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We develop a general framework to describe the cubically nonlinear interaction of
a degenerate quartet of deep-water gravity waves in one or two spatial dimensions.
Starting from the discretised Zakharov equation, and thus without restriction on spectral
bandwidth, we derive a planar Hamiltonian system in terms of the dynamic phase
and a modal amplitude. This is characterised by two free parameters: the wave action
and the mode separation between the carrier and the sidebands. For unidirectional
waves, the mode separation serves as a bifurcation parameter, which allows us to fully
classify the dynamics. Centres of our system correspond to non-trivial, steady-state
nearly resonant degenerate quartets. The existence of saddle-points is connected to the
instability of uniform and bichromatic wave trains, generalising the classical picture of
the Benjamin—Feir instability. Moreover, heteroclinic orbits are found to correspond to
discrete, three-mode breather solutions, including an analogue of the famed Akhmediev
breather solution of the nonlinear Schrédinger equation.
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1. Introduction

The linear theory of water waves, developed and refined over the course of the 19th and
early 20th centuries, has endured by virtue of its simplicity, elegance and utility. When
the governing equations are linearised, waves may be superposed to create the myriad
complex patterns observed on the surface of the sea. The absence of interaction among
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such waves leads, however, to an inability to explain certain properties of ocean wave
fields, particularly if these waves are steep or the time scales considered are long.

This interaction may occur between a wave and itself, as discovered by Stokes (1847), or
as a mutual interaction between different waves. A natural way to think about such weakly
nonlinear interactions is as occurring between Fourier modes, each of which represents
a periodic wave train (or plane wave) with a distinct frequency, amplitude and phase.
When considering gravity waves in deep water, the fundamental interaction is between
four such Fourier modes, which may or may not be distinct. This fact is not obvious a
priori, as it depends on the possibility of resonance between modes and therefore on the

dispersion relation of the problem. The deep-water dispersion relation w? = g|k| between
radian frequency w and wavenumber vector k provides a geometric constraint which
means resonance is possible for cubic (or higher) nonlinearity. This pioneering discovery
by Phillips (1960) soon became the object of intense study, with work to elucidate its
consequences for everything from wave spectra (Hasselmann 1962) to the evolution of
uniform wave trains (so-called Stokes waves) (Benjamin & Feir 1967; Zakharov 1968).

One of the most remarkable early results was the finding that initially uniform wave
trains are unstable, and tend to disintegrate into wave groups — known as modulational
or Benjamin—Feir instability after Benjamin & Feir (1967). Indeed, uniform wave trains
are often difficult to produce experimentally, a fact attributed to this instability. The
perturbations required to start the process of disintegration are small-amplitude sidebands
or Fourier modes to either side of the plane wave. Interaction between the modes
transfers energy to the sidebands, which grow at the expense of the plane wave (or
carrier) and distort the pattern on the free surface. Shortly after the discovery of this
instability, Zakharov (1968) derived a simplified equation governing the evolution of such
unidirectional wave groups from the Hamiltonian formulation of the water wave problem,
provided the wave modes are not widely separated in Fourier space. This nonlinear
Schrodinger equation (NLS) was then used to recover Benjamin and Feir’s criterion,
specifying which ranges of sideband wavenumbers and carrier steepness give rise to
instability.

The nonlinear Schrodinger equation has also received considerable recent attention
in connection with the deterministic and stochastic modelling of extreme waves, large
wave crests which appear without warning on the surface of the sea (a recent review of
progress is given by Onorato & Suret 2016). The temporally or spatially localised exact
solutions of the NLS, called ‘breathers’, are of particular importance to our understanding
of extreme waves. Their recent experimental observation (Chabchoub er al. 2014) make
them an attractive model to generate extreme waves in the wave flume and shed light on the
behaviour of such waves in the ocean. Indeed, each breather is a particular manifestation
of the underlying Benjamin—Feir instability for special initial conditions.

The success of the NLS as a simplified model equation naturally engendered interest
in its agreement with more general water wave equations. The NLS breather solutions,
for example, were found to be quite robust when compared to numerical solutions of the
Euler equations by Slunyaev & Shrira (2013), who also gave an overview of previous
work in this vein. The Benjamin—Feir stability threshold derived from the NLS has
also been re-examined by Crawford ef al. (1981), who sought to remove the restriction
to small mode separation. However, the route to obtaining an instability criterion in
their work remained one of linearisation and the derivation of an eigenvalue criterion.
The smallness assumptions intrinsic to linear stability analysis mean that it is limited
to describing only the initial stages of evolution around particular exact solutions. In
this setting, the eigenvalues of the linearised system govern the growth rate of initially
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small disturbances, whose subsequent evolution can be captured by numerical simulation.
However, a numerical treatment has the potential to obscure fundamental, underlying
mechanisms, particularly in cases with many (ostensibly independent) parameters. For
example, computing the evolution of a carrier and two sidebands requires the specification
of eight parameters: two wavenumbers k,, kp, (the third is given from the resonance
condition 2k, = kj, + k.), three wave slopes €., €5, €., and three phases 6,, 6, and 9.
We aim to present a unified theory of the cubically nonlinear interaction of three waves
in deep water, which generalises the Benjamin—Feir instability. Our starting point, like
that of Crawford et al. (1981), is the reduced Zakharov equation (ZE), which is free from
any restrictions on mode separation. Indeed, the nonlinear Schrédinger equation itself,
as well as later generalisations due to Davey & Stewartson (1974) or Dysthe (1979), can
all be derived as narrowband limits of the ZE (see Stiassnie 1984; Gramstad & Trulsen
2011). After suitable transformations, the interaction of three wave modes satisfying
2k, = kp + k. can be recast as a planar Hamiltonian dynamical system. Phase-plane
analysis of this system allows for a complete description of the dynamics for all times
and arbitrary initial conditions: these initial conditions are reduced to specifying a single
‘dynamic phase’ and a parameter specifying the distribution of the wave action among the
three modes. The mode-separation distance plays the role of a bifurcation parameter in the
problem.

With this simplification, we are able to fully classify the dynamics of such ‘degenerate
quartets’ of unidirectional waves. Fixed points in the phase plane correspond to
steady-state near-resonant cases of the sort found by Liao, Xu & Stiassnie (2016), and
heteroclinic orbits are seen to correspond to a variety of discrete breather-type solutions.
We obtain general instability results for uniform and bichromatic wave trains as criteria
for the existence of fixed-points, and show that the well-known results of linear stability
analysis can be recovered. In what follows, we first present the reformulation of the
discrete Zakharov equation for a degenerate quartet of waves in § 2. In § 3, we classify the
fixed points and phase-portraits, using mode separation as a bifurcation parameter. The
nonlinear stability of wave trains is considered in § 4, and special, heteroclinic solutions
are discussed in § 5. Finally, a discussion of our results is presented in § 6. Appendix A
contains some simplified expressions for integral kernels used in computations, while
Appendix B discusses the comparison of the Zakharov equation and NLS models.

2. The Zakharov equation for a degenerate quartet of waves

Investigating third-order wave—wave interaction on deep water without a bandwidth
restriction means that our starting point will be the reduced Zakharov equation:

N
dB, "
i = > :lTnpq,SZ; e 4w B* BB, n=12,...,N, 2.1)

p-q,r=

derived by Zakharov (1968), and in Hamiltonian form by Krasitskii (1994), and here
written in a convenient discrete formulation. The physics of the water-wave problem are
contained in the rather lengthy kernels T}, = T'(ky, kp, kg, k). We use (Sf’,lr, to denote a
Kronecker delta function:

1 fork,+k,=ky+k,

59 =
" 0 otherwise

(2.2)
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and Apgr = @y + wp — wy — w, to denote the frequency detuning (a measure of departure
from exact resonance). Throughout,

wr = glky| (2.3)

is the linear dispersion relation for gravity waves in deep water.

The simplest non-trivial interaction is between three waves in deep water k,, k, and
k., where one wave is counted twice to satisfy the resonance condition 2k, = kj + k..
Indeed this case — termed the ‘degenerate quartet’ — corresponds to the Benjamin—Feir
instability (see Yuen & Lake 1982 or Mei, Stiassnie & Yue 2018, Ch. 14.9), where mode
k, is interpreted as a ‘carrier wave’ and modes k;, and k. as ‘sidebands’. The resulting
system of ordinary differential equations for a degenerate quartet has the same form, albeit
with different coefficients, as the one originally derived by Benney (1962).

Rather than handle three complex equations, it is a convenient first step towards
simplification to write the discrete equation in terms of amplitude and phase variables
(see e.g. Craik (1986) and references therein). The equations then become

d|By| .
5 = 2TuabelBal By 1Bel sin(Baave), (2.4a)
d|By| .
—q =~ TaabelBal|Be $in(Baao), (2.4D)
d|B.| .
o =~ TaabelBal*|By| $in(Oaave), (24c)
do T b
o = Tu- | ;“lg |Bal* BB | cos(Baabe) (2.4d)
do, Taab
o= g“|§ |Bal* By |Be| €08 (Gaabe) (2.4¢)
dé. T wab
= == | Bi“‘|§ |Bal*|By||Bc| 08 (Baabe) (2.4f)

where 0,45 = Agabet — 260, + 0 + 6, 1s called the dynamic phase. Note the additional
factor of two appearing in the equations for |B,| and 6, because the resonance condition
2k, = kjp + k. can be satisfied for either the tuple (k,, k4, kp, k) or (ky, ky, k¢, kp).

In (2.4d)—(2.4f),

=BT, +2 ) |Bj*Ty. (2.5)
J#E
where we use an abbreviated notation for the symmetric kernels: T; = Ty, Ty = Ty =

Tijii.

”The next significant simplification relies on the observation that although there
are ostensibly three distinct phases in the equations governing the degenerate quartet
(2.4a)—(2.4f), they occur only in the single combination 26, — 6, — 6., which makes it
possible to drop subscripts and write 6 and A in place of 6,45 and Aqpe Without risk of
confusion. We can further exploit this fact to combine (2.4d)—( 2.4f) into a single equation
for the dynamic phase:

o |Bel|Bal*  1Byl|Bal?
— =A42I, =Ty — I+ Taane | 41Bp||Bc| — -

” 1B, .| )cos(@). (2.6)

Equations (2.4a)—(2.4c) and (2.6) now form an autonomous system of ordinary
differential equations. It is known that this system of equations admits periodic solutions
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which are given in terms of Jacobi elliptic functions, see Shemer & Stiassnie (1985). We
shall see that generic solutions are indeed periodic, though we shall focus our attention
principally on special, non-periodic solutions. Moreover, we can easily recover the
individual phases of the Fourier modes and employ these to reconstruct the leading-order
free surface.

The system of (2.4a)—(2.4¢) and (2.6) admits the following conserved quantities:

Bal* + 1By |* + |Bc|* = A, 2.7)
the total wave action, and
Byl?  |B.?
B 1B _ 08
A A

the wave-action difference in the two sidebands. These conserved quantities allow us
to further reduce the number of parameters by introducing a normalised wave-action
variable n = |B,|*/A, which by (2.7), must take values between 0 and 1. The amplitudes
may then be rewritten in terms of n and « as |B,|? = An, IBp|? = A(1 — n+ «)/2 and
Bl* = A1 —n — @) /2.

In terms of the two variables n and 6, we find that the system can be described by the
Hamiltonian:

H®,n) = —ATuapc2ny) (1 —n)* — a” cos(f) — (A +Af20)n — — (2.9)

with
0" _ 1 _our (1 — )2 — a2sin(0) (2.10)
—_— = — = — — n .
EY: dr aabel] n ass ’
OH  do 1+2n% -3 —a?
28 = 2 2 Avave + AS20 + A2 + 2AT g — 2T cos(0). (2.11)
an  dr (1—-n)?—a?

The two new coefficients are
20 =2[Tp(1 + ) + Tge(1 — )] — %[Tb(l +a) + Te(l —a)] — 2Ty, (2.12)
21 =2(Ta + Tpe) — 4(Tap + Tae) + 5 (Tp + To). (2.13)

Such a Hamiltonian approach to the three-wave discretisation of the nonlinear Schrodinger
equation was first explored by Cappellini & Trillo (1991), Trillo & Wabnitz (1991) in the
context of optics, and our Hamiltonian (2.9) can be shown to reduce in the narrowband
limit to one analogous to that presented therein.

A final simplification of the system can be achieved by imposing an equidistribution of
wave action among the sidebands, i.e. « = 0. Under this assumption, (2.10) and (2.11), as
well as the Hamiltonian (2.9), become

dn .
T 2ATapen (1 — ) sin(0), (2.14)
do
m =A+AR20+A21n + 2AT 4apc (1 — 21) cos(0), (2.15)
H(O,n) = —2AT4apen(1 — n) cos(9) — (A + AS20)n — — T (2.16)

In subsequent computations, we shall normalise all wavenumbers by the carrier
wavenumber k,, and all frequencies by the carrier frequency w,, which is equivalent
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to setting the gravitational acceleration g = 1. For the unidirectional cases considered,
we shall also explicitly specify our degenerate quartets in terms of mode separation
p as follows: k, =[1,0], kp =[1 —p,0] and k. =[1 +p, 0], where 0 <p < 1. We
henceforth drop the bold-script and write k; for the wavenumbers, to emphasise that these
are scalars. Indeed, for unidirectional waves in deep water, it is possible to significantly
simplify the kernels, as shown by Dyachenko, Kachulin & Zakharov (2017), Kachulin,
Dyachenko & Gelash (2019) and detailed in Appendix A.

The wave action A of the three-mode system remains a free parameter and the
conservation law (2.7) makes it clear that A may be ‘distributed’ among the three modes
in various configurations. The relationship between the complex amplitudes B; of the
Zakharov formulation and the amplitude of the free surface displacement (e.g. (14.5.5)
of Mei et al. 2018, § 14.5) makes it possible to interpret A in terms of the carrier steepness,
which is sometimes convenient. If only the carrier wave is present,

2P 2n2gll2e2
A= |Ba|2 — » = k5/2 , 2.17)
a a

where a is the surface-wave amplitude and € = ak, is the wave slope.

Aside from the wave action A, the system (2.14) and (2.15) contains a further free
parameter: the separation between the Fourier modes p. Together, these can be used to
determine the values of all coefficients in the equation.

3. Hamiltonian dynamics in the phase plane

The Hamiltonian dynamical system (2.14) and (2.15) describes fully the nonlinear
dynamics of three interacting deep-water waves. We can gain both qualitative and
quantitative understanding of this system via phase-plane analysis, where the phase space
is the surface of the truncated cylinder {(#,n) | —m <0 < 7m,0 <n < 1}.

3.1. Fixed points

The first step in unravelling the dynamics is to consider fixed points of our system. The
trajectories, corresponding to solutions of the degenerate quartet with particular initial
conditions, occupy the level curves of the Hamiltonian (2.16). We find that fixed points of
(2.14) and (2.15) occur in four classes: n = 0 or 1 and & = 0 or £7. The upper and lower
boundaries n = 1 and n = 0 correspond to a single wave train and a bichromatic wave
train, respectively (recall n = |B4|?/A). These two well-known solutions of the Zakharov
equation exhibit no energy exchange (see Leblanc 2009 or Mei er al. 2018, §§14.5 &
14.6), since dn/dt = O thereon. Indeed, the effect of nonlinear interaction in such cases is
solely to induce a frequency correction, called Stokes’ correction after Stokes (1847), and
found for bichromatic waves by Longuet-Higgins & Phillips (1962); for a discussion in the
context of the Zakharov equation, see Stuhlmeier & Stiassnie (2019).

Centre points at @ = 0 and & = %7 correspond to steady-state near-resonant degenerate
quartets of waves. Such solutions have been recently found using the homotopy analysis
method (HAM) by Xu et al. (2012), Liao et al. (2016), Yang, Yang & Liu (2022) and
others, for both resonant and near-resonant cases. The dynamics around such points is
simple and can be described as time-dependent periodic exchanges of wave energy around
the time-independent configuration, as noted by Xu et al. (2012). Exact analytical formulae
for such periodic solution can also be obtained in terms of Jacobi elliptic functions, as done
by Shemer & Stiassnie (1985).
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To avoid overly bulky expressions, in what follows, we introduce the following notation:
A , £ 2

= . 20= and 2] = . (3.1a—c)
ATaabc Taabc Taabc

/

In these variables, we obtain fixed points at = 1 of the form (6, n) = (641, 1) whenever
0; satisfies

A+ Q)+ 2
5 :

Such fixed points exist when the right-hand side is between —1 and 1, and 6_; = —6.
These fixed points lie on the contour H = —A — A§2p — A§21/2. Similarly, we obtain fixed
points at = 0 of the form (0, n) = (6+0, 0) whenever 0y satisfies

A+ £
2 b
again provided the right-hand side is between —1 and 1 and 6_¢ = —6y. These fixed points

lie on the contour H = 0. Another class of fixed points is obtained for & = 0 or £=7. In the
former case, (6, n) = (0, no) is a fixed point whenever

cos(0y) = 3.2)

cos(fp) = — (3.3)

2+ A+ 2

= , 3.4
10 i—q (34)

and 0 < no < 1. Note that no = 1 if and only if 617 = 0, in which case, this fixed point
coincides with (3.2). For 6 = £, we find fixed points (£, 1) provided

L2 (A + )

_ , 3.5

and 0 < ny < 1. Similarly, n; = 0 if and only if 619 = £, such that this fixed point
coincides with (3.3).

3.2. Phase portraits and bifurcation

The dynamical system (2.14) and (2.15) contains two parameters — wave action A and
mode-separation p — which together govern the existence of the fixed-points given in
(3.2)—(3.5), and the attendant dynamics. The natural choice is to fix A — akin to specifying
the total energy of waves — and to use mode separation as a bifurcation parameter.

In figure 1, we depict a series of characteristic phase portraits, where mode separation p
increases from p = 0 in panel (a) to p = 0.3 in panel (4). In this figure, we have selected
A equivalent to a carrier wave with steepness € = 0.1, so that A = 21t2/100 (see (2.17)
and recall g = k, = 1). The figure thus represents both physically realistic, as well as
characteristic behaviour, in a sense to be specified in detail below.

Deferring the details for the moment, we can give an overview of the dynamics of our
degenerate quartet as obtained by phase-plane analysis, and shown in figure 1. In the limit
of vanishing mode separation, figure 1(a), we find four fixed points: a centre at § = 0, a
pair of saddle points on n = 0, located at & = +27/3, and a semi-stable fixed point at
0 = £m, n = 1. The first bifurcation occurs at p = 0, and as p increases, the semi-stable
point at (6, n) = (%, 1) splits into three fixed points: a centre at & = £ and two saddles
at n = 1 (figure 1b). Further increase in the mode separation causes the centre at § = 7
to descend until the saddle connections between the two fixed points at n =0 and n = 1
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Figure 1. Phase portraits for A = 27t2/100 and various values of mode separation p between 0 and 0.3, plotted
on the cylinder {(n,60) | n € [0, 1],6 € [—mx, w]}. Coloured curves represent contours of the Hamiltonian
(2.16). Dashed lines show separatrices, while dots denote fixed-points of the system. (a) p = 0, (b) p = 0.06,
(c) p = 0.0908771, (d) p = 0.1, (¢) p = 0.120902, (f) p = 0.2, (g) p = 0.246206 and (h) p = 0.3.
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merge (figure 1c). This critical value of mode separation exhibits the maximal energy
exchange among the interacting modes.

Further increasing p leads the centre at 6 = £7 to descend towards n = 0 (figure 1d)
where it subsequently vanishes together with the saddle points along n = 0 (figure le). As
the modes are separated further, the remaining three fixed points draw closer together in
phase space (figure 1) before coalescing (figure 1g) and disappearing entirely (figure 14)
— this last bifurcation leads to complete stabilisation of the system.

Separatrices (shown as dashed lines in figure 1) partition the phase plane. For example,
in figure 1(a), we notice that interior solutions with initial values 6(0) < —2mw/3 or 6(0) >
27 /3 are periodic and wind around the exterior of the separatrix connecting the pair of
fixed points at 7 = 0. Such solutions take on all values of the phase from — to m. Other
periodic solutions are confined to the interior of the separatrix, and wind around the centre
atd = 0.

4. Nonlinear stability

While the phase-plane analysis presented above is remarkably simple, it contains a wealth
of information about the fully nonlinear dynamics of interacting degenerate quartets of
deep water waves. We focus first on a discussion of nonlinear instability results.

4.1. Nonlinear instability of a uniform wave train

Many classical studies of the stability of a uniform wave train begin by establishing
that such a monochromatic wave is a solution of the relevant governing equation. This
solution is then used as a starting point for linearisation and an instability criterion
derived from the eigenvalues of the linear system, as done by Crawford et al. (1981). In
our framework, uniform wave trains are described by n = 1, for arbitrary values of 6.
The initial small disturbance used classically to investigate the Benjamin—Feir instability
consists in imposing small sidebands, i.e. a shift to a contour 1 < 1. In figure 1(a—f), we
readily observe that such a shift leads to growth of the sidebands, as n decreases along the
contours, followed generically by periodic energy exchange. Maximal energy exchange
occurs when 7 is changing fastest, and coincides with the smallest changes in the dynamic
phase 6. Such phase coherence has also been observed in simulations, e.g. by Houtani,
Sawada & Waseda (2022) and Liu, Waseda & Zhang (2021).

In fact, we can show that the classical linear stability criterion is equivalent to the
existence of fixed points at n = 1 in the nonlinear system. The condition (3.2) for such
fixed points to exist is

/ / /
- A"+ §25 + 2 -
S——>5 =
Squaring these inequalities, substituting £29 and §2; from (2.12) and (2.13), and using
(2.17) yields, after simplification, the discriminant criterion

1 .1

2
é+(T —Tup — Tae)|Bal* ) — |Bu*T2,. <0 4.2
) a ab ac|a| |a| aabe =Y ()

see (Mei et al. 2018, (14.9.16)). It is rather surprising that this eigenvalue condition, which
arises from an approach based on small amplitude perturbations (and which is oblivious to
the existence of fixed-points of the original nonlinear problem), can be recovered exactly
with our approach.
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0.5

€ 041
03 -
021 -

0.1 =

0 0.2 0.4 0.6 0.8 1.0
p
Figure 2. Existence of n = 1 fixed points in (€, p)-parameter space according to (3.2). The dark shaded region
denotes the nonlinear instability domain for the degenerate quartet. The dashed line denotes the lower boundary
of the NLS instability threshold € = p/+/8, which is shown in the light shaded region. For markers, refer to
Appendix B.

4.1.1. Stability boundaries and restabilisation

The existence of fixed points at 7 = 1, and thus the instability of uniform wave trains to
some perturbation, is the generic situation for degenerate quartets. We can appreciate this
by considering (3.2), from which we establish that fixed points exist at n = 1 for some
mode separation, provided A € [0, 27(2 — ~/2)/gks '*]. Employing (2.17), this can be
expressed in terms of carrier wave slope € and implies the existence of fixed points (and

thus instability) for
0<e< m, (4.3)

far beyond the wave breaking threshold.

In the limit of small mode separation, when the wavelengths of the sidebands are
comparable to the carrier, we see that the instability domain remains bounded (see
figure 2), with fixed points for A € [0, gkan2 /3k,]. This yields the threshold

1
0<e<—, 4.4
7 4.4
which has previously been obtained numerically (see e.g. Yuen & Lake 1982, § VI.B.1).
The simple, explicit formulae (4.3)—(4.4) presented here are the results of compact
forms of the one-dimensional interaction kernels which allow for considerable algebraic
simplification (see Appendix A and Kachulin ef al. 2019).

In fact, this restabilisation for nearby sidebands (or long-wavelength disturbances) is a
characteristic of the broadbanded Zakharov equation. Indeed, imposing a limit of narrow

spectral bandwidth (in which the Zakharov equation reduces to the NLS) implies

wap2n2

ALS

20—>1, 27— -3 and A — (4.5a—c)

This can be used to reformulate the fixed-point criterion and recover the well-known
instability threshold for NLS (Mei et al. 2018, (14.9.21)):

kﬁ € [0, 2/2€]. (4.6)
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Figure 3. Existence of n = 0 fixed points in (€5, p)-parameter space, according to (3.3). The shaded region
denotes the instability domain for a bichromatic wave train with equipartitioned mode amplitudes.

This is plotted in the (p, €)-domain as the lightly shaded region above the dashed line

€ = p/+/8 in figure 2. For small mode-separation distance p, the NLS instability criterion
agrees well with the more general formulation of the Zakharov equation, as shown
previously by Yuen & Lake (1982). However, the linear stability analysis of the NLS yields
instability to perturbations with arbitrary separation provided the steepness € is sufficiently
large (see Appendix B for a comparison of the phase portraits).

For the truncated Zakharov equation, as mode-separation increases, larger values of
carrier steepness € are required to generate instability, up to the limit p = 1 when the

instability domain contracts to the point € = /2 — +/2. Conversely, for a given carrier
steepness and increasing mode separation, the system will eventually exit the instability
domain — this bifurcation is captured in figure 1(g), where fixed points at = 1 coalesce
and disappear.

4.2. Nonlinear stability of a bichromatic wave train

Instabilities of bichromatic wave trains, while less well-known than those for uniform wave
trains, have also been studied, for example, by Leblanc (2009), Badulin et al. (1995) or
Ioualalen & Kharif (1994). While our setting is somewhat different — in particular, we have
only three unidirectional modes, in contrast to the four modes used by Leblanc 2009, § 4 to
discuss class Ib instabilities — we can nevertheless obtain the nonlinear evolution of such
instabilities by our phase-plane analysis, recalling that a bichromatic wave train occupies
the line n = 0. In the present case, where the Fourier amplitudes of the sidebands kj and k.
are taken to be identical, we naturally have a bichromatic wave train with waves of different
steepness. Mode k, = (1 — p, 0) corresponds to a longer wave than mode k. = (1 + p, 0),

and their slopes are related as

o\ 32

G = (k—”) <. A7
.

see Mei et al. (2018, § 14.6). Without loss of generality, we depict the instability domain
in terms of € in figure 3.

The existence of fixed points — and consequent instability — of the bichromatic wave train
is again seen to be generic. For any wave train, there exists a value of mode separation
p such that the solution is unstable within the framework of the degenerate quartet.
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This wave train stabilises for sufficiently large mode separation, as seen in the bifurcation
in figure 1(e), when fixed points at n = 0 disappear. Moreover, we find a critical threshold
for mode separation p & (.42 beyond which bichromatic wave trains are stable.

5. Heteroclinic solutions

The existence of special solutions to the nonlinear Schrodinger equation (NLS) has
attracted considerable attention in recent years, a discussion of which may be found
in the work by Dysthe & Trulsen (1999) or, with an emphasis on hydrodynamics and
experimental verification, by Chabchoub et al. (2014) and the references therein. We will
see that several remarkable solutions — corresponding to heteroclinic orbits in the phase
plane — exist for the three wave system. These include a discrete breather, i.e. a breather
with finite spectral content, analogous to that found by Akhmediev, Eleonskii & Kulagin
(1987), Ablowitz & Herbst (1990), which approaches a plane wave as t — =00. The form
of the free surface and its envelope are of particular interest for such solutions; these can
be recovered from the solution of the Zakharov equation (2.1) by defining the following
complex amplitude function:

1 . . } .
Alx, 1) = = ( /%Ba eitkax—wat) 4 /%Bb eitkpx—apt) 4 ;)_;Bc el(kcx—a)ct)> BENCEY)

The free surface elevation is then obtained as
¢(x, 1) = R[Ax, 1], (5.2)

and the envelope is |A(x, 1)|.

5.1. Discrete breather solutions

The existence of special heteroclinic solutions, with properties similar to the well-known
breather solutions of the nonlinear Schrodinger equation, clearly depends on the fixed
points of our problem. Our approach is akin to that of Cappellini & Trillo (1991), who first
investigated a three-mode truncation of the nonlinear Schrddinger equation.

5.1.1. The discrete (1-1) Akhmediev breather
For values of p and A satisfying (3.2) (see § 4.1 and figure 2), the two saddle points (6, n) =
(£01, 1) are connected by a heteroclinic orbit. Along this orbit, » < 1 and a trajectory
approaches (61, 1) ast — Fo0.

In fact, we can compute these solutions explicitly, by considering the following set of
equations:

Q/
2ncos() = A"+ )+ 71(1 +n), (5.3a)
dn n sin(6)
—_ =, (5.3b)
) — —L
cos(6) 1
d?6 . do
W = _ZATaabc SIH(Q)E. (53C)

Equation (5.3a) follows from equating the Hamiltonian (2.16) to its value at n = 1.
Equation (5.3b) is obtained from the implicit function theorem by regarding 7 as a function
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of 6 instead of ¢. Equation (5.3c) is obtained by taking the time derivative of (2.15).
Equation (5.3a) is further used to simplify the form of (5.3b) and (5.3c¢).
Equation (5.3b) is separable and can be integrated directly to give

_ 4cos(0)) — 2]

=———", 54
1= Acos0) — 2] G
where the integration constant is chosen so that the limits as 6 tends to 6, are 1.
Equation (5.3¢) can also be integrated to obtain
de
— = 2AT qabc (c0s(0) — cos(61)), (5.5)

dt

where the integration constant is chosen so that the limits as 6 tends to £6; are O.
Integrating again yields an expression for the dynamic phase:

tan(@/2) = tan(0;/2) tanh(AT z4pc sin(O1)1), (5.6)

where the integration constant was chosen so that 6(0) = 0. Together, (5.6) and (5.4)
describe the heteroclinic orbits shown in figure 1(d—f). (Note that the heteroclinic orbits
around 0 = = in figure 1(b) can be treated similarly.)

The discrete (1-1) Akhmediev breather describes an orbit in phase space which connects
one plane-wave solution with another. During the initial evolution, energy is transferred to
the sidebands (1 decreases) while the dynamic phase undergoes little change. Subsequent
to this focusing, the energy-transfer process reverses, resulting in a phase-shifted plane
wave. This situation is depicted in dimensionless coordinates in figure 4(a,b). Figure 4(a)
shows the envelope, which is periodic in space and ‘breathes’ once at time ¢ = 0, akin to
the Akhmediev breather solution of the NLS. Figure 4(b) shows the free surface, which
begins as a monochromatic plane wave, grows into a strongly modulated wave-train at
t = 0 and reverts to a plane wave with an evident phase shift.

The discrete Akhmediev breather which occurs in the study of a single degenerate
quartet is, in fact, the skeleton of the famed Akhmediev breather solution of the nonlinear
Schrodinger equation; the latter likewise arises from the instability of a carrier wave and
two equidistant sidebands, which subsequently induces a cascading instability as described
by Chin, Ashour & Beli¢ (2015). This makes a direct comparison possible, at least for the
Fourier modes Ap and A; of the Akhmediev breather (A_; evolves analogously to Ap).

From Chin et al. (2015), we obtain the following exact equations for the Fourier modes
of the Akhmediev breather:

2(1 — 2a) + id tanh(Ar)

Ap() =1— ) (5.7
V1—a?
2(1 — 2a) +idtanh(A) (1 — /1 —a?
Al(t) = — . (5.8)
V1—a? o
The parameters a, « and A can be related to our parameters p, €, as follows:
1 — (p/(2v/2€4))?
L L= (/26 5.9

2 b
A =1/8a(1 - 2a), (5.10)
V2a
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(a) (b)

N

10 oT

X

Figure 4. Time evolution of (a.c.e) the envelopes and (b.d.f) the free surface along different heteroclinic
solutions. In all cases, the steepness of the wave k, is set to €, = 0.2. (a,b) Discrete Akhmediev breather
for p = 0.3012; (¢,d) (1-0) breather for the critical p = 0.1670; (e,f) (0-0) breather for p = 0.1570. Here,
X = xk,/2m, T = tw,/2m and 7 = z/€,.

This ensures that we are comparing discrete and continuous Akhmediev breathers with the
same spatial periodicity.

Figure 5 shows the time evolution of the carrier (blue curves) and one of the sidebands
(red curves; recall that these evolve symmetrically) for the Akhmediev breather (dashed
curves) and our discrete breather (solid curves). We take €, = 0.2 with p = 0.1, 0.3 and 0.4
in each panel from top to bottom, respectively, and use the dimensionless time 7 = AT jgpcL.

There is qualitative resemblance and a degree of quantitative agreement in the evolution
of the continuous breather and our three-mode model, particularly for intermediate mode
separation and wave slope. However, as elucidated by Chin et al. (2015), the formation of
the Akhmediev breather takes the form of an energy cascade wherein the energy of the
carrier mode is distributed among all the infinite Fourier modes at r = 0. Since our model
is truncated to three Fourier modes (the carrier wave and its sidebands only), this energy
cascade is also truncated, leading to a surplus of energy remaining in the carrier wave
simply because there are no more modes in the system. This is seen in figure 5 at t = 0,
where the solid blue lines (modes |B,|) sit above the dashed blue lines (modes [Ag]).

Figure 5(c) also illustrates the main difference between the Zakharov equation and the
NLS for unidirectional waves, namely the difference in stability of a monochromatic wave
train. The case p = 0.4 (figure 5¢) is very close to the border of our stability region plotted
in figure 2. Hence, the small energy exchange observed at 7 = 0. Once p is outside the
instability region, there is no energy exchange (the phase portraits are akin to figure 14) and
no discrete breather solutions exist. The larger instability domain of the NLS, in contrast,
continues to allow breather solutions, as reflected in the considerable energy exchange
seen in figure 5(c) (dashed lines).
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Figure 5. Comparison of the (1-1) discrete breather (solid lines) with the Akhmediev breather (dashed lines).
Blue lines, time evolution of the carrier (|B,|* and |Ag|?, respectively). Red lines, time evolution of the sideband

(|Bb|2 and |A |2, respectively). In all cases, €, = 0.2. (@) p = 0.1. (b)) p = 0.3. (¢) p = 0.4.

5.1.2. (1-0) breather and (0-1) breathers

A special type of heteroclinic solution appears when the Hamiltonian at = 1 vanishes,
i.e. when p and A are such that A’ 4 2 + £2{/2 = 0. There are two such heteroclinic
solutions, one linking fixed points (6y, 0) and (01, 1), and the other linking (—61, 1)
with (—6p, 0) (see figure 1c¢). These appear also in the context of optical fibres when
the governing equation is the NLS, and are referred to as ‘pump-depletion’ solutions by
Cappellini & Trillo (1991).

In this case, (2.14) simplifies to

Y AT, el ) 4 a2y’ (5.12)
dr = aabcl] n 4 s .

where the sign depends on which fixed point we are considering. Integrating this equation
yields
2

1
t+C
4

AT ape | 4—
[

n= )
2
2
AT ape | 4— ——1+C
e 4 +1

where C is an integration constant depending on the initial conditions. For instance, C = 0
for the initial condition n(0) = % Assuming that a positive sign is chosen, the solution
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tends to 1 as r — oo and it tends to 0 as 1 — —oo. The limits are reversed if the negative
sign is chosen.

The special case described by these orbits corresponds to a complete energy transfer
from a uniform wave train to a bichromatic wave train (or vice versa), which appears
hitherto not to have been observed in water waves. The envelope and free surface
are depicted in figures 4(c) and 4(d), respectively. These show how spatially periodic
modulation appears ‘out of nowhere’ with time ¢, or disappears as time is traversed in
the negative sense.

5.1.3. (0-0) breather

For a given (sub-critical) value of mode separation p, and A such that (3.3) is satisfied (see
4.2 and figure 3), two distinct fixed points (6, n) = (£6p, 0) are linked by a heteroclinic
solution that approaches (+6p, 0) as + — Foo, and along which 1 > 0. This solution
satisfies the following set of equations:

/

Q
2(n—1)cos(0) = A"+ 2, +n

71, (5.14a)
dn (I —mn)sin(0)
—_ = 5.14b
- (5.145)
— —Cos
4
d%0 . do
vl = 2AT sube sm(@)a. (5.14¢)
As above, (5.14a) has been used to simplify (5.14b) and (5.14c¢).
Integrating (5.14b) yields
_ 2cos(0) + A+ 2 _4cos(8) — 4cos(p) (5.15)
deos(@) — 2]  dcos®) — 2 ’
where the integration constant is chosen so that the limits as 6 tends to 6 are 0.
Integrating (5.14c¢) yields
do
T = —2AT upc(cos(6) — cos(6p)), (5.16)

where the integration constant is chosen so the limits as 6 tends to 6y are 0. Further
integration yields

tan(0/2) = — tan(fp/2) tanh(sin(6p)AT yapct)- (5.17)

This solution is the natural counterpart to the discrete Akhmediev breather presented in
§ 5.1.1; however, rather than tending to a uniform wave train with ¢t — 400, it tends to a
bichromatic wave train, again with an attendant phase shift. The envelope and free surface
for such a case are shown in figures 4(e) and 4(f), respectively. At t = 0, the modulation
is at a minimum, and the free surface elevation is close to a uniform wave train.

5.2. Limiting solutions

It is clear from (2.16) that the horizontal lines n = 1 and n = 0 are level lines of the
Hamiltonian. Hence, any solution of (2.14) and (2.15) with suitable initial conditions so
that n = 1 or n = 0 will remain on these lines.
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As with the fixed points themselves, there is no energy exchange among the wave modes
for these solutions. However, they are not steady (or stationary) solutions in the usual
sense, because 6 still satisfies the following differential equation:

(5.18)

do A+ A0+ A2 — 2AT ggpe cos(9)  forn =1,
dr A+ A0 + 2AT y4pc cos(0) forn = 0.
A further differentiation of these equations with respect to ¢ yields (5.3c) and (5.14c¢)
respectively, which means that (5.6) and (5.17) are solutions for each case. Both limiting
configurations of the system exhibit what is sometimes referred to as phase-locking or
phase coherence; whereby, regardless of the initial phase, the dynamic phase converges to
the fixed value —0; at n = 1 and 6y at n = 0. It is expected that if initial conditions are
taken close to n = 1, i.e. if some small amount of energy is initially put in the sidebands,
then a similar behaviour will be observed in the evolution of the combined phase, as has
been recently reported by Houtani et al. (2022).

From the mathematical point of view, both limiting configurations n =1 and n =0
of the system can be understood as the limit of the generic periodic solutions, as all the
energy goes to either the wave k,, or is equipartitioned among the sidebands k;, and k.,
respectively. From a physical point of view, the dynamic phase 6 disappears at both n = 1
or 1 = 0 configurations and one is left with a classical monochromatic Stokes waves or
two co-propagating Stokes waves, respectively.

6. Discussion and conclusions

The reformulation of the discrete Zakharov equation for three modes as a two-dimensional
Hamiltonian dynamical system provides a new and powerful perspective on a classical
problem. In fact, the possibility of reformulating the Zakharov equations for a degenerate
quartet in terms of only two auxiliary variables is intimately connected to the existence
of an exact solution for this configuration, which can be given in terms of elliptic
functions (see Shemer & Stiassnie 1985). With subsequent normalisations, it is possible
to effectively describe the entire dynamics in terms of the total wave action A and a single
bifurcation parameter p, the mode separation.

The mode separation governs the appearance of fixed points in the phase plane. Saddle
points at n = 1 and n = 0 correspond to cases where the entire energy is concentrated in
one or two Fourier modes, respectively; the centres correspond to a degenerate quartet of
nearly resonant waves which undergoes no time evolution. These fixed points are simply
another case of the steady-state waves recently discovered by Liao et al. (2016), Yang et
al. (2022). Our phase-plane analysis provides a simple way to obtain these solutions, and
highlights for the first time their critical role in organising the overall dynamics.

The existence of fixed-points on the boundaries n = 1 and n = 0 of our phase-space
is intimately connected with the stability of uniform and bichromatic wave trains,
respectively. When such fixed points are absent, the trajectories progress along nearly
horizontal level lines on the cylindrical phase plane: the dynamic phase changes, but there
is little redistribution of energy. Loosely speaking, we may say that the trajectories do not
need to avoid the separatrices connecting the fixed points. The stability results we obtain
for uniform wave trains demonstrate the robustness of the Benjamin—Feir condition, which
we recover from the fully nonlinear system without any small-amplitude assumptions. For
bichromatic wave trains, our setting appears to be different from those previously studied,
and no comparable linear results appear to be available.
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We also obtain numerous special solutions — including discrete breathers — which are
identified with heteroclinic orbits in phase space. While the breather solutions of the
nonlinear Schrodinger equation involve a continuum of modes, and therefore exhibit
quantitatively different features, the two-dimensional phase space allows for an incisive
and transparent analysis of these special solutions. It should be noted that, although
breathers have sometimes been identified with homoclinic orbits, this terminology
obscures the phase shift which is apparent in the heteroclinic connections between the
saddle points.

The discrete breather solutions we obtain include an analogue of the Akhmediev
breather, which arises from a plane-wave background, as well as limiting cases in which a
uniform wave train becomes (as t — o0) a bichromatic wave train, and vice versa. While
discrete Akhmediev breathers exist in large ranges of parameter space (and thus for many
configurations of total energy and mode separation), the limiting (0,1) and (1,0) breathers
are unique for given wave action A or mode separation p. In the context of water waves,
we also find a seemingly new type of breather-like solution, which arises from, and returns
to, a bichromatic background. The maximal energy exchange for this (0,0)-breather is
therefore a ‘demodulation’, in which the envelope flattens out.

Breather-solutions of the continuous nonlinear Schrodinger equation have received
considerable attention in recent years, both in fluid mechanics and optics (Mussot et al.
2018; Pierangeli et al. 2018; Vanderhaegen et al. 2021). While our new discrete breathers
have some qualitative similarity with those obtained in the continuous model, there are
notable quantitative differences. In particular, in our context, only three modes can be
activated, so there is a limit to the cascading instability observed in the formation of
the Akhmediev breather solution (Chin ef al. 2015). This engenders differences in the
breather’s formation time, as well as in the maximum amplification. In a more general
sense, the modulational instability of a single degenerate quartet — as considered in the
present paper — captures many of the salient features of the Akhmediev breather, while
significantly constraining the phase-space. Indeed, as more modes are considered, the
dynamics can become chaotic (Annenkov & Shrira 2001), and the integrable three-mode
theory we consider cannot capture the richness of possible behaviours.

Together with theoretical advances, there have been numerous recent experimental
breakthroughs in the observation of breather solutions in water wave tanks (Chabchoub,
Hoffmann & Akhmediev 2011; Chabchoub et al. 2012; Kimmoun et al. 2016; Gomel et
al. 2021). In an experimental context, the waves evolve in space rather than time, and the
evolution equations must be changed to reflect this: for unidirectional waves, the temporal
Zakharov equation (2.1) can be replaced by an analogous spatial Zakharov equation,
derived by Shemer et al. (2001), Shemer, Kit & Jiao (2002). The extent to which the
new breathers agree with flume experiments poses an interesting question for future work.
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Figure 6. Phase portraits for € = l/\/§, mode separation p = 0 (a,b), 0.3 (¢,d), 0.6 (e,f) and 0.9 (g,h) (see
markers in figure 2) for the NLS (a,c,e,g) and Zakharov equation (b,d,f,h).
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Appendix A. Interaction kernels

The interaction kernels appearing in the Zakharov equation (2.4) are lengthy, and
expressions for these can be found in works by Mei et al. (2018) and Krasitskii (1994).
For the case of unidirectional waves in deep water (k; > O for all i) treated in the present
study, considerable simplifications to the kernels are possible:

3
T(k9 k7 k’ k) - m’ (A])
1 .
T (ka, kp, ka, kp) = mkakb min(kq, kp), (A2)
(kakpkcka) /4

T(ka kp, ke, ka) = [(kakp) '/ + (keka)'/*]

3272
X (kg + kp + ke + kg — [lka — ke| + lka — ka| + |kp — k| + |kp — kal]). (A3)

The equation for T4 is taken from Kachulin et al. (2019) and adjusted by a factor of
2m. The kernels can be further simplified by making use of the homogeneity property
T (aky, akp, ak., aky) = oz3T(ka,kb,kC,kd). For a degenerate quartet of waves 2k, =
kp + k., this enables us to write the kernel

1 .
T (ka, ka, kp, ke) = Q[mln(kb, ke) (2 kpk) V4 (kg 4 v/ kpke)]. (A4)

Appendix B. Phase portraits for the nonlinear Schrodinger equation

Both qualitative and quantitative differences exist between the Zakharov formulation and
its narrowband limit, the NLS. In particular, for € > 1/+/8, the phase portraits of the NLS
will always have fixed points at n = 1, since such waves are always unstable (see figures 2
and 6).

To emphasise this difference, in figure 6, we depict side-by-side phase portraits for a

steepness of € = 1/+/8. For vanishing mode separation p = 0 (figure 6a,b), the phase
portraits coincide. However, as the mode separation increases, the NLS predicts that
a monochromatic wave train is unstable to arbitrarily large perturbation wavenumbers
(panels (a,c,e,g), which depict fixed points on 7 = 1 which persist up to p = 1). In contrast,
the stability region of the Zakharov equation is bounded in (e, p)-space, reflecting the more
physically realistic situation in which waves of very different lengths do not exchange
energy nor induce instability (panels (b,d,f;h).)
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