = ∅,
if and only if M(c) ⊆ D(ab).

(ii) is evident.
(iii) We note that ab 6∈ J(R) if and only if there exists c ∈ Γ2(R) \ J(R) such that

M(c) ⊆ D(ab). To see this, let M ∈ D(ab). Hence abr + c = 1, for some c ∈ M and
r ∈ R. Therefore M(ab) ∩M(c) = ∅, i.e., M(c) ⊆ D(ab).

(iv) By Theorem 2.1, d(a, b) = 3 if and only if d(a, b) 6= 1, 2, if and only if
M(a) ∩M(b) 6= ∅ and ab ∈ J(R), by (ii) and (iii).

The following theorem characterizes the diameter and the girth of Γ2(R) \ J(R)
according to the number of maximal ideals of R.

Theorem 2.3 Let R be a Gelfand ring.

(i) diam(Γ2(R) \ J(R)) = min{|Max(R)|, 3}.
(ii) If |Max(R)| = 2, then gr(Γ2(R) \ J(R)) = 4 or∞; otherwise, gr(Γ2(R) \ J(R)) =

3.

Proof (i) First we prove that |Max(R)| ≥ 3 if and only if diam(Γ2(R) \ J(R)) = 3.
Suppose that |Max(R)| ≥ 3, and M1,M2,M3 are distinct maximal ideals in R. Inas-
much as Max(R) is Hausdorff, there are ai ∈ R such that Mi ∈ D(ai) and aia j ∈ J(R),
for i 6= j and i, j = 1, 2, 3. Thus M3 ∈ M(a1) ∩M(a2) 6= ∅ and a1a2 ∈ J(R). There-
fore d(a1, a2) = 3 by Proposition 2.2(iv), and this shows that diam(Γ2(R)\J(R)) = 3.
Also by Lemma 1.1, there are a ′

i ∈ Γ2(R) \ J(R), i=1,2,3 such that

Mi ∈ M(a ′
i ) and M(ai) ⊆ M(a ′

i − 1).
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Hence M(a ′
i ) ⊆ D(ai), so M(a ′

i )∩M(a ′
j) ⊆ D(ai)∩D(a j) = ∅, and this implies that

d(a ′
i , a

′
j) = 1. This shows that gr(Γ2(R) \ J(R)) = 3.

Conversely, if diam(Γ2(R)\ J(R)) = 3, then there are a, b ∈ Γ2(R)\ J(R) such that
d(a, b) = 3. By Proposition 2.2(iv), M(a) ∩M(b) 6= ∅ and ab ∈ J(R). So there are
maximal ideals M1,M2,M3 such that

M1 ∈ D(b) \ D(a) and M2 ∈ D(a) \ D(b) and M3 ∈ M(a) ∩M(b).

Thus M1,M2,M3 are distinct maximal ideals in R, i.e., |Max(R)| ≥ 3.
Now suppose that |Max(R)| = 2. Since |R| > 4, we can consider the maximal

ideal M and a, b ∈ M \ J(R). Consequently, d(a, b) > 1, i.e., diam(Γ2(R) \ J(R)) > 1.
Thus diam(Γ2(R) \ J(R)) = 2, and (i) holds.

(ii) By the proof of part (i), |Max(R)| ≥ 3 implies that gr(Γ2(R)\ J(R)) = 3. Now
suppose |Max(R)| = 2, hence R/ J(R) ' F1× F2, where F1 and F2 are fields. If either
|F1| = 2 or |F2| = 2, then gr(Γ2(R)) = gr(Γ2(R/ J(R)) =∞. Otherwise, it is easy to
see that gr(Γ2(R)) = gr(Γ2(R/ J(R)) = 4; see [15, Lemma 3.3].

Corollary 2.4 Let R be a Gelfand ring.

(i) diam Γ2(R) = min{|Max(R)|, 3}.
(ii) If |Max(R)| = 2, then gr Γ2(R) = 4 or∞; otherwise, gr Γ2(R) = 3.

The associated number e(a) of a vertex a of a graph G is defined to be e(a) =
max{d(a, b) : a 6= b}. A center of G is defined to be a vertex a0 with the smallest
associated number. The associated number e(a0) is called the radius of G and is
denoted by ρ(G).

Remark Suppose that R is a commutative semiprimitive ring. By [13, Lemma
2.12], for every a ∈ R, int M(a) = D(Ann(a)). Thus for any ring R we have
(J(R) : a) 6= J(R) if and only if a + J(R) is a zero divisor in R/ J(R), if and only if
int M(a + J(R)) 6= ∅, if and only if int M(a) 6= ∅.

Theorem 2.5 Let R be a ring and a ∈ Γ2(R) \ J(R).

(i) e(a) = 1 if and only if Ra ∈ Max(R) and |Ra| = 2.
(ii) e(a) = 2 if and only if (J(R) : a) = J(R) or Ra 6∈ Max(R).
(iii) e(a) = 3 if and only if (J(R) : a) 6= J(R) and |M(a)| > 1.

Proof (i) Suppose that e(a) = 1. Hence M(a)∩M(b) = ∅, for all b ∈ (Γ2(R)\J(R))
with b 6= a. This shows that M(a) = {M} and |M| = 2.

(ii) and (iii) By hypothesis and Theorem 2.1, e(a) = 2 or 3. We consider two
cases.

Case 1. Suppose that (J(R) : a) 6= J(R). If |M(a)| > 1, then by the above remark
there are M ∈ int M(a) and M ′ ∈ M(a) \ {M}. Therefore by Lemma 1.1, there exists
b ∈ Γ2(R) \ J(R) such that

M ∈ M(b− 1) and
(

Max(R)− int M(a)
)
∪ {M ′} ⊆ M(b).

Thus ab ∈ J(R) and M ′ ∈ M(a) ∩ M(b), and Proposition 2.2(iv) implies that
d(a, b) = 3, i.e., e(a) = 3. Now if |M(a)| = 1, then M(a) = {M}. So for every
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c ∈ M \ J(R), M ∈ M(a) ∩ M(c) and ac 6∈ J(R). Thus d(a, c) = 2, by Proposi-
tion 2.2(iii), i.e., e(a) ≤ 2. Now if Ra 6∈ Max(R), then e(a) 6= 2, hence e(a) = 2.

Case 2. Suppose that (J(R) : a) = 0, then Proposition 2.2(iii) implies that e(a) ≤ 2.
If e(a) = 1, then |Ra| = 2, so a is idempotent. Consequently, 1− a ∈ (J(R) : a), i.e.,
a = 1, and this is impossible. Therefore e(a) = 2.

Corollary 2.6 Let R be a ring and a ∈ Γ2(R).

(i) e(a) = 0 if and only if a ∈ J(R).
(ii) e(a) = 1 if and only if Ra ∈ Max(R) and |Ra| = 2.
(iii) e(a) = 2 if and only if (J(R) : a) = J(R) or Ra 6∈ Max(R).
(iv) e(a) = 3 if and only if (J(R) : a) 6= J(R) and |M(a)| > 1.

Corollary 2.7 Let R be a semiprimitive ring and a ∈ Γ2(R).

(i) e(a) = 1 if and only if Ra ∈ Max(R) and |Ra| = 2.
(ii) e(a) = 2 if and only if a is a non-zero divisor or Ra 6∈ Max(R).
(iii) e(a) = 3 if and only if a is a zero divisor and |M(a)| > 1.

A ring R is called quasi regular if every element of R is either a unit or a zero divisor.
Clearly every von Neumann regular ring is a quasi regular ring, but a quasi regular
ring is not necessary a regular ring (see [11, Proposition 2.3]).

Corollary 2.8 Let R be a ring.

(i) ρ(Γ2(R) \ J(R)) = 1 if and only if R has a maximal ideal of cardinal 2.
(ii) ρ(Γ2(R) \ J(R)) = 3 if and only if R/ J(R) is a quasi regular ring and R has no

isolated maximal ideal.

Otherwise, ρ(Γ2(R) \ J(R)) = 2.

Proof (i) follows from Theorem 2.5(i).
(ii) By Lemma 1.1, Theorem 2.5(iii), and [11, Proposition 2.3(2)], we have

ρ(Γ2(R) \ J(R)) = 3 if and only if for each a ∈ Γ2(R) \ J(R), (J(R) : a) 6= J(R)
and |M(a)| > 1, if and only if R/ J(R) is a quasi regular ring and R has no isolated
maximal ideal.

3 Cycles in Γ2(R) \ J(R)

A graph G is called triangulated (hypertriangulated) if each vertex (edge) of G is a
vertex (edge) of a triangle.

Theorem 3.1 Let R be a ring.

(i) Γ2(R)\J(R) is a triangulated graph if and only if R has no isolated maximal ideals.
(ii) Γ2(R)\ J(R) is a hypertriangulated graph if and only if R has no non-trivial idem-

potent elements.

Proof (i) Let Γ2(R) \ J(R) be a triangulated graph and suppose R has an isolated
maximal ideal M. Hence D(a) = {M}, for some a ∈ Γ2(R)\J(R). By hypothesis there
are b, c ∈ Γ2(R) \ J(R) such that M(a)∩M(b) = M(a)∩M(c) = M(b)∩M(c) = ∅.
This implies that M(b) = M(c) = {M}, a contradiction. Conversely, suppose that
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R does not contain an isolated maximal ideal, and take a ∈ Γ2(R) \ J(R). Therefore
there exist two different points M,M ′ ∈ D(a). By Lemma 1.1 there exists b ∈ R such
that

M ∈ M(b) and M(a) ∪ {M ′} ⊆ M(b− 1).

Thus M(a) ∩M(b) = ∅, i.e., a and b are adjacent. There also exists c ∈ R such that

M ′ ∈ M(c) and M(a) ∪M(b) ⊆ M(c − 1).

This implies that M(c) ⊆ D(ab), i.e., c is a vertex adjacent to both a and b. Therefore
a is a vertex of the triangle with vertices a, b, and c.

(ii) Let Γ2(R) \ J(R) be a hypertriangulated graph. If R has an non-trivial idem-
potent e, then D(e(1 − e)) = D(0) = ∅, so by Proposition 2.2(i), there is no vertex
adjacent to both e and e− 1, a contradiction.

Conversely, let a−b be an edge in Γ2(R)\J(R). Since M(a)∩M(b) = ∅ and Max(R)
is connected, M(a) ∪M(b) 6= Max(R), i.e., D(ab) 6= ∅. Thus by Proposition 2.2(i),
there exists a vertex adjacent to both a and b, i.e., Γ2(R) \ J(R) is a hypertriangulated
graph.

Definition 3.2 It follows from Lemma 1.1 that if M is an isolated maximal ideal,
then M(a) = {M}, for some a ∈ R. In this case, if a is unique, then M is called a
strongly isolated maximal ideal of R.

The most important rings have no strongly isolated maximal ideals. For example,
rings for which 2 is a unit, non-semiprimitve rings (for which M(a) = M(a + r) for
each a ∈ R and r ∈ J(R)), and semiprimitive rings, as follows.

Proposition 3.3 Let R be a semisimple ring, then R has strongly isolated maximal
ideals if and only if R ' F × Z2 × · · · × Z2, where F is a field.

Proof Suppose that R has a strongly isolated maximal ideal M. Inasmuch as M is
semisimple and it is generated by an idempotent, |Max(R)| is finite. Hence R '
F1 × F2 × · · · × Fn, where the Fi are fields. With less generality, we can consider
M = 0 × F2 × · · · × Fn. If for example F2 6= Z2, then there exists a unit u 6= 1 in
F2. Put a = (0, 1, 1, . . . , 1) and a ′ = (0, u, 1, . . . , 1). Then M(a) = M(a ′) = {M}, a
contradiction. So Fi = Zi , for all i ≥ 2. Conversely, M = 0× Z2 × · · · × Z2 is always
a strongly isolated maximal ideal.

Corollary 3.4 Let R be a semiprimitive ring and |Max(R)| <∞. Then R has strongly
isolated maximal ideals if and only if R ' F × Z2 × · · · × Z2, where F is a field.

Theorem 3.5 Let a ∈ Γ2(R). Then a is an endpoint if and only if D(a) = {M},
where M is a strongly isolated maximal ideal.

Proof (⇐) Suppose that D(a) = {M}, and M is a strongly isolated maximal ideal.
If a is adjacent to both b and c, then M(a) ∩M(b) = M(a) ∩M(c) = ∅, i.e., M(b) =
M(c) = {M}. Therefore b = c, by hypothesis.

(⇒) If |D(a)| > 1, then there are the distinct maximal ideals M1,M2 ∈ D(a) and
M ∈ M(a). Set F1 = M(a)∪{M2} and F2 = M(a)∪{M1}. Then there are ai ∈ Γ2(R)
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(i = 1, 2) such that Mi ∈ M(ai) and Fi ⊆ M(ai − 1). Thus M(a) ∩ M(a1) =
M(a) ∩M(a2) = ∅. Hence a is adjacent to both a1 and a2, i.e., a is not an endpoint.
Now suppose that D(a) = {M}, and M is not a strongly isolated maximal ideal.
Hence there are b, c ∈ R such that M(b) = M(c) = {M}. This implies that a is
adjacent to both b and c.

If M is a strongly isolated maximal ideal, then there is an a ∈ R such that D(a) =
{M}, i.e., a is an endpoint. Thus we have the following corollary.

Corollary 3.6 Γ2(R) (also Γ2(R)\J(R)) has an endpoint if and only if R has a strongly
isolated maximal ideal.

Lemma 3.7 Let R be a ring that has no strongly isolated maximal ideals, and let
a, b, c ∈ Γ2(R). If a is adjacent to both b and c, then there exists a 6= a ′ ∈ Γ2(R) such
that a ′ is adjacent to both b and c.

Proof There exists M ∈ M(a). Suppose that |M(a)| = 1. If a2 6= a, then we put
a ′ = a2, otherwise M is isolated, so by hypothesis there exists a 6= a ′ ∈ M such that
M(a ′) = M(a) = {M}. Hence a ′ is adjacent to both b and c by Proposition 2.2(i).
If |M(a)| > 1, then there exists M ′ ∈ M(a) \ {M}. Put F = M(bc) ∪ {M}. Hence
there exists a ′ ∈ R such that M ′ ∈ M(a ′) and F ⊆ M(a ′ − 1). Thus M(a ′) ⊆ D(bc).
This shows that a 6= a ′ and a ′ is adjacent to both b and c.

Corollary 3.8 Let R be a ring that has no strongly isolated maximal ideals. Then every
vertex of Γ2(R) \ J(R) is a 4-cycle-vertex.

Proof By Theorem 3.5, no vertex a is an endpoint, so the proof follows from
Lemma 3.7.

If a and b are two vertices in Γ2(R) \ J(R), then by c(a, b) we mean the length of
the smallest cycle containing a and b. For every two vertices a and b, all possible cases
for c(a, b) are given in the following theorem.

Theorem 3.9 Let R be a ring that has no strongly isolated maximal ideals and a, b ∈
Γ2(R) \ J(R).

(i) c(a, b) = 3 if and only if M(a) ∩M(b) = ∅ and ab 6∈ J(R).
(ii) c(a, b) = 4 if and only if M(a)∩M(b) 6= ∅ and ab 6∈ J(R), or M(a)∩M(b) = ∅

and ab ∈ J(R).
(iii) c(a, b) = 6 if and only if M(a) ∩M(b) 6= ∅ and ab ∈ J(R).

Proof (i) We have c(a, b) = 3 if and only if d(a, b) = 1 and there exists c ∈ R
such that c is adjacent to both a and b, and this holds if and only if D(ab) 6= ∅ by
Proposition 2.2(i).

(ii) If M(a)∩M(b) = ∅ and ab ∈ J(R), then there exists a ′ ∈ R such that M(a ′) ⊆
M(a). Hence b is adjacent to both a and a ′. So by Lemma 3.7, there is c ∈ R such that
c is adjacent to both a and a ′. Therefore the path with vertices a, b, a ′, and c is a cycle
with length 4, i.e., c(a, b) ≤ 4. Now (i) implies that c(a, b) = 4. If M(a)∩M(b) 6= ∅
and ab 6∈ J(R), then by Proposition 2.2(i), there exists c ∈ Γ2(R) \ J(R) such that
c is adjacent to both a and b. Thus by Lemma 3.7, there is c ′ ∈ R such that the
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path with vertices a, c, b, and c ′ is a cycle with length 4. The converse follows from
Proposition 2.2.

(iii) Inasmuch as c(a, b) = 6, then parts (i) and (ii) imply that M(a)∩M(b) 6= ∅
and ab ∈ J(R). Conversely, since M(a) ∩M(b) 6= ∅ and ab ∈ J(R), by Proposition
2.2(iv) d(a, b) = 3 and this implies that c(a, b) > 5. Hence there are vertices c and d
such that Ra + Rc = Rc + Rd = Rb + Rd = R. By Lemma 3.7, there is c ′ ∈ R such that
c ′ is adjacent to both a and d. Therefore M(a) ∩M(c ′) = ∅, so M(c ′) ⊆ M(b), by
hypothesis. Thus M(c ′) ∩M(d) ⊆ M(b) ∩M(d) = ∅, i.e., c ′ is adjacent to d. Again
by Lemma 3.7, there is d ′ ∈ R such that d ′ is adjacent to both b and c ′. Thus the path
with vertices a, c, d, b, d ′, and c ′ is a cycle with length 6, i.e., c(a, b) = 6.

As in [3], for distinct vertices a and b in a graph G we say that a and b are orthogo-
nal, written a⊥b, if a and b are adjacent and there is no vertex c of G which is adjacent
to both a and b. A graph G is called complemented if for each vertex a of G, there
is a vertex b of G (called a complement of a) such that a⊥b, and that G is uniquely
complemented if G is complemented and whenever a⊥b and a⊥c, then b ∼ c (i.e., b
and c are adjacent to exactly the same vertices). By Proposition 2.2(i), for the distinct
vertices a and b in Γ2(R) \ J(R), a⊥b if and only if M(a)∩M(b) = ∅ and D(ab) = ∅
if and only if M(a) = D(b). Thus we have the following propositions.

Proposition 3.10 Γ2(R)\ J(R) is complemented if and only if Γ2(R)\ J(R) is uniquely
complemented.

Proposition 3.11 Γ2(R) \ J(R) is complemented if and only if R/ J(R) is a zero di-
mensional ring.

Proof By Lemmas 1.1 and 1.2 we have that Γ2(R)\ J(R) is complemented if and only
if for all a ∈ Γ2(R) \ J(R), M(a) is an clopen subset of Max(R), if and only if for all
a ∈ Γ(R), M(a + J(R)) is an clopen subset of Max(R/ J(R)), if and only if R/ J(R) is a
zero dimensional ring.

4 Dominating Sets and Complete Subgraphs

In a graph G, a dominating set is a set of vertices D such that every vertex outside
D is adjacent to at least one vertex in D. The dominating number of G denoted by
dt G is the smallest cardinal number of the form |D| where D is a dominating set. A
complete subgraph of G is a subgraph in which every vertex is adjacent to every other
vertex. The smallest cardinal number α such that every complete subgraph G has
cardinality≤ α, denoted by ωG, is called the clique number of G.

The set of all cardinal numbers of the form |B|, where B is a base for the open sets
of a topological space X, has a smallest element; this cardinal number is called the
weight of the topological space X and is denoted by w(X). The density of a space X is
defined as the smallest cardinal number of the form |Y |, where Y is a dense subspace
of X; this cardinal number is denoted by d(X). For every topological space X we have
d(X) ≤ w(X); see [8, Theorem 1.3.7].

The next proposition follows from [15, Corollary 3.6].
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Proposition 4.1 The following are equivalent for Γ2(R) \ J(R).

(i) dt(Γ2(R) \ J(R)) = 1.
(ii) Γ2(R) \ J(R) is a star graph.
(iii) R is isomorphic to Z2 × F, where F is a field.
(iv) Γ2(R) \ J(R) is a tree.

Theorem 4.2 The following are equivalent.

(i) R 6' Z2 × F, where F is a field.
(ii) d(Max(R)) ≤ dt(Γ2(R) \ J(R)) ≤ w(Max(R)).

Proof (i)⇒ (ii) Suppose that D is a minimal dominating set. For every a ∈ D, take
Ma ∈ M(a). We show that the set A = {Ma : a ∈ D} is dense in Max(R). Otherwise,
Lemma 1.1 implies that A ⊆ M(a ′), for some a ′ ∈ Γ2(R) \ J(R). Inasmuch as
D is a minimal dominating set, then a ′ 6∈ D (for if a ′ ∈ D, then by Proposition 4.1,
D\{a ′} 6= ∅ is a dominating set, and this is impossible). Therefore a ′ is not adjacent
to any element of D, a contradiction. Thus A is dense in Max(R). This implies
that d(Max(R)) ≤ |A| ≤ |D| for every dominating set D and hence d(Max(R)) ≤
dt(Γ2(R) \ J(R)). In order to show that dt(Γ2(R) \ J(R)) ≤ w(Max(R)), suppose
B = {Bλ : λ ∈ Λ} is a base for the open subsets of Max(R). By Lemma 1.1 there
are aλ ∈ Γ2(R) \ J(R) such that M(aλ) ⊆ Bλ. We claim that D = {aλ : λ ∈ Λ} is a
dominating set. To see this, let b ∈ Γ2(R) \ J(R); then there exists Bλ ∈ B such that
Bλ ⊆ D(b). Therefore M(aλ) ⊆ D(b), i.e., b is adjacent to aλ. Consequently D is a
dominating set. Now dt(Γ2(R)\ J(R)) ≤ |D| ≤ |B| for every base B for open subsets
of Max(R). This means that dt(Γ2(R) \ J(R)) ≤ w(Max(R)).

(ii)⇒ (i) If R is isomorphic to Z2×F, where F is a field, then dt(Γ2(R)\J(R)) = 1.
Hence d(Max(R)) = 1, and this implies that R is a local ring, a contradiction.

It is well known that ω(Γ2(R) \ J(R)) = |Max(R)| [15, Theorem 3.9]. Also if
|Max(R)| is finite, d(Max(R)) = |Max(R)|. Thus we have the following corollary.

Corollary 4.3 If |Max(R)| is finite, then

ω
(

Γ2(R) \ J(R)
)

= dt
(

Γ2(R) \ J(R)) = d(Max(R)
)

= w
(

Max(R)
)

= |Max(R)|.

Proof Suppose that Max(R) = {M1,M2, . . . ,Mn}. For any 1 ≤ i ≤ n, there is
ai ∈ R such that D(ai) = {Mi}. Hence the set {D(a1),D(a2), . . . ,D(an)} is a base
for Max(R), i.e., w(Max(R)) ≤ |Max(R)|. Therefore the proof follows from Theo-
rem 4.2.

Theorem 4.4 Let R be a ring that has no maximal ideal of order 2. Then the following
statements are equivalent.

(i) Γ2(R)\J(R) is not triangulated and the set of centers of Γ2(R)\J(R) is a dominating
set.

(ii) The set of isolated points of Max(R) is dense in Max(R).
(iii) Every intersection of essential ideals of R/ J(R) is an essential ideal in R/ J(R).
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Proof (i)⇒ (ii) Since Γ2(R)\ J(R) is not triangulated, then by Theorem 3.1, Max(R)
has at least one isolated point M0. By Lemma 1.1 there exists a0 ∈ Γ2(R) \ J(R) such
that M(a0) = {M0} and a2

0 − a0 ∈ J(R). Therefore e(a0) = 2, by Theorem 2.5. If we
denote the set of centers of Γ2(R) \ J(R) by D, we have D = {a ∈ Γ(R) : e(a) = 2}.
For every a ∈ D, take Ma ∈ M(a), and put A = {Ma : a ∈ D}. We claim that
|A| > 1. To see this, suppose |Max(R)| < ∞; then there exists an isolated maximal
ideal M ∈ D(a0). So M(a) = {M} for some a ∈ Γ2(R) \ J(R). Thus e(a) = 2,
i.e., a ∈ D and Ma ∈ A \ {M0}. If |Max(R)| = ∞, then there are the distinct
maximal ideals M,M ′ ∈ D(a0) and a ∈ M ∩M ′ \M0. Hence a ∈ Γ2(R) \ J(R) and
Ra 6∈ Max(R), consequently, e(a) = 2, by Theorem 2.5. This implies that a ∈ D and
Ma ∈ A \ {M0}. Now we show that A = {Ma : a ∈ D} is a dense subset in Max(R).
Otherwise, Lemma 1.1 implies that A ⊆ M(a ′), for some a ′ ∈ Γ2(R) \ J(R). Since

Max(R) = M(a0) ∪M(a0 − 1) ⊆ M(a ′) ∪M(a0 − 1),

we have a0 − 1 ∈ (J(R) : a ′), and Theorem 2.5 implies that e(a ′) = 3, i.e., a ′ 6∈ D.
On the other hand, for each a ∈ D we have Ma ∈ M(a)∩M(a ′), and this implies that
a ′ is not adjacent to any element of D, a contradiction. Thus A is dense in Max(R).

(ii) ⇒ (i) Let A = {Mλ : λ ∈ Λ} be the set of isolated points of Max(R). By
Theorem 2.5, Γ(R) is not triangulated. Consider D = {aλ ∈ R : M(aλ) = {Mλ}}.
By Theorem 2.5, e(a) ≥ 2 for all a ∈ Γ(R), and e(aλ) = 2 for all λ ∈ Λ. Hence every
element of D is a center of Γ2(R) \ J(R). Now suppose that b ∈ (Γ2(R) \ J(R)) \ D.
Since A is dense in Max(R), there exists Mλ ∈ D(b) ∩ A. Therefore M(aλ) ⊆ D(b),
which implies that aλ is adjacent to b, i.e., D is a dominating set.

(ii)⇔ (iii) follows from [13, Proposition 2.9].
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