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Abstract

Given a finite field Fp = {0, . . . , p − 1} of p elements, where p is a prime, we consider the distribution
of elements in the orbits of a transformation ξ 7→ ψ(ξ) associated with a rational function ψ ∈ Fp(X).
We use bounds of exponential sums to show that if N ≥ p1/2+ε for some fixed ε then no N distinct
consecutive elements of such an orbit are contained in any short interval, improving the trivial lower
bound N on the length of such intervals. In the case of linear fractional functions

ψ(X)= (aX + b)/(cX + d) ∈ Fp(X), with ad 6= bc and c 6= 0,

we use a different approach, based on some results of additive combinatorics due to Bourgain, that gives
a nontrivial lower bound for essentially any admissible value of N .
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1. Introduction

For a prime p we denote by Fp the finite field of p elements which we assume to be
represented by the set {0, . . . , p − 1}.

Given a rational function ψ ∈ Fp(X), we consider the distribution of elements in
the orbits of a transformation ξ 7→ ψ(ξ). More precisely, for u ∈ Fp we consider the
orbit

u0 = u, un+1 = ψ(un), n = 0, 1, . . . ,

which we terminate if un is a pole of ψ . Clearly any orbit of ψ (as of any other
transformation of a finite set) either terminates or eventually becomes periodic.

Given u ∈ Fp, we consider the sequence (un) as a dynamical system on Fp and
study how far it propagates in N steps. That is, we study

Lu(N )= max
0≤n≤N

|un − u|.
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Let Tu be the smallest positive integer T with

{un : n = 0, . . . , T − 1} = {un : un is defined, n = 0, 1, . . .}.

Trivially, for any u ∈ Fp and N < Tu we have Lu(N )≥ N . Here we use bounds of
exponential sums to show that Lu(N )= p1+o(1), provided that Tu ≥ N ≥ p1/2+ε for
any fixed ε > 0.

Furthermore, for linear fractional functions ψ(X)= (aX + b)/(cX + d) ∈ Fp(X)
with ad 6= bc we use a different approach, based on some results of additive
combinatorics due to Bourgain [1], to obtain a bound which is nontrivial for essentially
any N .

Finally, we discuss some possible improvements and applications of both methods
used in this paper.

Throughout the paper, any implied constants in the symbols O , � and � may
depend on a real parameter ε, an integer parameter ν ≥ 2 and the degree of the rational
function ψ . We recall that U = O(V ), U � V and V �U are all equivalent to the
statement that the inequality |U | ≤ C0 V holds with some constant C0 > 0.

2. Preliminaries

2.1. Linear independence of iterates. The result we present here is more general
than we need, but we hope it may be of independent interest.

Let K be an arbitrary field. We denote by R⊆K(X) the set of all nonconstant
rational functions. This set is a semigroup with identity X , under the composition of
rational functions; that is, given r(X), s(X) ∈R, then r(s(X)) ∈R.

Furthermore, if

w(X)=
f (X)

g(X)
∈R

is such that f (X), g(X) ∈K[X ] are relatively prime polynomials, we say that w(X)
is in the prime form. In this case, we define the degree of w as the maximum of the
degrees of f and g, that is, deg w =max{deg f, deg g}. Thus the degree of rational
functions always means the degree of the corresponding prime form. It is easy to verify
that if v(X)= r(s(X)) for r(X), s(X) ∈R, then deg v = deg r · deg s.

As usual, we define the degree of the identically zero rational function as −1, and
the degree of any other constant rational function as 0.

We define the sequence of iterates w0(X)= X and

wn+1(X)= w(wn(X)), n = 0, 1, . . . .

LEMMA 1. With the above notation, let r(X), w(X) ∈R and let deg w > 1. Then, the
rational functions

r−1(X)= 1, r0(X)= X, ri (X)= r(wi (X)), i = 1, . . . , m,

are linearly independent over K.
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PROOF. Suppose that for some ai ∈K, i =−1, 0, 1, . . . , m,

a−1 + a0 X +
m∑

i=1

airi (X)= 0.

Without loss of generality we can assume that am 6= 0. Then

a−1 + a0 X +
m−1∑
i=1

air(wi (X))=−amr(wm(X)).

We write

ri (X)= r(wi (X))=
fi (X)

gi (X)
,

and then derive

a−1 + a0 X +
m−1∑
i=1

ai
fi (X)

gi (X)
=

f (X)

g(X)
=−am

fm(X)

gm(X)
, (1)

where

f (X)= a−1

m−1∏
j=1

gi (X)+ a0 X
m−1∏
j=1

gi (X)+
m−1∑
i=1

ai fi (X)
m−1∏
j=1
j 6=i

g j (X)

and

g(X)=
m−1∏
j=1

g j (X).

Let s = deg w > 1. Since the degree of rational functions is multiplicative with
respect to the composition, we have deg ri = si deg r , i = 0, 1, . . . , m. Hence,

deg f ≤ (1+ s + · · · + sm−1)deg r and deg g ≤ (1+ s + · · · + sm−1)deg r.

From (1), we obtain

deg
f

g
≤ (1+ s + s2

+ · · · + sm−1)deg r. (2)

On the other hand, also from (1), we obtain

deg
f

g
= deg am

fm

gm
= sm deg r (3)

(since am 6= 0). However, the bounds (2) and (3) are contradictory, because 1+ s +
s2
+ · · · + sm−1 < sm if s > 1, which concludes the proof. 2

2.2. Discrepancy. Given a sequence 0 of M points

0 =
{
(γm,1, . . . , γm,ν)

M−1
m=0

}
(4)
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in the ν-dimensional unit torus T ν
= (R/Z)ν , it is natural to measure the level of its

statistical uniformity in terms of the discrepancy 1(0). More precisely,

1(0)= sup
B⊆[0,1)ν

∣∣∣∣T0(B)M
− |B|

∣∣∣∣,
where T0(B) is the number of points of 0 inside the box

B = [α1, β1)× · · · × [αν, βν)⊆ T ν

and the supremum is taken over all such boxes (see [5, 9]).
Typically the bounds on the discrepancy of a sequence are derived from bounds of

exponential sums with elements of this sequence. The relation is made explicit in the
celebrated Erdős–Turan–Koksma inequality (see [5, Theorem 1.21]), which we present
in the following form.

LEMMA 2. For any integer H > 1 and any sequence 0 of N points (4) the discrepancy
1(0) satisfies the following bound:

1(0)= O

(
1
H
+

1
M

∑
0<|h|≤H

ν∏
j=1

1
|h j | + 1

∣∣∣∣M−1∑
m=0

exp
(

2π i
ν∑

j=1

h jγm, j

)∣∣∣∣)
where the sum is taken over all integer vectors h= (h1, . . . , hν) ∈ Zν with |h| =
max j=1,...,ν |h j |< H.

2.3. Exponential sums. In our applications of Lemma 2 we use the Weil bound on
exponential sums that we present in the following form given by [10, Theorem 2].

LEMMA 3. For any polynomials f, g ∈ Fp[X ] over a field Fp of p elements, such that
the rational function F(X)= f (X)/g(X) is nonconstant on Fp, we have the bound∣∣∣∣ ∑

x∈Fp
g(x)6=0

ep(F(x))

∣∣∣∣≤ (max(deg f, deg g)+ r − 2)p1/2
+ δ,

where

(r, δ)=

{
(s, 1) if deg f ≤ deg g,
(s + 1, 0) if deg f > deg g,

and s is the number of distinct zeros of g(X) in the algebraic closure of Fp.

As before, we write ψ0(X)= X and

ψn+1(X)= ψ(ψn(X)), n = 0, 1, . . . .

We now combine Lemmas 1 and 3 to derive the following lemma.
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LEMMA 4. For any fixed ν ≥ 2 nonconstant and nonlinear rational function ψ ∈

Fp(X), and all integers h0, . . . , hν−1 with gcd(h0, . . . , hν−1)= 1,∑
u∈Uν

exp
(

2π i

p

ν−1∑
i=0

hiψi (u)

)
� p1/2,

where Uν ⊆ Fp is the set of u ∈ Fp which are not the poles of any of the functions ψi ,
i = 0, . . . , ν − 1.

2.4. Additive combinatorics. For a set A⊆ F∗p we define the sets

A+A= {a1 + a2 : a1, a2 ∈A},
A−1
+A−1

= {a−1
1 + a−1

2 : a1, a2 ∈A}.

In the case of linear fractional functions, our bound on Lu(N ) depends on the
following result of Bourgain [1, Theorem 4.1].

LEMMA 5. For any ε > 0 there exists δ > 0 such for any set A⊆ F∗p of cardinality
#A≤ p1−ε,

max{#(A+A), #(A−1
+A−1)} � (#A)1+δ.

3. Main results

3.1. General rational functions.

THEOREM 6. For every fixed ν ≥ 2 there exist positive constants C1(ν) and C2(ν)

such that for any rational function ψ ∈ Fp(X) of degree deg ψ > 1 and initial value
u ∈ Fp,

Lu(N )≥ C1(ν)N
1/ν p1−1/ν,

provided that Tu ≥ N ≥ C2(ν)p1/2(log p)ν .

PROOF. As before, we write T ν
= (R/Z)ν and also define Uν ⊆ Fp as the set

of u ∈ Fp which are not poles of any of the functions ψi , i = 0, . . . , ν − 1. It
follows immediately from a combination of Lemma 2 (applied with M = H = p) and
Lemma 4 that the discrepancy 1ν of the point set(

u

p
,
ψ(u)

p
, . . . ,

ψν−1(u)

p

)
∈ T ν, u ∈ Uν,

satisfies 1nu = O(p−1/2(log p)ν).
Therefore, for any λ≥ 1 there are

pλν + O(p1nu)= pλν + O(p1/2(log p)ν)

values of u ∈ Uν such that the vector(
u

p
,
ψ(u)

p
, . . . ,

ψν−1(u)

p

)
∈ T ν

belongs to a given cube B ⊆ T ν with side length λ.
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We now consider the vectors(
un

p
,
ψ(un)

p
, . . . ,

ψν−1(un)

p

)
, 0≤ n ≤ N − ν.

Clearly these all belong to a certain ν-dimensional cube inside Tν with side length
2Lu(N )/p. Therefore

N − ν ≤ p(Lu(N )/p)ν + O(p1/2(log p)ν)

which concludes the proof. 2

In particular, we see that if for some fixed ε > 0 we have Tu ≥ N ≥ p1/2+ε then,
taking ν as a slowly increasing function of p, we derive from Theorem 6 that
Lu(N )= p1+o(1).

3.2. Linear fractional functions. We now use arguments similar to those of [4] to
establish a better bound for linear fractional functions. That is, we essentially consider
orbits of transformations

ξ 7→
aξ + b

cξ + d
corresponding to the matrices (

a b
c d

)
∈ PGL2(p).

THEOREM 7. For any ε > 0 there exists an absolute constant δ > 0 such that, for
every linear fractional function ψ(X)= (aX + b)/(cX + d) ∈ Fp(X) with ad 6= bc
and c 6= 0, and initial value u ∈ Fp,

Lu(N )� N 1+δ,

provided N ≤min{Tu, p1−ε
}.

PROOF. We consider the set

A= {cun + d : 0≤ n ≤ N − 1} ⊆ Fp.

In particular, since N < Tu ,
#A= N . (5)

Clearly there exists an interval of length at most 2Lu(N − 1)≤ 2Lu(N ) which
contains all elements un , 0≤ n ≤ N . Thus it is easy to see that

#(A+A)≤ 2Lu(N )+ 1. (6)

Furthermore,

un+1 =
aun + b

cun + d
= ac−1

+
b − ac−1d

cun + d
.

Since we have ad 6= bc, this can be written as

1
cun + d

=
cun+1 − a

bc − ad
.
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Therefore, we also have

#(A−1
+A−1)≤ 2Lu(N )+ 1. (7)

We now see that (5), (6) and (7), combined with Lemma 5, imply the desired
result. 2

4. Comments

The requirement that deg ψ > 1 in Theorem 6 excludes linear fractional functions
from the class of functions to which it applies. However, they can easily be studied by
the same method with an almost identical result.

Unfortunately, Theorem 6 applies only to orbits of length of order at least
p1/2(log p)2. In fact, using a well-known ‘symmetrization’ technique, one can easily
remove the logarithmic factors from the restriction on N .

On the other hand, it is well known that the ‘birthday paradox’ usually leads to
orbits of length of order p1/2. Obtaining nontrivial estimates for such short orbits of
this length is an important open question. In fact, if ψ is a polynomial then instead
of the Weil bound one can use bounds of short of exponential sums obtained by
the Vinogradov method (see [8, Theorem 17]). For instance, if ψ is a polynomial
of degree d then this approach allows us to obtain nontrivial results in the range
Tu ≥ N ≥ p1/(d−1)+ε for any fixed ε > 0. Thus for d ≥ 4 it is already within the
‘typical’ cycle length.

The case of the affine map x 7→ ax + b is certainly of great interest. One can use
various bounds of exponential sums with exponential functions (see [2, 3, 6, 7]) to
obtain several versions of Theorem 6. Furthermore, it is feasible that a variant of the
geometry of numbers argument used in the proof of [7, Theorem 4.2] can also be used
to study the expansion of the affine map.

Finally, one can also apply similar arguments to many other maps, for example to
the map x 7→ gx for some fixed element g ∈ Fp (where x in the exponent is treated as
an integer in the range 0≤ x ≤ p − 1). For the analogue of the approach of Theorem 6
one can use the bounds of [2, 3, 6, 7]. For the analogue of the approach of Theorem 7
one can use a result of Bourgain and Garaev [3] in the same way as in [4, Theorem 4].
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