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1. Introduction

This paper is concerned with a class of singular elliptic partial dif-
ferential equations related to the operator of Weinstein's generalized
axially symmetric potential theory (GASPT) [1, 2] which has numerous
applications.

Let Bi denote the operator

82u a., du

sometimes referred to as Bessel's operator. The <x{ are arbitrary real constants.
Our main result consists of explicit formulas for fundamental solutions in the
large for arbitrary iterates (La-\-A?V, s = 1, 2, • • •, of the operator La-\-X

i

where

(1-1) La^^Bt

with arbitrary real constant X 2g 0. These fundamental solutions represent
the potential of a "ring of sources" in Weinstein's spaces of "fractional
dimension" [1] and are related to hypergeometric functions of several
variables (see Section 3).

If the first m [rn 5: 0) components xt of the w-vector a are zero then the
operator La may be written

L ^y — +k A K
8>

,-=i dx\ <=1 xm+i 8xm+i
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where the integers I and m satisfy l+m = n ^ 2, 1 ^ / ^ M , 0 £J m < W,

and the components kt of the J-vector h are arbitrary real numbers. "^ or
I = 1, Lk is precisely Weinstein's GASPT operator. By renumbering of the
independent variables it is seen that (1.1) and (1.2) are equivalent and for
certain conveniences in the statement of results we deal henceforth with (1.2).

The operator Lk is elliptic except for xm+i = 0, 1 ̂  i ^ I if the cor-
responding k( is non-zero. We will restrict our attention to the hyper-octant
where xm+1 > 0, • • •, xn > 0.

The results presented here generalize those of Weinacht [3] to which
they reduce by putting 1=1. For information concerning the many ap-
plications of these operators (primarily for I = I), see Weinstein [4, 5] and
the references given there. For the less studied case I > 1, see also Kapile-
vich [6, 7] for mean value theorems for s = 1 and Gilbert [8] and Gilbert
and Howard [9] who apply Bergman's integral operator method to the
equation Lk[u]+X*u = 0 (s = 1) for n = I = 2, kx > 0, k2 > 0 with
X = 0 in [8] and X > 0 in [9]. Fundamental solutions have been constructed
for the hyperbolic counterpart of (1.1) (put t = ixn as a new variable) by
Stellmacher [10] (see also Lagnese [11]) but these are not valid in the
large. Fox [12] considered the singular Cauchy problem for the hyperbolic
counterpart of La[u] = 0 (see also Copson and Erdelyi [13]).

The results presented here were announced in Weinacht [19].

2. Preliminaries

Let <p be any C2s function (i.e. possessing continuous partial derivatives
of order 2s) in some neighborhood of the point b with bm+1 > 0, • • •, bn > 0.
The residue (at the point b with respect to the operator L = (Lk-\-X*)s)
of a function u is the functional defined on the set of such functions <p by

(2.1) lira f M[u,(p]ds

where M is a bilinear differential operator of order 2s—1 arising from the
Green's Identity

(<pL[u]— uL*[<p])dy = M[u,(p)dS
JG he

in which L* is the formal adjoint to L. By a fundamental solution in the
large of (Lk-

s
rP)s with pole b is meant a function E = E(x, b) such that

(as a function of x) on the positive hyper-octant

P = {(xi> • • •> xm, zm+i, • • •> xn) : xm+1 > 0, • • •, xn > 0}:

1) £ is a classical solution of (Lfc-(-A
2)sM = 0 except at b and
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2) E has residue cp{b). In addition our fundamental solutions remain
defined on the boundary of P.

It is easily seen that a fundamental -solution E as defined here is
necessarily locally integrable (absolutely integrable over compact subsets
of P) and is equivalent to the usual definition (John [14; p. 274]) so that
L[E] = d, 6 denoting Dirac's delta functional defined on testing functions
with support contained in P. i

We will use in a later section the following simple lemma (see Wemacht
[3]) about fundamental solutions:

LEMMA: Let A be a linear elliptic operator te/ith C°° coefficients in the
hyper-octant P such that A is a product A = AtA2 of operators A1 and A2

satisfying the sathe conditions^ as A and of orders 2tx and 2£2<) respectively.
Suppose that for all points in P, except for the single point b, a function E is
C°° and A%[E] = E^ where Ex is a fundamental splution in the large jof Ax

with pole b. Suppose further that for every derivative D2*^-1 E of order %t2— 1

lim Ix-b]"-1 D2t^[E] = 0.

Then E is a fundamental solution in the large of A with pole b.

3. The fundamental solutions
i

In (3.1) through (3.(5) we give explicit formulas for fundamental
solutions in the large of (Lk-\-k

2)3 with pole b. By renumbering of the
independent variables all possible Values of the vector parameter k are
covered. Verifications! are given in subsequent section^.

In addition to the obviqus use of the usual vector notations we rnake
the following conventions. It will be convenient to consider two subsets
of the / "singular" variables xm+1, • • -,xn: (1) the #(0' <J <f ^ /) J'positive
singular" variables xm+1, • • -^xm+g with corresponding positive parameters
kx, • • •,ka and (2) the remaining r (0 i^,r f=^ I) "singular',' variables
arm+8+1, • • -,xn with corresponding parameters kg+1, • • •,kl (kt 5S 1 for
<7-fl ^LikLl). Either of these subsets could be empty but not both
( !< : / = q+r). Furthermore, .let •' ' , ;.

11*11=2*.' 2£ = n-H|4||-2s, 2p* = n+ \\k*\\~2s>

where k* = (klt • • •, kQ, 2-kq+1, • • •, 2 - * , ) ,

A (k, sy n, I) —
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B(k, s, n, 1) =

C{k,s,n,l) =
^\r(s)

H(k, s,n,l) = ("••• f V 2 p s i n * ' - 1 6X • • • s i n * ' - ^ , dd1 • • • ddu
Jo Jo

I(k, s,n,l) = ("'••• V a'2v log a s i n * ' - 1 ^ • • • s i n * ' - ^ ^ • • • ddt,
Jo Jo

J(k, s,n,l) = ("••• f" N p{Xa)a-v s i n ^ 1 ^ ! • • • s i n * ' - 1 ^ ^ • • • ddt,
Jo Jo

[
m l -| J

I (*,-&.)a+ 2 ( 4 + 1 + t . ~ ^ + A , + 1 cosfl.) .
1=1 1=1 J

By Nv is denoted the Neumann function of order p [15; p. 16] and F
denotes the gamma function.

The formulas are
CASE A X : X = 0, kx > 0, • • -, kh > 0; p # 0, - 1 , - 2 , • • •.

(3.1) ^ ( A , s, », /) = 4 (A, s, n, l)H{k, s, n, I).

CASE B X : A = 0, ^ > 0,^ • -, kx > 0; p = 0, — 1, —2, • • •.

(3.2) E%{k, s, n, I) = B(£, s, «, /) /(*, s, n, I).

QASE CX: A > 0, .kx > 0^ • • -, kt > 0.

(3.3)- F[k, s, n, I) = C(k, s, n, l)J{k, s, n, I)

C A S E A2: A = 0, kx > 0, • • •, ka > 0, ^ f f + 1 ^ 1, • • •, kz ^ 1;

p* ^ 0 , - 1 , - 2 , • • • .

- ^ t - 1 ) • - • ( - 4 Ex{k*,S,n,l)

CASE B2: I = 0, kx > 0, • • -, kq > 0, ka+1 <L 1, • • • kx <: 1;

^* = 0, - 1 , - 2 , • • •.

bm+g+1f \bj

C A S E C 2 : A > 0, ^ > 0, • • •, kQ > 0, ka+1 ^l,'-- -, kf^ 1.

bm+Q+1/ \bj
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The formulas (3.1) through (3.3) represent the potential of a "poly-
ring of sources" in a "fractional dimensional" space (see Weinstein [1])
of (n-\-||£||)-dimensions. Specifically consider the Case Ax with each kt a
positive integer and M+| |&| | > 2s. Let f and B be («-)-||&||)-dimensional
vectors, f = {xlt x2, • • •, xm, f\ • • •, f ) a n d £ = (bt, b2, • • •, bm, B\ • • •, 6l),
where the £* and B' are vectors of dimension kt-\-\ and xm+i = |
* = 1, 2, • • -, /.

One obtains the potential of the poly-ring

from the fundamental solution of the iterated Laplace operator with pole
8 in («-|-||fc||)-space (see e.g. [17; p. 44])

by integration over R

which upon simplification yields precisely (3.1) now meaningful also for
non-integral ki. The Cases B1 and Cx are similar. Formulas (3.4) through
(3.6) then follow from the Correspondence Principle fsee Section 6). It is
observed that the Cases A and B may be obtained by letting X tend to zero
in the singular part of the functions in case C.

For I = 1 these fundamental solutions reduce to the corresponding
ones given in Weinacht [3] which in turn were generalizations of the
fundamental solutions of Weinstein [1] and Diaz and Weinstein [16] in
the case of GASPT.

It is emphasized that the formulas given here apply when all variables
are "singular" variables (m = 0, I = n) as in

a 8
(3.7) uxx+uVy+ - «.+ - uy+)?u = 0.

x y
Moreover the subcases 1 and 2 are not mutually exclusive. For example,
in (3.7) i f A > 0 , 0 < a ^ l and 8 ^ 0 then Case C2 applies with q = 0
or q = 1. If a. = 0 and 0 < 8 < 1 then one can obtain fundamental solutions
in four ways: (1) m = I = q = 1, r = 0; (2) m = / = r = 1, q = 0;
(3) m = 0, q.= r = 1, / = 2; (4) m = q = 0, /•;== r = 2. Of course the
various formulas need agree only in their singular parts (see John [14]).

The fundamental solution (3.1) can be Expressed in terms of "hyper-
geometric functions of several variables. Put xi =• sin2 (0J2) in (3.1) and let
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(3.8) «, = (±bm+lxm+l)-h \x-b\, l ^ i ^ l

to obtain

2l~m\x--b)il'H{k,s, n,

= r
Joo Jo ' L i=i

so that in terms of the function FA of Lauricella [18; p. 115] we have

Ex(k, s, n, I) = A'(k, s, n, I) \x-b\-™

where

In case n = 2, the function FA of Lauricella becomes the function F2

of Appell for hypergeometric functions of two variables [18].
The behavior of FA in (3.9) for x near b (i.e. for each e, near zero)

does not seem to be available in the literature and so our verification in
Section 4 investigates the corresponding integral directly. Similar remarks
apply to (3.3), (3.4) and (3.6).

4. The verification for E^k, I, a, I)

By differentiation and a subsequent integration by parts one sees
that for s = 1, (3.1) is a solution of Lk[u] = 0 at all points in the hyper-
octant P except at the pole b. Introduction of the variables tt = s~x sin (0t/2)
in (3.1) with c, as in (3.8), i — 1, 2, • • •, I yields for / = 1, 2, • • •, n as,a;
tends to b

(4.1)

— Ex{k, I, n, I) = (2-n~\\k\\)(x)-b,)\x~b\-«{bm+1xm+1)-<
k^

lie,/•l/Cj [lie,
• • { b n x „ ) - ( * ' / « A ( k , l , n , l ) \ • • • ] [ 1 + 1

Jo Jo

and in fact o(\x^b\l~n) is identically zero for 1 < /' ^ m. As a; tends to b
the integral in (4.1) tends to
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as is easily verified by transforming to polar coordinates and evaluating
the resulting integrals of beta-function type. Now the residue is readily
evaluated to be

lim <p ds = <p(b).

With this the verification in this case is complete.

5. The verification for F(k, I, n, I)

Again by direct computation it is seen that for s = 1, (3.3) is a solution
of Lk[u]-\-Xl = 0 at all points in the hyper-octant P except at the pole.
By use of the series expansion of the Neumann function it is seen that the
highest order singularity of F(k, I, n, 1) is Ex{k, 1, n, I). More precisely
(see [3; equa. (5.3), (5.4)]) as x tends to b

F(k, 1, n, I) = E^ky, 1, n, l) + o(E1(k, 1, n, I))

and the only contribution to the residue (with respect to Lk-\-A?) is due
to E^k, 1, n, I). But the residues with respect to Lk and Lk-\-7? are identical
and so our verification is complete.

6. The verification in the general case

The proof for F(k, s, n, I) in (3.3) is by induction in s, the order of the
iteration. By Section 5 the assertion is true for s = 1.

Direct computation with an integration by parts shows that, except
at the pole,

{Lk+??)F(k, s+l, n, I) = F(k, s, n, I)

for every positive integer s. Moreover

d
(6.1) F{k, = \A.C(k,s+l,n,l)\

• ("•••{ 'T Nv{),a)a-1I'{xl~5lbl) s in**-1 d1--- s i n * ' - 1 0,<*0t • • • ddt
Jo Jo

^ c o n s t . [F(k,s,n,l) + 1]

wliere "donst." is independent of x in a sufficiently small' neighborhood
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of the pole. Here 6{ = 1 for 1 £S i 5S m and (̂  = cos 6{ for w + 1 ^i ^n.
Because of the behavior of the fundamental solution F(k, s, n, I) near the
pole [14; p. 288] we have from (6.1)

a
lim \x-b\n-x — F(k, s+1, n, I) = 0.

Now the induction proof is completed by taking Ax = (Lk-\-h
2)s and

A2 = Lk-\-)? in the Lemma of Section 2.
The proof for (3.1) and (3.2) is similar and involves two cases depend-

ing on the value of p. An alternate proof for s > 1 (now that the verification
is complete for (3.3)) can be based on the fact that as X tends to zero the
singular part of F(k, s, n, 1) tends to Ex(k, s,n,l) for p ^ 0, — 1, — 2, • • •
and E2(k, s, n, I) for p = 0, —1, —2, • • •. In fact, for s = 1, this procedure
in reverse was used in the previous section.

The subcases A2, B2 and C2 are now verified by use of the following
Correspondence Principle:

A function u is a solution of (Lk*-\-A2)s[u] = 0 if and only if
v = a4~+a+i • • • ^m*1 « is a solution of (Lj.+A2)^ = 0.

This principle is an immediate consequence of the identity

which is obtained by a repeated application of the identity upon which
the Correspondence Principle of GASPT (Weinstein [1]) is based.

By what we have already proved F(k*, s,n, I) is a solution of
(Lk,-\-P)s[u] = 0 except at the pole. Then from the Correspondence
Principle F*(k,s,n,l) is a solution of (Z,J.+A2)S[M] = 0 except at the
pole. Moreover, the residue of F*{k, s, n, 1) (with respect to [Lk-\-l

2)s) is
identical to the residue of F(k*, s, n, I) (with respect to (Z,jfc»+A2)s). From
this the assertion follows. The cases of E2 and Et are similar. Note the
restriction kt ^ 1 rather than ki < 2, q-\-l ^ i ^ I, is made solely to insure
that the fundamental solutions remain defined on the singular hyperplanes.

7. Concluding remarks

It is implied by some writers that the fundamental solution given in
[1] could be obtained by a Fourier transform. However, as the existence of a
fundamental solution in the large is not known a priori, it seems a verifica-
tion of the resulting formula is necessary. The same remark applies to the
present paper where a complete verification is given.

Finally let us note that equations such as those considered here are
also referred to as degenerate elliptic equations (see, e.g., Keldysh [20]).
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