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Abstract

This paper explores the cohomological consequences of the existence of moduli spaces
for flat bundles with bounded rank and irregularity at infinity and gives uncondi-
tional proofs. Namely, we prove the existence of a universal bound for the dimension of
de Rham cohomology of flat bundles with bounded rank and irregularity on surfaces.
In any dimension, we prove a Lefschetz recognition principle stating the existence of
hyperplane sections distinguishing flat bundles with bounded rank and irregularity after
restriction. We obtain in any dimension a universal bound for the degrees of the turning
loci of flat bundles with bounded rank and irregularity. Along the way, we introduce a
new operation on the group of b-divisors on a smooth surface (the partial discrepancy)
and prove a closed formula for the characteristic cycles of flat bundles on surfaces in
terms of the partial discrepancy of the irregularity b-divisor attached to any flat bundle
by Kedlaya.

The goal of this paper is to explore the cohomological consequences of the existence of mod-
uli spaces for flat bundles with bounded rank and irregularity at infinity and to prove them
unconditionally in the surface case.

Let U be a smooth complex projective variety. From Simpson’s work [Sim94], flat bundles on
U with given rank form a complex variety, the de Rham space of U . If U is quasi-projective, flat
bundles acquire singularities at infinity making the situation more involved. However, regular
singular flat bundles again give rise to moduli spaces at the cost of rigidifying the situation by
a choice of logarithmic lattice [Nit93]. Let X be a smooth compactification of U such that
D := X \ U has simple normal crossings and let j : U → X be the inclusion. A flat bundle
E = (E,∇) on U is regular singular [Del70] if E extends to a vector bundle F on X with
∇(F ) ⊂ F ⊗OX

Ω1
X(logD). Regular singularity is independent of a choice of compactification.

When an extra condition on the residues is imposed, F is called a Deligne lattice. A natural
question to ask is what lies beyond the regular singular case. In general, the connection ∇ no
longer has simple poles at infinity, but Sabbah observed in the 1990s [Sab00] that ∇ still has
a simple expression, the so-called good formal decomposition at the cost of working formally
along D away from a codimension-1 subset of D. The locus of D where this simple expression
does not hold is the turning locus of E. Away from the turning locus, Deligne’s lattices admit
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straightforward generalizations and Malgrange proved in [Mal96] that they extend canonically
to X. Armed with Deligne–Malgrange lattices and conjectural bounds for their Chern classes,
it is an expectation of Esnault and Langer dating back from 2014 that there should exist a
moduli of finite type for flat bundles on U with bounded rank and irregularity at infinity. See
[Esn14] and [Ked21, 4.3.4]. Bounded irregularity means very roughly that we bound the poles
of the connection restricted to a Deligne–Malgrange lattice. See Definition 2.1 for a rigorous
definition. The bound on irregularity is thus embodied by an effective divisor R supported on D.
Let us denote by Mr(X,D,R) Esnault and Langer’s expected moduli of rank-r flat bundles on
U with irregularity bounded by R along D. As pointed out to the authors by Langer, there is
a mismatch between Nitsure’s construction and Mr(X,D,R) for R = 0. Indeed, rigidifying the
moduli problem with choices of logarithmic lattices makes Nitsure’s construction depend on a
choice of compactification for X. On the other hand, having regular singularity at infinity is inde-
pendent of a choice of compactification. Furthermore, different points of Nitsure’s construction
may underlie the same flat bundle.

The existence of Mr(X,D,R) has deep consequences for flat bundles which can be stated
and studied independently. The first consequence is cohomological. For a flat bundle E on U , let
DR E be the algebraic de Rham complex of E. Following the construction of the jumping loci for
character varieties, the following subsets

Vj := {E ∈Mr(X,D,R) such that dimH∗(U,DR E) ≥ j}
should form a decreasing sequence of closed subsets of Mr(X,D,R) when j increases. Since
Mr(X,D,R) is expected to be of finite type, its underlying topological space should be noethe-
rian, so the sequence of Vj should stabilize for j big enough. On the other hand, de Rham
cohomology is always finite dimensional. Hence, there should exist an integer j0 such that Vj0 is
empty. Put otherwise, there should exist a universal bound for the algebraic de Rham cohomol-
ogy of rank r flat bundles on U with bounded irregularity at infinity. Furthermore, this bound
should depend only on X, D, R and r. See Conjecture 2.5 for a statement making precise the
dependency in r and R. One of the main results of this paper is an unconditional proof of
the existence of this bound in the surface case (Theorem 6.6). To state it, we let Div(X,D) be
the group of divisors of X supported on D and denote by k a field of characteristic 0. For every
effective divisor R of X supported on D, for every integer r ≥ 0, we let MICr(X,D,R) be the
category of flat bundles on U with rank smaller than r and irregularity bounded by R along D.

Theorem 0.1. Let X be a smooth projective surface over k. Let D be a normal crossing divisor
ofX. Then, there exists a quadratic polynomial C : Div(X,D)⊕Z→ Z affine in the last variable
such that for every effective divisor R of X supported on D, for every integer r ≥ 0 and every
object E of MICr(X,D,R), we have

dimH∗(U,DR E) ≤ C(R, r).

A second consequence of the existence of Mr(X,D,R) is the Lefschetz recognition principle.
It relies on the heuristic principle that the formation of Mr(X,D,R) should come packaged
with functorialities. If f : Y → X is a morphism of smooth projective varieties over k such that
f∗R makes sense and such that f−1(D) is a normal crossing divisor, one expects the existence
of a morphism of varieties Mr(X,D,R)→Mr(Y, f−1(D), f∗R) induced by the pull-back along
f : Y → X. Functorialities would make the study of Mr(X,D,R) tractable through the curve
case, where they should be much easier to construct since flat bundles on curves have no turn-
ing points. If E0 and E1 are non-isomorphic flat bundles on U , one can find a hyperplane H
such that the restrictions of E0 and E1 to X ∩H are again non-isomorphic. When viewed as
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points of Mr(X,D,R), this means geometrically that E0 and E1 do not lie in the same fibre
of Mr(X,D,R)→Mr(X ∩H, f−1

H (D), f∗HR) where fH : X ∩H → X is the inclusion. One thus
expects the induced morphism of schemes

Mr(X,D,R) −→
∏
H

Mr(X ∩H, f−1
H (D), f∗HR)

to be a closed immersion. Since Mr(X,D,R) should be of finite type, this implies the existence of
hyperplanes H1, . . . , HN depending only on X,D,R and r such that if we put f :

⊔
X ∩Hi → X,

then Mr(X,D,R)→Mr(Y, f−1(D), f∗R) is a closed immersion. Put in the language of flat
bundles, two objects of MICr(X,D,R) are isomorphic if and only their pull-back to

⊔
X ∩Hi

are isomorphic. This is the Lefschetz recognition principle. We are led to introduce the following.

Definition 0.2. Let X be a smooth projective variety of dimension n ≥ 2 over a field k of
characteristic 0. Let D be a simple normal crossing divisor of X. Let X → P be a closed immer-
sion in some projective space. Let C be a class of flat vector bundles on X −D. Let H be a set
of hyperplanes in P meeting X transversally. We say that H realizes the Lefschetz recognition
principle for C if for every M1,M2 ∈ C, the flat bundles M1 and M2 are isomorphic if and only
if M1|X∩H and M2|X∩H are isomorphic for every H ∈ H.

Our second main result is a proof of the Lefschetz recognition principle for C =
MICr(X,D,R) in any dimension.

Theorem 0.3. Let X be a smooth projective variety of dimension n ≥ 2 over k. Let D be
a simple normal crossing divisor of X. Let X → P be a closed immersion in some projective
space. Then, there exists a polynomial K : Div(X,D)⊕Z→ Z of degree 4 such that for every
effective divisor R of X supported on D, for every integer r ≥ 0, there is a dense open sub-
set of Ω(R, r) ⊂ (P∨)K(R,r) such that every (H1, . . . , HK(R,r)) ∈ Ω(R, r) realizes the Lefschetz
recognition principle for MICr(X,D,R).

See Theorem 7.5 for explicit conditions defining the dense open set Ω(R, r).
Although the statements of cohomological boundedness and the Lefschetz recognition prin-

ciple were derived separately from the existence of Mr(X,D,R), it turns out that for surfaces,
the latter is a consequence of the former. Let us explain how. Let j : U → X be the open immer-
sion and let E be a flat bundle on U . The DX -module j∗E is coherent and as such, a canonical
dimU -cycle CC(j∗E) of the cotangent bundle T ∗X was attached to it by Kashiwara and Schapira
[KS90]. This is the characteristic cycle of j∗E. The cycle CC(j∗E) tells how far the DX -module
j∗E is from being a flat connection on X and thus provides a geometric measure of the com-
plexity of the differential system underlying j∗E. The cycle CC(j∗E) is Lagrangian. If X is a
surface, CC(j∗E) is thus a combination of the zero section of T ∗X, the conormal bundles of the
components of D and the conormal bundles of some points of D. If E′ is another flat bundle
on U , then any smooth curve transverse to D and avoiding the points whose conormal bundle
contributes to CC(j∗Hom(E1,E2)) where E1,E2 ∈ {E,E′} distinguishes E and E′ after restriction.
See Corollary 7.4. This observation translates the statement of Theorem 0.3 into the problem
of finding a universal bound for the number of points of D whose conormal bundle contributes
to CC(j∗E) for E in MICr(X,D,R). This question is cohomological since by Kashiwara and
Dubson’s formula [Dub84], every such point contributes to de Rham cohomology. This is how
Theorem 0.3 follows from Theorem 0.1 for surfaces.

The main result of [Tey23] implies that the points of the smooth locus of D whose conormal
bundle contributes to CC(j∗E) and CC(j∗E nd E) are exactly the turning points of E along D.
From the above discussion, cohomological boundedness thus yields a universal bound on the
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number of turning points of objects in MICr(X,D,R). We prove in any dimension a stronger
universal bound (Theorem 6.9).

Theorem 0.4. Let X be a smooth projective variety over k. Let D be a normal crossing divisor
of X. Let X → P be a closed immersion in some projective space. Then, there exists a quadratic
polynomial K : Div(X,D)⊕Z→ Z such that for every effective divisor R of X supported on
D, for every integer r ≥ 0 and every object E of MICr(X,D,R), the degree of the turning locus
of E along D is smaller than K(R, r).

For a flat bundle E, Kedlaya [Ked11] and Mochizuki [Moc11] proved that the turning locus
of E along D can be eliminated by enough blow-up. Theorem 0.4 is thus consistent with Esnault
and Langer’s expectation that there should exist a universal bound on the number of blow-up
needed to achieve good formal decomposition for objects in MICr(X,D,R). Their insight is
that controlling the number of blow-ups should give the required bound on the Chern classes
of Deligne–Malgrange lattices to construct the moduli Mr(X,D,R). By purity of turning loci
proved by André for D smooth [And07] and by Kedlaya in general [Ked21], we deduce the
following (Theorem 6.10).

Theorem 0.5. Let X be a smooth projective variety over k. Let D be a normal crossing divisor
of X. Let X → P be a closed immersion in some projective space. Then, there exists a quadratic
polynomial K : Div(X,D)⊕Z→ Z such that for every effective divisor R of X supported on D,
for every integer r ≥ 0 and every object E of MICr(X,D,R), the set of irreducible components
of the turning locus of E along D is smaller than K(R, r).

We summarize the interplay (at least for surfaces) of the above results and heuristic in the
following diagram, to be understood with bounded rank and irregularity.

Cohomological boundedness
(Theorem 0.1)

��

Existence of moduli
Mr(X,D,R)

��

�
�

�
�

� � �

��

	



�
�


 �

Boundedness of resolutions
of turning points

��� � � �����
Boundedness of the

degrees of turning loci
(Theorem 0.4)

��Lefschetz recognition principle
(Theorem 0.3)

We finally introduce the main tool of this paper and describe an extra application. Let X be a
smooth connected variety over k. Let D be a normal crossing divisor of X. Let E be a flat bundle
on j : U := X \D → X. For every proper birational morphism p : Y → X where Y is smooth and
E := p−1(D) is a normal crossing divisor, Kedlaya attached to E an effective divisor Irr(Y, p+E)
supported on E whose coefficient along a component Z is the generic irregularity number of E

along Z or, equivalently, the coefficient of T ∗
ZY in CC(j∗E), where j : U → Y is the inclusion. This

collection of divisors organizes into an element IrrE of the group Div(X) := lim←−Y →X
Div(Y ) of

b-divisors, where p : Y → X runs over the poset of morphisms as above and where the transition
maps are push-forward. In particular, an element of Div(X) is a Z-valued function on the set
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of divisorial valuations on X. The b-divisor IrrE is the irregularity b-divisor of E along D.
In the group Div(X) lies the subgroup of Cartier b-divisor defined as lim−→Y →X

Div(Y ) where
the transition maps are pull-backs. Fundamental to this paper is Kedlaya’s theorem [Ked21]
that IrrE is a nef Cartier b-divisor with the property that IrrE and IrrEnd E lie in the subgroup
Div(X) of Div(X) if and only if E has good formal decomposition along D. We show in § 5.3 that
IrrE and rkE determine CC(j∗E), and it is an intriguing question to understand how CC(j∗E)
relates to IrrE. If X is a surface, we answer this question using a new operation on b-divisors,
the partial discrepancy δ : Div(X)→ Div(X). The partial discrepancy measures the failure of
a b-divisor Z to lie in the image of Div(X)→ Div(X) in the sense that if it does, then δZ = 0.
We prove that if Z is a nef Cartier b-divisor, then δZ is an effective b-divisor with finite support
when viewed as a function on the set of divisorial valuations on X. Hence, the sum of its values,
denoted by

∫
X δZ is a well-defined positive integer. For a subset A of X, we denote by

∫
A δZ

the sum of the values of δZ over the set of divisorial valuations whose centres on X lie in A.
Using the partial discrepancy, we prove the following formula for the characteristic cycle of flat
bundles on surfaces (Theorem 5.18).

Theorem 0.6. Let X be a smooth projective surface over an algebraically closed field of charac-
teristic 0. Let D be a normal crossing divisor of X. Let E be a flat bundle on j : U := X \D → X.
Then

CC(j∗E) = rkE · CC(OX(∗D)) + LC(Irr(X,E)) +
∑
P∈D

(∫
P
δ IrrE

)
· T ∗

PX.

In the above formula, LC(Irr(X,E)) is a Lagrangian cycle depending only on the divisor
Irr(X,E) supported on D attached to E. In particular, it depends on E only via generic data
along the components of D. A nice feature of the above formula is to make explicit the means by
which the lack of good formal decomposition reflects in the characteristic cycle. By definition of
the partial discrepancy, it shows, in particular, that the characteristic cycle is only sensitive to the
turning points lying in the smooth locus of the successive inverse images of D by the successive
blow-up needed to achieve good formal decomposition. From the Kashiwara and Dubson formula
[Dub84], we deduce the following Grothendieck–Ogg Shafarevich-type formula for flat bundles
on surfaces (Theorem 5.20).

Theorem 0.7. Let X be a smooth projective surface over C. Let D be a normal crossing divisor
of X. Let E be a flat bundle on j : U := X \D → X. Then

χ(U,DR E) = rkE · χ(U(C)) + (LC(Irr(X,E)), T ∗
XX)T ∗X +

∫
D
δ IrrE.

We now give a linear overview of the paper. Section 1 gathers some general material on
D-modules as well as Kedlaya’s results on irregularity b-divisors. Section 2 introduces the coho-
mological boundedness conjecture for flat bundles with bounded rank and irregularity at infinity.
The main upshot of § 2 is Corollary 2.17 stating that cohomological boundedness is equivalent to
an a priori weaker conjecture, the χ-boundedness conjecture asking for a universal bound on the
global Euler–Poincaré characteristic of the de Rham cohomology. Section 3 is the main technical
core of this paper. In a relative situation, it provides a mechanism for deducing χ-boundedness
out of χ-boundedness for the generic fibre provided the turning locus is contained in a fibre. See
Proposition 3.23. Section 4 is devoted to the construction of the partial discrepancy b-divisor
attached to a b-divisor on a smooth surface. Its upshot is Proposition 4.15 ensuring that the
partial discrepancy of a nef Cartier b-divisor is a b-divisor with finite support when viewed as
a function on the set of divisorial valuations. Section 5 is an application of § 4 to the proof of
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Theorems 0.6 and 0.7. Section 6 gives the proof of cohomological boundedness for surfaces.
Section 7 provides the proof of the Lefschetz recognition principle. In § 8, the techniques of this
paper are used to obtain a Lefschetz theorem for the differential Galois group of flat bundles
under some uncountability assumption of the base field.

1. Geometric and D-module preparations

1.1 Base field
In this paper, k will denote a field of characteristic 0. If X is a variety over k, we denote by Xsm

the smooth locus of X and by Xsing the singular locus of X. If k ⊂ K is a field extension, we
denote by XK the pull-back of X over K.

1.2 Pair of varieties
A pair over k is the data (X,D) of a smooth variety X over k with a reduced divisor D.
An analytic pair is the data (X,D) of a complex manifold X with a reduced divisor D.
In both situations, we denote by Div(X,D) the group of divisors of X supported on D, that
is, Div(X,D) is the free abelian group over the set of irreducible components of D. We denote
by fdeg : Div(X,D)→ Z the formal degree function, that is the group morphism sending each
irreducible component of D to 1. Note that if k ⊂ K is a field extension, then fdegR ≤ fdegRK ,
where RK denotes the pull-back of R to XK .

If P is a property of algebraic or analytic varieties, a P -pair (X,D) will refer to a pair (X,D)
such that X satisfies P . Finally, a P -normal crossing pair (X,D) is a P -pair such that D has
normal crossing.

A morphism of pairs f : (Y,E)→ (X,D) over k is a morphism f : X → Y of algebraic
varieties over k such that f−1(D) = E.

1.3 Transversality
We recall the transversality conditions from [Bei16].

Definition 1.1. Let f : Y → X be a morphism between smooth varieties over k. Let C be a
closed conical subset of T ∗X. Let y be a geometric point above a point y of Y . We say that
f : Y → X is C-transversal at y if

Ker dfy ∩ Cf(y) ⊂ {0} ⊂ T ∗
f(y)X,

where dfy : T ∗
f(y)X → T ∗

y Y is the cotangent map of f at y. We say that f : Y → X is C-transversal
if it is C-transversal at every point of Y .

If f : Y → X is C-transversal, let f◦C be the scheme-theoretic image of Y ×X C in T ∗Y
by the canonical map df : Y ×X T ∗X → T ∗Y . As proved in [Bei16, Lemma 1.2], the map df :
Y ×X C → f◦C is finite and f◦C is a closed conical subset of T ∗Y .

In the next transversality criterion, we use an extra operation on closed conical subsets
of cotangent bundles. Let f : X → Y be a proper morphism between smooth varieties over k.
Let C be a closed conical subset of T ∗X. We denote by f◦C the closed conical subset of T ∗Y
defined as the image of df−1(C) ⊂ X ×Y T ∗Y by the projection X ×Y T ∗Y → T ∗Y , where df :
X ×Y T ∗Y → T ∗X is the canonical map.
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Lemma 1.2. Let

Y
j

��

f

��

H

g

��

X
i

�� P

(1.3)

be a cartesian diagram of smooth varieties over k whose arrows are closed immersions. Let C be
a closed conical subset of T ∗X. Let x ∈ Y and let us abuse notation by viewing x as a point in
X, H and P . Then, the following statements hold.

(i) If g is i◦C-transversal at x, then f is C-transversal at x.
(ii) Assume thatX andH are transverse at x. If f is C-transversal at x, then g is i◦C-transversal

at x.

Proof. Assume that f is not C-transversal at x. This means that there exists a non-zero form ω
in Cx vanishing on TxY ⊂ TxX. Since (1.3) is cartesian, so is the following induced diagram.

TxY ��

��

TxH

��

TxX �� TxP

Via the choice of a supplementary for TxY in TxH and a supplementary for TxX + TxH in TxP ,
we can extend ω to a non-zero form η on TxP vanishing on TxH. In particular, η lies in i◦C and
g is not i◦C-transversal at x and part (i) is proven.

We now prove part (ii). Assume that TxX and TxH generate TxP and that f is C-transversal
at x. We argue by contradiction. Let η be a non-zero form of i◦C above x such that η vanishes
on TxH. If i∗η = 0, the fact that TxX and TxH generate TxP yields η = 0, which is not possible.
Thus, i∗η is a non-zero form of C above x. By the transversality assumption, i∗η does not vanish
on TxY , so η does not vanish on TxH. Contradiction. This concludes the proof of Lemma 1.2. �

We gather in Lemma 1.4 standard facts on transversality. See [Bei16, 1.2,2.2] and
[Sai17, 3.4].

Lemma 1.4. Let f : Y → X be a morphism of smooth varieties over k. Let C,C ′ ⊂ T ∗X be
closed conical subsets. Let x ∈ X. Then the following hold.

(i) Assume Cx ⊂ C ′
x. If f is C ′-transversal at x, then f is C-transversal at x.

(ii) If f is C ′-transversal at x and C-transversal at x, then f is C ∪ C ′-transversal at x.
(iii) Let g : Z → Y be a morphism of smooth varieties over k. The following conditions are

equivalent:
(a) f is C-transversal on a neighbourhood of g(Z) and g is f◦(C)-transversal;
(b) f ◦ g is C-transversal.

(iv) If C ′′ ⊂ T ∗Y is a closed conical subset, the set of points y ∈ Y at which f is C ′′-transversal
is open in Y .

1.4 Universal hyperplane
Let E be a finite-dimensional vector space over k. Let E∗ be its dual. Let P = Proj(SymE∗)
and P∨ = Proj(SymE) be the associated projective spaces. The closed subscheme of P×k P∨
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defined by

Q := {(x,H) ∈ P×k P∨ | x ∈ H}
is the universal family of hyperplanes of P. Let (X,D) be a quasi-projective normal crossing
pair over k. Let i : X → P be an immersion. Put XQ = X ×P Q. Denote by p∨X : XQ → P∨ the
composition of XQ → Q with the canonical projection p∨ : Q→ P∨. Then, Bertini’s theorem
ensures the existence of a dense open subset V ⊂ P∨ of hyperplanes H transverse to X such
that D ∩H has normal crossings. In particular, if η denotes the generic point of P∨, we have
the following commutative diagram with cartesian squares:

Xη ��

��

XV
��

��

XQ
pX

��

��

X

��

Qη ��

��

QV
��

��

Q
p

��

p∨
��

P

η �� V �� P∨

where (Xη, Dη) is a quasi-projective pair over η of dimension dimX − 1 and whereDη has normal
crossings. The pair (Xη, Dη) is the generic hyperplane section of (X,D).

The following lemma provides a slight generalization of [Sai21, 1.3.7 (2)].

Lemma 1.5. Let P be a projective space over k. Let X be a smooth subvariety of P. Let
C ⊂ T ∗X be a closed conical subset of pure dimension dimX. Then there exists a dense open
subset of hyperplanes H transverse to X such that X ∩H → X is C-transversal.

Proof. By Bertini’s theorem, there exists a dense open subset V1 ⊂ P∨ of hyperplanes transverse
to X. Observe that i◦C has pure dimension dimP. Thus, [Sai21, 1.3.7 (2)] ensures that there
exists a dense open subset V2 ⊂ P∨ of hyperplanes H such that H → P is i◦C-transversal.
From Lemma 1.2(i), V1 ∩ V2 thus meets our requirements. �

1.5 Characteristic cycle for coherent D-modules
Let k be a field of characteristic 0. Let X be a smooth variety over k. We endow DX with its
filtration F by the order of differential operators. In particular, there is a canonical isomorphism
grF DX � π∗OT ∗X where π : T ∗X → X is the canonical projection. Every coherent DX -module
M admits a filtration FM compatible with F such that grFM M is a coherent π∗OT ∗X -module.
Then,

˜grFMM := OT ∗X ⊗π−1π∗OT∗X
grFM M

is a coherent OT ∗X -module. Its characteristic cycle is a cycle of T ∗X which does not depend on
a choice of filtration as above. It is the characteristic cycle of M. We denote it by CC(M). The
support of CC(M) is a closed conical subset of T ∗X called the singular support of M. We denote
it by SS(M).

Remark 1.6. The formation of the characteristic cycle commutes with flat base change. In
particular, it commutes with base field extension and analytification.

As a consequence of [Gab81], we have the following.

Theorem 1.7. For any coherent DX -module M, the irreducible components of SS(M) have
dimension ≥ dimX.
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Definition 1.8. We say that a coherent DX -module M is holonomic if SS(M) has pure
dimension dimX.

Holonomy is the correct finiteness condition for DX -modules, as will be clear from
Proposition 1.10 below.

1.6 De Rham cohomology
Let k be a field of characteristic 0. Let X be a smooth algebraic k-variety of dimension d.
Let M be a DX -module. We denote by

DR M : M −→ Ω1
X ⊗OX

M −→ · · · −→ Ωd
X ⊗OX

M

the algebraic de Rham complex of M, where M lies in degree 0. The algebraic de Rham cohomology
of M is the cohomology of DRM.

If k = C, let Man be the analytification of M and define similarly the analytic de Rham
complex of M. The analytic de Rham cohomology of M is the cohomology of DRMan.

In the proper complex setting, the GAGA theorem for quasi-coherent cohomology identifies
algebraic and analytic de Rham cohomology. See [Del70, 6.6.1]. This is the following.

Proposition 1.9. Let X be a smooth projective variety over C. Let M be a quasi-coherent
DX -module. Then, the canonical comparison morphism

H∗(X,DR M) −→ H∗(X(C),DR Man)
is an isomorphism.

When holonomy is imposed, algebraic de Rham cohomology is finite dimensional even when
the ambient variety is not proper.

Proposition 1.10. Let X be a smooth variety over k. Let M be a holonomic DX -module.
Then, for every integer n, the space Hn(X,DR M) is finite dimensional over k and vanishes if
n �= 0, . . . , 2 dimX.

Proof. Since the formation of the de Rham complex commutes with push-forward [HTT00,
4.2.5] and since holonomy is preserved under push-forward [HTT00, 3.2.3], we can at the cost of
replacing X by a smooth compactification suppose that X is proper over k. From Remark 1.11,
we reduce to the case where k = C. From Proposition 1.9, we are left to prove a variant of
Proposition 1.10 where now X is a smooth compact complex manifold and where M is a holo-
nomic DX -module. From Kashiwara’s perversity theorem [Kas75], we are left to prove that for
every perverse complex F on X, the C-vector space Hn(X,F) is finite dimensional and van-
ishes if n �= −dimX, . . . ,dimX. This is a standard fact from the theory of perverse complexes
[BBDG18, 4.2.4]. �

Remark 1.11. As a consequence of the invariance of quasi-coherent cohomology under flat base
change, de Rham cohomology is invariant under base field extensions.

1.7 The solution and the irregularity complexes
Let X be a complex manifold of dimension d. Let M be a DX -module. The solution complex of
M is defined as

Sol M := R HomDX
(M,OX).

The following theorem is due to Kashiwara [Kas75].
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Theorem 1.12. Let X be a smooth complex manifold. Let M be a holonomic DX -module.
Then the complexes Sol M[dimX] and DR M[dimX] are perverse complexes.

Let Z be a hypersurface in X. Let i : Z → X be the inclusion. Let M(∗Z) be the localization
of M along Z. Define the irregularity complex of M along Z by

Irr∗Z M := i∗i∗ Sol M(∗Z)

The following theorem is due to Mebkhout [Meb90].

Theorem 1.13. Let X be a complex manifold. Let M be a holonomic DX -module. Let Z be a
hypersurface in X. Then Irr∗Z M[dimX] is a perverse complex supported on Z.

The de Rham and solution complexes are related under sheaf duality; see [Meb82].

Theorem 1.14. Let X be a complex manifold. Let M be a holonomic DX -module. There is a
canonical isomorphism of complexes

DR M −→ RHomC(SolM,C)

in the derived category of complexes of sheaves.

1.8 Characteristic cycle and the de Rham and solution complexes
For a complex of sheaves F with bounded and constructible cohomology, Kashiwara and Schapira
defined the characteristic cycle CC(F) by means of microlocal analysis [KS90]. The following
theorem identifies the characteristic cycle of a holonomic DX -module with that of its solution
complex. See [KS90, 11.3.3] and [Dub84, Theorem 4].

Theorem 1.15. Let X be a complex manifold. Let M be a holonomic DX -module. Then

SS(M) = SS(Sol M) and CC(M) = CC(Sol M).

In particular, the computation of CC(M) can be reduced to a sheaf-theoretic question. If
the singular support of M is already known, the following theorem [Kas75, Theorem 3.5] tells us
how to chop off X in order to compute CC(Sol M).

Theorem 1.16. Let X be a complex manifold. Let M be a holonomic DX -module. Let
X1, . . . , Xn be a Whitney stratification of X such that SS(M) lies in

⋃n
i=1 T

∗
Xi
X. Then, the

cohomology sheaves of (SolM)|Xi are local systems on Xi, i = 1, . . . , n.

From a cohomological perspective, computing the characteristic cycle is useful because of
Kashiwara and Dubson’s formula [Dub84]. See also [Lau83].

Theorem 1.17. Let X be a proper complex manifold. Let M be a holonomic DX -module. Then,
we have

χ(X,DR M) = (CC(M), T ∗
XX)T ∗X .

where χ(X,DR M) denotes the Euler–Poincaré characteristic of DR M and where (−,−)T ∗X

denotes the intersection number of cycles in T ∗X.

1.9 Characteristic cycle and functorialities
The characteristic cycle for D-modules commutes with proper push-forward. This is the following.

Lemma 1.18. Let f : X → Y be a proper morphism between smooth varieties over k. Let M be
a holonomic DX -module. Then, CC(f+M) = f∗CC(M).
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Proof. From Remark 1.6, we can suppose k = C. We have the following chain of equalities:

CC(f+M) = CC(fan
+ Man) = CC(Sol(fan

+ Man))

= CC(Rf∗ Sol Man) = f∗CC(Sol Man) = f∗CC(M).

The first equality follows from Remark 1.6 applied to f+M. The second equality follows from
Theorem 1.15. The third equality follows from the compatibility of the formation of Sol with
proper push-forward. The fourth equality follows from [KS90, 9.4.2]. The last equality follows
from the above arguments applied to M. �
Definition 1.19. Let f : Y → X be a morphism between smooth varieties over k or between
complex manifolds. Let M be a holonomic DX -module. We say that f : Y → X is non-
characteristic for M if it is SS(M)-transversal.

The following results are due to Kashiwara [Kas95].

Theorem 1.20. Let f : Y → X be a morphism between smooth varieties over k. Let M be
a holonomic DX -module such that f : Y → X is non-characteristic for M. Then the following
statements hold.

(i) The DY -module pull-back f+M is concentrated in degree 0. That is, f+M � f∗M.
(ii) We have SS(f+M) = f◦SS(M).
(iii) If k = C, the comparison morphisms

f∗ Sol Man −→ Sol f+Man and DR f+Man −→ f∗ DR Man

are isomorphisms in the derived category of sheaves.

1.10 Meromorphic flat connections
Let X be a smooth algebraic variety over k. A flat connection on X or module with integrable
connection on X is a DX -module E := (E,∇) whose underlying OX -module E is a vector bundle
of finite rank on X. We denote by MIC(X) the category of flat connections on X.

If D is a divisor in X, a meromorphic flat connection on X with poles along D is a DX -
module M := (M,∇) whose underlying OX -module M is a locally free sheaf of OX(∗D)-modules
of finite rank. We denote by MIC(X,D) the category of meromorphic flat connections on X with
poles along D.

Remark 1.21. The above definitions make sense in the analytic setting, where the same notation
will be used.

Remark 1.22. Meromorphic flat connections are holonomic D-modules.

In the algebraic setting, there is no difference between flat connections and meromorphic flat
connections. This is expressed by the following proposition [HTT00, 5.3.1].

Proposition 1.23. Let (X,D) be a pair over k. Let j : U = X \D → X be the inclusion. Then
(j∗, j∗) induce an equivalence of categories between MIC(U) and MIC(X,D).

Since all the action in this paper happens at infinity, we will use the meromorphic viewpoint.
The next lemma says that this does not make any difference for cohomology.

Lemma 1.24. Let (X,D) be a pair over k. Put U := X \D and let j : U → X be the inclusion.
Let E be an object in MIC(U). Then the canonical restriction morphism

RΓ(X,DR j∗E) −→ RΓ(U,DR E)

is an isomorphism in the derived category of vector spaces over k.
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Proof. We have

RΓ(U,DR E) � RΓ(X,Rj∗ DR E) � RΓ(X, j∗ DR E) � RΓ(X,DR j∗E),

where the second equality comes from the fact that j is an affine morphism, and where the last
equality follows from j∗ DR E � DR j∗E. �
Proposition 1.25. Let (X,D) be a pair over k. Let M1 and M2 be objects of MIC(X,D).
Then, there is a canonical isomorphism

RHomDX
(M1,M2) −→ RΓ(X,DR Hom(M1,M2))

in the derived category of k-vector spaces.

Proof. Combining [Bor87, VII 9.8] and [Bor87, VI 5.3.2] yields a canonical isomorphism

RHomDX
(M1,M2) � RΓ(X,DR M∨

1 ⊗L
OX

M2),

where M∨
1 denotes the DX -module dual to M1. Since M2 is a locally free OX -module localized

along D, we have

M∨
1 ⊗L

OX
M2 �M∨

1 ⊗OX
M2 �M∨

1 (∗D)⊗OX
M2.

Observe that M∨
1 (∗D) is an object of MIC(X,D). Let M∗

1 be the meromorphic connection dual
to M1. Then [HTT00, 2.6.10] ensures that the restriction of M∨

1 (∗D) and M∗
1 to U := X \D are

canonically isomorphic. From Proposition 1.23, we deduce that M∨
1 (∗D) and M∗

1 are canonically
isomorphic. We thus conclude the proof of Proposition 1.25 using the identification M∗

1 ⊗OX

M2 � Hom(M1,M2). �

1.11 Good formal structure for connections
In the next definition, we follow [Ked21, Definition 2.1.3] and fix a field k of characteristic 0.

Definition 1.26. Let (X,D) be a normal crossing pair over k. Let M be an object of MIC(X,D).
We say that M has good formal structure at x ∈ D if there is a decomposition

Mx ⊗OX,x
S ∼=

⊕
α∈I

Eϕα ⊗S Rα, (1.27)

where

(1) the ring ÔX,x(∗D) is the localization alongD of the completion of OX,x along the intersection
of the irreducible components of D containing x and S is a finite étale ÔX,x(∗D)-algebra;

(2) I is a finite set;
(3) each Rα is a regular differential module over S;
(4) ϕα (α ∈ I) are elements in S satisfying that, if ϕα does not lie in the integral closure S0 of

OX,x in S, then ϕα is a unit of S and ϕ−1
α ∈ S0; furthermore, if ϕα − ϕβ does not lie in S0,

then ϕα − ϕβ is a unit of S and (ϕα − ϕβ)−1 ∈ S0.

Definition 1.28. Let M be an object of MIC(X,D). We say that a point x of D is a turning
point of M if M does not admit a good formal structure at x. The set of turning points of M

is called the turning locus of M. We denote it by TL(M). If TL(M) is empty, we say that M

admits good formal structure along D.

Remark 1.29. The formation of the turning locus commutes with regular base change. See
[Ked21, 4.3.2] for a proof.

The compatibility of good formal structure and pull-back follows from Definition 1.26:
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Proposition 1.30. Let f : (Y,E)→ (X,D) be a morphism of normal crossing pairs over k.
Let M be an object of MIC(X,D). Let x be a point in E such that M has good formal structure
at f(x). Then, f+M has good formal structure at x. In particular, if M has good formal structure,
so does f+M.

Purity of the turning locus was proved by André when D is smooth [And07, 3.4.3] and by
Kedlaya when D has normal crossing [Ked21, 2.3.1].

Theorem 1.31. Let (X,D) be a normal crossing pair over k. Then, for any object M of
MIC(X,D), the turning locus of M is a closed subscheme of D of pure codimension 1.

The following fundamental theorem was proved by Kedlaya [Ked11, Theorem 8.1.3] and
Mochizuki [Moc11, Theorem 19.5] with complement from [Ked21, Corollary 3.2.5].

Theorem 1.32. Let (X,D) be a pair over k. Let M be an object of MIC(X,D). Then, there
exists a morphism of smooth algebraic varieties f : Y → X obtained as a composition of blow-up
with smooth centres above TL(M) such that f−1(D) is a normal crossing divisor of Y and f+M

admits good formal structure along f−1(D).

We thank the anonymous referee for pointing out the following.

Remark 1.33. In Theorem 1.32, it is not obvious from [Ked11, Theorem 8.1.3] and [Moc11,
Theorem 19.5] that f : Y → X can be taken as a composition of blow-up with smooth centres
above TL(M). Such control on f is guaranteed by the subsequent results from [Ked21].

1.12 Irregularity number
Let (X,D) be a normal crossing pair over k of dimension d+ 1 ≥ 1. Let M be an object
of MIC(X,D). In the setting of Definition 1.26, good formal structure always holds at the
generic point η of an irreducible component Z of D. In that case, ÔX,η(∗D) has the form
k[[x1, . . . , xd, y]][y−1] and S has the form K[[x1, . . . , xd, y

1/m]][(y1/m)−1] where m ≥ 1 and where
K/k is a finite extension.

Definition 1.34. For an object M in MIC(X,D), the generic slopes of M along Z are the
poles orders in the y-variable of the ϕα contributing to (1.27). Let us denote them by ordy ϕα

where α ∈ I and put

r(Z,M) := max
α∈I

ordy ϕα.

The generic irregularity number of M along Z is defined as

irr(Z,M) :=
∑
α∈I

(ordy ϕα) · rk Rα.

Remark 1.35. In the setting of Definition 1.34, the generic irregularity number of M along Z is
an integer independent of the choice of the finite étale ÔX,η(∗D)-algebra S.

In general, irregularity numbers and irregularity complexes are related through a theorem of
Malgrange [Mal71, Theorem 1.4]. We record it in the following form useful for us.

Lemma 1.36. Let (X,D) be an analytic pair. Let Z be an irreducible component of D. Let M

be an object of MIC(X,D). Then, the generic irregularity number of M along Z is the generic
rank along Z of the perverse complex Irr∗D M.
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1.13 b-divisors
Let X be a smooth variety over k. A modification of X is the datum of a smooth variety Y over
k and a map Y → X which is proper, dominant and an isomorphism away from a nowhere-dense
closed subset of X. Following [Ked21], we introduce the following definition.

Definition 1.37. The group of integral b-divisors Div(X) of X is the limit

lim←−
Y →X

Div(Y ),

where Y → X runs over the category of modifications of X and where the transition maps are
push-forward.

For D in Div(X), we denote by D(Y ) the component of D along a modification Y → X.
For every irreducible divisor E of Y , we denote by m(E,D) the multiplicity of D(Y ) along E.

Definition 1.38. The group of integral Cartier b-divisors CDiv(X) on X is the colimit

lim−→
Y →X

CDiv(Y ),

where Y → X runs over the category of modifications of X and where the transition maps are
pull-back.

Let ZRdivis(X) be the subset of the Zariski–Riemann space of X consisting of divisorial
valuations centred on X. As explained in [Ked21], the group of integral b-divisors identifies with
the set of functions m : ZRdivis(X)→ Z such that for every modification Y → X, there is only a
finite number of divisorial valuations v ∈ ZRdivis(X) centred at an irreducible divisor of Y such
that m(v) �= 0. Thus, the order on Z induces an order ≤ on Div(X). Furthermore, there is a
canonical injective map

CDiv(X) −→ Div(X).

One of the main players of this paper is a Cartier b-divisor with an extra property called nef
in [Ked21]. In view of Lemmas 1.4.9 and 1.4.10 from [Ked21], we can define nef Cartier b-divisor
as follows.

Definition 1.39. Let X be a smooth variety over k. Let D be a Cartier b-divisor on X. We
say that D is nef if for every modification Y → X, we have D ≤ D(Y ) in Div(X) where D(Y )
is viewed as a b-divisor via CDiv(X)→ Div(X).

1.14 The irregularity b-divisor
Let (X,D) be a pair over k. We recall the following definition from [Ked21, 3.1.1].

Definition 1.40. Let M be an object of MIC(X,D). We denote by IrrM the unique b-divisor
on X such that for every modification p : Y → X, the multiplicity of IrrM along an irreducible
divisor E of Y is the generic irregularity irr(E, p+M) of p+M along E. We put

Irr(Y, p+M) := (IrrM)(Y ) in Div(Y ).

The following lemma is obvious.

Lemma 1.41. Let (X,D) be a pair over k. Let k ⊂ K be a field extension. Let M be an object
of MIC(X,D). Then, Irr(XK ,MK) = Irr(X,M)K .

Remark 1.42. In the setting of Definition 1.40, one can also define R(M) the unique rational
b-divisor on X such that for every modification p : Y → X, the multiplicity of R(M) along an
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irreducible divisor E of Y is the highest generic slope r(E, p+M) ∈ Q≥0 of p+M along E, and
put R(Y, p+M) := (R(M))(Y ) in Div(Y )Q.

Remark 1.43. Equivalently, the b-divisors R(M) and IrrM will be viewed as Q-valued functions
on the set of divisorial valuations of X.

The following theorem is due to Kedlaya [Ked21, 3.2.3].

Theorem 1.44. Let (X,D) be a normal crossing pair over k. For any object M of MIC(X,D),
the b-divisor IrrM is a nef Cartier b-divisor. In particular, we have

IrrM ≤ Irr(X,M)

in Div(X), where Irr(X,M) is viewed as a b-divisor via CDiv(X)→ Div(X).

Corollary 1.45. Let (X,D) be a normal crossing pair over k. Let R be an effective divisor
of X supported on D. Let M be an object in MIC(X,D). Then the following conditions are
equivalent:

(i) Irr(X,M) ≤ R in Div(X);
(ii) for every point 0 in D, for every locally closed smooth curve C → X in X meeting D at 0

only, we have

irr(0,M|C) ≤ (C,R)0

where (C,R)0 denotes the intersection number of C with R at 0.

Proof. If condition (ii) holds, we get condition (i) by using generically enough smooth curves
transverse to the irreducible components of D. We now show that condition (i) implies condition
(ii). To do this, we can suppose that R = Irr(X,M). Let 0 be a point in D and let C → X be a
locally closed smooth curve meeting D at 0 only. Let p : Y → X be a modification of X which
is an isomorphism above X \D. By valuative criterion for properness, the immersion C → X
factors uniquely through an immersion C → Y followed by p. In particular, we have

irr(0,M|C) = irr(0, (p+M)|C).

On the other hand, the projection formula yields

(C, Irr(X,M))0 = (C, p∗ Irr(X,M))0.

From Theorem 1.44, we further have

Irr(Y, p+M) ≤ p∗ Irr(X,M)

in Div(Y ). Hence, the sought-after inequality for X,M, C → X and R = Irr(X,M) follows from
the analogous inequality for Y, p+M, C → Y and R = Irr(Y, p+M). From Theorem 1.32, we are
thus left to suppose that M has good formal structure and that C is transverse to D at 0.
In that case, the sought-after inequality is an equality. �
Remark 1.46. For surfaces, Corollary 1.45 was proved by Sabbah [Sab00, 3.2.3].

The property of having good formal structure can be read from the irregularity b-divisor.
This is due to Kedlaya [Ked21, 3.1.2] as a consequence of Theorem 1.44.

Theorem 1.47. Let (X,D) be a normal crossing pair over k. Let M be an object of MIC(X,D).
Then, M has good formal structure if and only if

IrrM = Irr(X,M) and Irr EndM = Irr(X,EndM)

in Div(X).
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The proof of Corollary 1.45 combined with Theorem 1.47 yields the following curve-like
criterion for testing good formal structure.

Corollary 1.48. Let (X,D) be a normal crossing pair over k. Then, an object M in MIC(X,D)
has good formal structure if and only if for every point 0 in D, for every locally closed smooth
curve C → X in X meeting D at 0 only, we have

irr(0,M|C) = (C, Irr(X,M))0 and irr(0, (End M)|C) = (C, Irr(X,EndM))0.

Putting Corollaries 1.45 and 1.48 together yields the following differential analogue of a result
[Hu19] of the first named author.

Corollary 1.49. Let (X,D) be a pair over k where D is smooth and irreducible. Let M be an
object in MIC(X,D). Then,

irr(D,M) = sup
(0,C)

irr(0,M|C)
(C,D)0

where 0 runs over the points of D and where C runs over all smooth locally closed curves of X
meeting D at 0 only.

2. Cohomological and χ-boundedness conjectures

2.1 Connections with bounded irregularity
Definition 2.1. Let (X,D) be a normal crossing pair over k. Let M be an object in MIC(X,D).
Let R be an effective divisor of X supported on D. We say that M has irregularity bounded by
R if the equivalent conditions of Corollary 1.45 are satisfied.

We denote by MIC(X,D,R) the full subcategory of MIC(X,D) consisting in connections
with irregularity bounded by R.

For an integer r ≥ 0, we denote by MICr(X,D,R) the full subcategory of MIC(X,D,R)
spanned by connections with rank smaller than r.

2.2 Bounded irregularity and Hom
The Hom construction for connections preserves boundedness of irregularity in the following
sense.

Proposition 2.2. Let (X,D) be a normal crossing pair over k. Let R be an effective divisor of
X supported on D. Let r ≥ 0 be an integer. Let M1 and M2 be objects of MICr(X,D,R). Then,
Hom(M1,M2) is an object of MICr2(X,D, 2r2 ·R).

Proof. We can suppose that D is irreducible with generic point η. Let (ϕα,Rα), α ∈ I and
(ψβ, Sβ), β ∈ J be the constituents of the good formal structures of M1 and M2 at η as in
(1.27). With the notation from Definition 1.34, we have

irr(D,Hom(M1,M2)) =
∑
I×J

(ordy ψβ − ϕα) · (rkRα) · (rk Sβ).

Since (ordy ψβ − ϕα) ≤ (ordy ϕα) + (ordy ψβ), we deduce

irr(D,Hom(M1,M2)) ≤ |J | rkM2

∑
I

(ordy ϕα) · (rk Rα) + |I| rkM1

∑
J

(ordy ψβ) · (rk Sβ)

≤ (rkM2)2 · irr(D,M1) + (rkM1)2 · irr(D,M2).

The proof of Proposition 2.2 thus follows. �
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2.3 Bounded irregularity and pull-back
Bounded irregularity behaves well with respect to inverse image.

Proposition 2.3. Let f : (Y,E)→ (X,D) be a morphism of normal crossing pairs over k. Let
R be an effective divisor of X supported on D. Then, for every object M in MIC(X,D,R), the
connection f+M has irregularity bounded by f∗R.

Proof. By writing f as a composition of a closed immersion followed by a smooth morphism, we
are left to suppose that f is either a closed immersion or a smooth morphism. In both cases, the
sought-after bound is local around the maximal points of E, so we can suppose in each case that
E is smooth and irreducible.

Let us assume that f is a smooth morphism. Then, the pull-back E → D is smooth. Since E
is smooth, so is the open set f(E) of D. Thus, f(E) lies in a unique irreducible component T of
D. Since f is smooth, so is the pull-back E → T . Hence, the generic point ηE of E lies above the
generic point ηT of T and a uniformizer of OX,ηT

pulls back to a uniformizer of OY,ηE
. Thus, the

irregularity numbers of M|ηT and (f+M)|ηE are equal. Hence, Irr(Y, f+M) = f∗ Irr(X,M) and
Proposition 2.3 is proved if f is smooth.

We now assume that f is a closed immersion with E smooth and irreducible. Let 0 be a point
in E and let C → Y be a locally closed smooth curve of Y meeting E at 0 only. Corollary 1.45
applied to f(C) and M on X gives

irr(0, (f+M)|C) = irr(f(0),M|f(C)) ≤ (f(C), R)f(0) = (C, f∗R)0,

where the last equality follows from the projection formula. Hence, condition (ii) of Corollary 1.45
is satisfied and Proposition 2.3 follows. �

2.4 Bounded irregularity and change of compactification I
Bounded irregularity behaves well with respect to compactification by normal crossing pairs.

Proposition 2.4. Let U be a smooth variety over k. Let (X1, D1) and (X2, D2) be proper
normal crossing pairs over k compactifying U , that is U = X1 \D1 = X2 \D2. Let j1 : U → X1

and j2 : U → X2 be the inclusions. Let R1 be an effective divisor of X1 supported on D1. Then,
there exists an effective divisor R2 of X2 supported on D2 depending only on (X1, D1), (X2, D2)
and linearly on R1 such that for every object M1 of MIC(X1, D1, R1), the connection j2∗j∗1M1

lies in MIC(X2, D2, R2).

Proof. Using resolution of singularities, we construct a pair (X3, D3) dominating (X1, D1) and
(X2, D2) such that D3 has normal crossing. That is, there is a commutative diagram

U
j1

����
��

��
��

j3
��

j2

���
��

��
��

�

X1 X3p1

��
p2

�� X2

with modifications as horizontal arrows where D3 lies over D1 and D2. Let M1 ∈
MIC(X1, D1, R1). Put M2 = j2∗j∗1M1 and M3 = j3∗j∗1M1. From Proposition 1.23, we have

p+
1 M1 = M3 = p+

2 M2.

Let E be an irreducible component of D2. We have to bound irr(E,M2) by means of (Xi, Di),
i = 1, 2 and R1 only. Let E′ be the strict transform of E in X3. Then,

irr(E,M2) = irr(E′, p+
2 M2) = irr(E′,M3) = irr(E′, p+

1 M1).
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From Theorem 1.44, we further have

Irr(X3, p
+
1 M1) ≤ p∗1 Irr(X1,M1) ≤ p∗1R1.

We deduce

irr(E,M2) ≤ m(E′, p∗1R1) = m(E, p2∗p∗1R1).

Hence, R2 = p2∗p∗1R1 depends linearly on R1 and satisfies the condition of Proposition 2.4. �

2.5 Cohomological boundedness conjecture
Recall that if G is an abelian group and d ≥ 0 an integer, a polynomial C : G→ Z of degree at
most d is an element of Sym•

Z(G∨) of degree at most d, where G∨ is the abelian group dual to G.

Conjecture 2.5. Let (X,D) be a projective normal crossing pair of dimension d over k. There
exists a polynomial C : Div(X,D)⊕Z→ Z of degree at most d, affine in the last variable such
that for every effective divisor R of X supported on D, for every integer r ≥ 0 and every object
M of MICr(X,D,R), we have

dimH∗(X,DR M) ≤ C(R, r).

Remark 2.6. If a polynomial C : Div(X,D)⊕Z→ Z as above exists, we say that cohomological
boundedness holds for (X,D) with bound C.

Remark 2.7. Let d ≥ 0 be an integer. Let k be a field of characteristic 0. We say that cohomological
boundedness holds in dimension d over k if it holds for every choice of (X,D) as above with
(X,D) defined over k and dimX = d.

Remark 2.8. Let d ≥ 0 be an integer. We say that cohomological boundedness holds in dimension
d if it holds in dimension d over every field of characteristic 0.

Lemma 2.9. Cohomological boundedness holds in dimension 1.

Proof. From Lemma A.1, it is enough to treat the case of a smooth connected projective curve
X of genus g over C. Let D be a reduced divisor of X. Let M be an object of MIC(X,D).
From Proposition 1.9 and Theorem 1.14, we are left to bound the cohomology of Sol(Man).
Let j : U = X \D → X be the open immersion and put L := Sol(Man)|U(C). Observe that L is
a local system of rank rkM on U(C). From Lemma 1.36, there is the following distinguished
triangle.

j!L �� Sol(Man) ��
⊕

P∈D C
irr(P,M)
P [−1]

+1
��

We have H0(X(C), j!L) � 0. If L∗ denotes the dual of L, Poincaré duality further gives

dimH2(X(C), j!L) = dimH0(U(C),L∗) ≤ rkM.

On the other hand, χc(U(C),L) = rkM · χ(U(C),C) = rkM · (2− 2g − |D|). Then, Lemma 2.9
follows from the long exact sequence in cohomology induced by the above distinguished triangle.

�

2.6 The χ-boundedness conjecture
We formulate an a priori weaker version of the cohomological boundedness conjecture.

Conjecture 2.10. Let (X,D) be a projective normal crossing pair of dimension d over k. There
exists a polynomial C : Div(X,D)⊕Z→ Z of degree at most d, affine in the last variable such
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that for every effective divisor R of X supported on D, for every integer r ≥ 0 and every object
M of MICr(X,D,R), we have

|χ(X,DR M)| ≤ C(R, r).

Remark 2.11. We adopt for the χ-boundedness conjecture the terminology from Remarks 2.6–2.8
for the cohomological boundedness conjecture.

Remark 2.12. Let d ≥ 0 be an integer. Similarly as in Lemma A.1, the χ-boundedness conjecture
holds in dimension d if it holds in dimension d over C.

Cohomological boundedness trivially implies χ-boundedness. The goal of the next subsection
is to show that they are equivalent.

2.7 The cohomological and χ-boundedness conjectures are equivalent
Proposition 2.13. Let P be a projective space over k. Let X be a smooth subvariety of P.
Let M be a holonomic DX -module. Let H ∈ P∨(k) be a hyperplane such that X ∩H is smooth
and X ∩H → X is non-characteristic for M. Then the canonical comparison morphism

Hn(X,DR M) −→ Hn(X ∩H,DR(M|X∩H))

is an isomorphism if n < dimX − 1 and is injective if n = dimX − 1.

Proof. From Remark 1.11, we reduce to the case where k = C. From Proposition 1.9, we are
left to prove a variant of Proposition 2.13 where now X is the analytification of a smooth
complex algebraic variety and where M is the analytification of a holonomic D-module. Then
Theorem 1.12 ensures that DR M[dimX] is a perverse complex. From the Lefschetz hyperplane
theorem for perverse complexes [dCat17, 2.4.2], the canonical comparison morphism

Hn(X,DR M) −→ Hn(X ∩H, (DR M)|X∩H)

is an isomorphism if n < dimX − 1 and is injective if n = dimX − 1. Since X ∩H → X is
non-characteristic for M, we conclude the proof of Proposition 2.13 using Theorem 1.20. �
Remark 2.14. When X is a projective complex manifold, Proposition 2.13 is also valid via the
same reasoning with either the analytic de Rham complex or the solution complex.

Corollary 2.15. In the setting of Proposition 2.13, assume the existence of C ≥ 0 with

dimH∗(X ∩H,DR(M|X∩H)) ≤ C.
Then, if d denotes the dimension of X, we have

dimH∗(X,DR M) ≤ |χ(X,DR M)|+ 4d · C.
Proof. We can suppose that k = C. From Proposition 2.13, we have for n < d,

dimHn(X,DR M) ≤ C.
Assume that n > d. Then,

dimHn(X,DR M) = dimHn(X(C),DR Man)

= dimH2d−n(X(C),Sol Man)

≤ dimH2d−n((X ∩H)(C),Sol(Man|(X∩H)(C)))

≤ dimHn−2((X ∩H)(C),DR(Man|(X∩H)(C)))

≤ dimHn−2(X ∩H,DR(M|X∩H)) ≤ C,
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where the first and fifth inequality follow from Proposition 1.9, the second follows from
Theorem 1.14 and Poincaré–Verdier duality on X(C), the third follows from Remark 2.14 since
2d− n < d and the fourth inequality follows from Theorem 1.14 and Poincaré–Verdier duality
on (X ∩H)(C). Furthermore, Proposition 1.10 yields

dimHd(X,DR M) ≤ |χ(X,DR M)|+
∑
n
=d

dimHn(X,DR M)

≤ |χ(X,DR M)|+ 2d · C.
Putting all the above inequalities together finishes the proof of Corollary 2.15. �

Proposition 2.16. Let (X,D) be a projective normal crossing pair of dimension d over k. Let
X → P be a closed immersion in some projective space. Assume that χ-boundedness holds for
(X,D) with bound K and that cohomological boundedness holds with bound C for the generic
hyperplane section (Xη, Dη) of (X,D). Then, cohomological boundedness holds for (X,D) with
bound K + 4d · C ′ where C ′ is the composition of C with the linear map Div(X,D)⊕Z→
Div(Xη, Dη)⊕Z deduced from Xη → X.

Proof. Let R be an effective divisor of X supported on D. Let r be an integer. By Bertini’s
theorem, there exists a dense open subset V in P∨ such that for every hyperplane H ∈ V (k),
the pair (X ∩H,D ∩H) is smooth of dimension d− 1 and D ∩H has normal crossing. Let η be
the generic point of P∨. Following the notation from § 1.4, consider the following commutative
diagram with cartesian squares.

Xη ��

��

XV
��

��

XQ ��

��

X

��

Qη ��

��

QV
��

��

Q ��

��

P

η �� V �� P∨

Let π : XQ → P∨ be the composition morphism and let πV : XV → V and πη : Xη → η be its
pull-back above V and η, respectively. Let DV and RV be the pull-back of D and R to XV and
let Dη and Rη be their pull-back to Xη. Observe that (Xη, Dη) is a pair of dimension d− 1 over η
where Dη has normal crossing. Since cohomological boundedness holds for (Xη, Dη) with bound
C, we have for every object Nη in MICr(Xη, Dη, Rη),

dimH∗(Xη,DR Nη) ≤ C(Rη, r).

On the other hand, for every object N in MICr(XV , DV , RV ) we have

(πV +N)η � πη+Nη � RΓ(Xη,DR Nη)[d− 1].

Thus, the space Hn(Xη,DR Nη) is the generic fibre of the DV -module

Hn−d+1πV +N

for every n ≥ 0. Let M be an object in MICr(X,D,R). From Proposition 2.3, the pull-back MV

of M to XV lies in MICr(XV , DV , RV ). Since k is infinite, Lemma 1.5 ensures the existence of a
hyperplane H ∈ V (k) such that X ∩H → X is non-characteristic for M and such that the coho-
mology modules of πV +MV are flat connections in a neighbourhood of H ∈ V (k). In particular,
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the inclusion i : {H} → V is non-characteristic for the cohomology modules of πV +MV . Hence,
Theorem 1.20 combined with base change for D-modules [HTT00, 1.7.3] yields

i∗Hn−d+1πV +MV � Hn−d+1i+πV +MV

� HnπH+(MV |X∩H)

� Hn(X ∩H,DR M|X∩H),

where πH : X ∩H → {H} is the pull-back of π above H ∈ V (k). Since Hn−d+1πV +MV is a flat
connection in a neighbourhood of H, we also have

dimHn(Xη,DR(MV )η) = dim i∗Hn−d+1πV +MV .

Thus,
dimH∗(X ∩H,DR M|X∩H) ≤ C(Rη, r).

Then, Corollary 2.15 yields

dimH∗(X,DR M) ≤ |χ(X,DR M)|+ 4d · C(Rη, r) ≤ K(R, r) + 4d · C(Rη, r),

which concludes the proof of Proposition 2.16. �
Corollary 2.17. Let d ≥ 2 be an integer. Then cohomological boundedness holds in dimension
d if it holds in dimension d− 1 and if χ-boundedness holds in dimension d.

From Lemma 2.9 and Corollary 2.17, we deduce the following.

Corollary 2.18. The cohomological and χ-boundedness conjectures are equivalent.

3. Nearby slopes and boundedness

3.1 Resolution relative to a normal crossing divisor
Let (X,D) be a normal crossing pair over k. If C is a closed subscheme of X, we say that C
and D have simultaneously only normal crossing if for every point x of C, there exists a regular
system of parameters (x1, . . . , xn) for OX,x such that ID is generated at x by x1 · · ·xk and IC

is generated at x by some monomials in the xj for j = 1, . . . , n (therefore, by some xj if C is
smooth at x).

Definition 3.1. Let Z be a closed subscheme of X. We say that a blow-up p : Y → X with
centre C is admissible with respect to (Z,D) if the following conditions are satisfied:

(i) C is a smooth nowhere dense subset of Zred;
(ii) C and D have simultaneously only normal crossing.

Then, we denote by Z ′ the strict transform of Z and put D′ = p−1(D) ∪ p−1(C) endowed with
its reduced structure. The pair (Z ′, D′) is the transform of (Z,D) by p : Y → X.

The form of embedded resolution needed in this paper is the following theorem. For a proof,
see Theorems 8.4 and 8.6 in [BM89].

Theorem 3.2. Let (X,D) be a normal crossing pair over k. Let Z be a closed subscheme of X.
Then, there exists a composition p : Y → X of admissible blow-up with respect to the successive
transforms of (Z,D) such that the final transform (Z ′, D′) satisfies that Z ′

red is smooth and
(Z ′, D′) have simultaneously only normal crossing.

Definition 3.3. A map p : Y → X as above is a resolution of Z relative to D.
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The following lemma is obvious from the definitions.

Lemma 3.4. Let (X,D) be a normal crossing pair over k. Let Z, T be subschemes of X with
Tred ⊂ Zred. Then a blow-up of X admissible with respect to (T,D) is admissible with respect
to (Z,D).

Lemma 3.5. Let (X,D) be a normal crossing pair over k. Let Z, T be subschemes of X with
Tred ⊂ Zred such that Tred is nowhere dense in Zred. Then, there exists a resolution p : Y → X of
Z relative to D such that the pull-back scheme p−1(T ) is an effective Cartier divisor such that
p−1(T ) +D′ has normal crossings, where (Z ′, D′) is the transform of (Z,D) by p : Y → X.

Proof. Let q : X ′ → X be a blow-up admissible with respect to (T,D). From Lemma 3.4, the
map q is admissible with respect to (Z,D). Let (Z ′, T ′, D′) be the transform of (Z, T,D) by q.
Observe that T ′

red ⊂ Z ′
red and that T ′

red is nowhere dense in Z ′
red. We argue that if Lemma 3.5

holds for (X ′, D′, Z ′, T ′), then it holds for (X,D,Z, T ). Indeed, let ρ : Y ′ → X ′ be a resolution
of Z ′ relative to D′ such that the pull-back scheme ρ−1(T ′) is an effective Cartier divisor such
that ρ−1(T ′) +D′′ has normal crossing, where (Z ′′, D′′) is the transform of (Z ′, D′) by ρ. Then,
the composition ρ ◦ q : Y ′ → X is a resolution of Z relative to D. On the other hand, we have
q−1(T ) = T ′ ∪ E where E is an effective Cartier divisor. Thus ρ−1(q−1(T )) = ρ−1(T ′) ∪ ρ−1(E) is
an effective Cartier divisor. Observe that (Z ′′, D′′) is also the transform of (Z,D) by ρ ◦ q. Since
D′′ contains ρ−1(E), the divisors ρ−1(T ′) +D′′ and ρ−1q−1(T ) +D′′ have the same support.
Hence, ρ−1q−1(T ) +D′′ has normal crossing and Lemma 3.5 is indeed true for (X,D,Z, T ).

Using a resolution of T relative to D as given by Theorem 3.2, we are thus left to prove
Lemma 3.5 in the case where Tred is smooth and T and D have simultaneously only normal
crossings. In particular, Tred and D have simultaneously only normal crossings. Let q : X ′ → X
be the blow-up of X at Tred. Since Tred ⊂ Zred is nowhere dense in Zred, the map q : X ′ → X is
admissible with respect to (Z,D). Let (Z ′, D′) be the transform of (Z,D) by q. Let ρ : Y ′ → X ′

be a resolution of Z ′ relative to D′. We claim that the map p := ρ ◦ q : Y ′ → X does the job. Let
(Z ′′, D′′) be the transform of (Z ′, D′) by ρ. Then, p : Y ′ → X is a resolution of Z relative to D
and (Z ′′, D′′) is the transform of (Z,D) by p. Since q−1(Tred) is an effective Cartier divisor of X ′,
so is q−1(T ). Hence, p−1(T ) is an effective Cartier divisor of Y ′. We are thus left to show that
p−1(T ) +D′′ has normal crossings. Observe that D′′ contains ρ−1(D′). Since D′ contains q−1(T )
by definition, D′′ contains p−1(T ). We are thus left to showing that D′′ has normal crossings,
which is obvious by construction. �

3.2 Bounded irregularity and change of compactification II
Proposition 3.7 below provides a generalization of Proposition 2.4 where part of the divisor at
infinity is being kept while changing compactification. Before proving it, we need the following.

Lemma 3.6. Let (X,D) be a normal crossing pair over k and let Z be a divisor of X. Let
p : Y → X be a resolution of Z relative to D and put F := (p−1(Z ∪D))red. Let R be an effective
divisor supported on D. Then for every object M of MIC(X,D,R), the connection (p+M)(∗F )
lies in MIC(Y, F, p∗R).

Proof. Put E = f−1(D). By definition of a resolution relative to a normal crossing divisor, the
divisors E ⊂ F have normal crossing. In particular, p : (Y,E)→ (X,D) is a morphism of normal
crossing pairs. From Proposition 2.3, we deduce that p+M is an object of MIC(Y,E, p∗R). Along
a component of F that is not a component of E, the generic irregularity of (p+M)(∗F ) is 0.
Thus, (p+M)(∗F ) is an object of MIC(Y, F, p∗R) and Lemma 3.6 is proved. �

2796

https://doi.org/10.1112/S0010437X24007371 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007371


Cohomological boundedness for flat bundles

Proposition 3.7. Let (X,D) be a proper normal crossing pair over k. Let V ⊂ X be an open
subset such that Z := X \ V is a divisor and put DV := V ∩D. Let j : (V,DV )→ (Y,E) be a
dense open immersion where (Y,E) is a proper normal crossing pair over k with Y \ E = V \DV .
Then for every effective divisor R supported on D, there exists an effective divisor S supported
on E depending only on V , on j : (V,DV )→ (Y,E) and linearly on R such that for every object
M of MIC(X,D,R), the connection j∗M|V is an object of MIC(Y,E, S).

Proof. Let p : Y ′ → X be a resolution of Z relative toD. Put F := (p−1(Z ∪D))red. In particular,
p : Y ′ → X induces an isomorphism p−1(V )→ V . Furthermore, Y ′ \ F = V \DV . Hence, the
normal crossing pair (Y ′, F ) is a compactification of V \DV . By assumption, (Y,E) is also a
compactification of V \DV . Let j : V \DV → V be the inclusion. Let R be an effective divisor
of X supported on D. Let M be an object of MIC(X,D,R). From Lemma 3.6, the connection
(p+M)(∗F ) is an object of MIC(Y ′, F, p∗R). Proposition 2.4 applied to V \DV , (Y ′, F ), (Y,E)
and p∗R yields the existence of an effective divisor S of Y supported on E depending only on
(Y ′, F ), (Y,E) and linearly on p∗R such that

N := j∗j∗((p+M)(∗F ))|V \DV
� j∗j∗j+M|V � j∗M|V

is an object of MIC(Y,E, S). We thus have N|V �M|V and S only depends on V , on j :
(V,DV )→ (Y,E) and on R. This concludes the proof of Proposition 3.7. �

3.3 Resolution and multiplicity estimate
If X is a smooth connected variety over k, we recall from § 1.13 that any Cartier divisor on X
can be seen as a Z-valued function on ZRdivis(X) via the injection CDiv(X)→ Div(X).

Lemma 3.8. Let (X,D) be a normal crossing pair of dimension d over k. Let C be a smooth
subscheme of X which has simultaneously only normal crossing with D. Let v be the divisorial
valuation associated to the exceptional divisor of the blow-up p : Y → X along C. Then, D(v) ≤
d. If D is smooth, then D(v) is 0 or 1.

Proof. The question is étale local around the generic point of C. We can thus suppose the
existence of a local system of coordinates (x1, . . . , xd) such that ID is generated by

∏
i∈I xi

where I ⊂ {1, . . . , d} and IC is generated by some xj for j ∈ J ⊂ {1, . . . , d}. Then

ID =
( ∏

i∈I∩J

xi

∏
i∈I\I∩J

xi

)
.

Since D(v) is simply the multiplicity of p∗D along the exceptional divisor, we deduce

D(v) = |I ∩ J | ≤ d.
If D is smooth, then I ∩ J is either empty or a singleton depending on whether D contains C,
and Lemma 3.8 follows. �

The following lemma appeared as Proposition 4.3.2 in [Tey16] with the tacit assumption that
D has simple normal crossing. If some components of D are singular, the coefficient fdegR is not
enough and has to be replaced by d · (fdegR) where d is the dimension of the ambient variety.
We spell out the proof here for completeness.

Lemma 3.9. Let (X,D) be a normal crossing pair of dimension d over k. Let R be an effective
divisor supported on D. Let Z be an effective Cartier divisor on X. Let p : Y → X be a com-
position of blow-up which are admissible with respect to the successive transforms of (Z,D).
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Let v be a divisorial valuation centred at a component of Z(Y ) = p∗Z. Then,

R(v) ≤ d · (fdegR) · Z(v), (3.10)

where R and Z are viewed as b-divisors via CDiv(X)→ Div(X).

Proof. We argue by induction on the number n of admissible blow-up needed to write p. If n = 0,
there is nothing to prove. Let us now treat the case of n+ 1 blow-ups. Let

p : Y
q

�� X ′ r
�� X

where r is a composition of n blow-up admissible with respect to the successive transforms of
(Z,D), and where q is admissible with respect to the final transform (Z ′, D′) of (Z,D) by r. Let
C be the set of strict transforms in X ′ of the exceptional divisors that appear in r. For E ∈ C,
we let vE be the associated divisorial valuation. In what follows, the notation ′ indicates a strict
transform in X ′ and ′′ indicates a strict transform in Y . Write R = α1D1 + · · ·+ αmDm with
αi > 0 and Z = β1Z1 + · · ·+ βkZk with βi > 0. We have

Z(X ′) = β1Z
′
1 + · · ·+ βkZ

′
k +

∑
E∈C

Z(vE)E,

with Z(vE) > 0 by admissibility of r with respect to the successive transforms of (Z,D), and

R(X ′) = α1D
′
1 + · · ·+ αkD

′
k +

∑
E∈C

R(vE)E.

We have to detail the effect of q∗ on each component contributing to the above equalities. Let C
be the centre of q and let P be its exceptional divisor with associated valuation vP . Let E ∈ C.
Since C and E have simultaneously only normal crossing and since E is smooth, Lemma 3.8 gives
q∗E = E′′ + εEP where εE ∈ {0, 1}. Since C and D′

i have simultaneously only normal crossing,
Lemma 3.8 gives again

q∗D′
i = D′′

i + εiP where εi ∈ {0, . . . , d}.
Furthermore, let us write

q∗Z ′
i = Z ′′

i + μiP where μi ∈ N.

We have

Z(Y ) =
∑

βiZ
′′
i +

∑
E∈C

Z(vE)E′′ +
( ∑

βiμi +
∑
E∈C

εEZ(vE)
)
P

and

R(Y ) =
∑

αiD
′′
i +

∑
E∈C

R(vE)E′′ +
( ∑

αiεi +
∑
E∈C

εER(vE)
)
P.

By recursion assumption, we have to check the inequality (3.10) for v = vP . By admissibility of
q with respect to (Z ′, D′), the centre C lies in Z ′

red, that is in one of the Z ′
i. Hence, one of the μi

is strictly positive. Thus,

d · (fdegR) · Z(vP ) = d · (fdegR) ·
( ∑

βiμi +
∑

εEZ(vE)
)

≥ d · (fdegR) +
∑

εE
(
d · (fdegR) · Z(vE)

)
≥

∑
αiεi +

∑
εER(vE) = R(vP )

and the proof of Lemma 3.9 is complete. �
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3.4 Nearby slopes for D-modules
Let X be a smooth algebraic variety over k. Let f be a non-constant function on X. We denote
by ψf the nearby cycles functor associated to f . For a general reference on nearby cycles, see
[MM04]. Inspired by a letter of Deligne to Malgrange [Del07], the following notion of slopes was
defined in [Tey16].

Definition 3.11. Let M be a holonomic DX -module. The nearby slopes of M associated to f
are the rationals r ≥ 0 such that there exists a germ N of meromorphic connection at 0 in A1

with slope r verifying
ψf (M⊗ f+N) �= 0. (3.12)

We denote by Slnb
f (M) the set of nearby slopes of M associated to f .

Remark 3.13. Since N is localized at 0, the connection f+N is localized along div f . Hence,
Slnb

f (M) = Slnb
f (M(∗Z)) where Z denotes the support of div f .

Remark 3.14. The nearby slopes are sensitive to the non reduced structure of div f .

For f as above, Deligne proved that the set Slnb
f (M) is finite. The following theorem is the

main result of [Tey16].

Theorem 3.15. Let X be a smooth algebraic variety over k. Let M be a holonomic DX -module.
Then, there is an integer C depending only on M such that for every non-constant function f
on X, the set Slnb

f (M) is bounded by C.

In this paper, we will need a boundedness of a different kind where f is fixed but where M

is allowed to vary over the objects of MIC(X,D,R) where D is a normal crossing divisor and
where R is an effective divisor supported on D.

Examples of this kind of bound were obtained in the étale setting in [HT21] and [Hu23]
in a semi-stable situation where the horizontal ramification is tame. In our case, the horizontal
irregularity will be allowed to be non-trivial. The price to pay for this generality will be to require
that the zero locus of f contains the turning locus of M. See Proposition 3.22 below.

Nearby slopes are compatible with proper push-forward. See [Tey16, Theorem 3].

Proposition 3.16. Let p : Y → X be a proper morphism of smooth varieties over k. Let f be
a non-constant function on X such that fp = 0 is a divisor of Y . Then, for every holonomic
DY -module M, we have

Slnb
f (p+M) ⊂ Slnb

fp(M).

The following lemma is useful for dévissages.

Lemma 3.17. Let p : (Y,E)→ (X,D) be a proper morphism of pairs over k such that the
induced morphism Y \ E → X \D is an isomorphism. Let M be an object in MIC(X,D). Then,
the canonical morphism p+p

+M→M is an isomorphism.

Proof. Since p is proper, [Meb04, 3.6-4] ensures that the DX -module p+p
+M is an object of

MIC(X,D). Then, Lemma 3.17 follows from Proposition 1.23 and base change for D-modules
[HTT00, 1.7.3]. �
Proposition 3.18. Let p : (Y,E)→ (X,D) be a proper morphism of pairs over k. Let f be a
non-constant function on X such that fp = 0 is a divisor of Y . Let Z be the support of div f
and put T := p−1(Z). Assume that Y \ T → X \ Z is an isomorphism. Let M be an object of
MIC(X,D). Then,

Slnb
f (M) ⊂ Slnb

fp((p
+M)(∗T )).
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Proof. We have

Slnb
f (M) = Slnb

f (M(∗Z)) = Slnb
f (p+p

+(M(∗Z))) ⊂ Slnb
fp((p

+M)(∗T )).

The first equality follows from Remark 3.13. Since Y \ T → X \ Z is an isomorphism, the
induced morphism Y \ (T ∪ E)→ X \ (Z ∪D) is an isomorphism with M(∗Z) being an object of
MIC(X,Z ∪D). Hence, the second equality follows from Lemma 3.17. The last inclusion follows
from Proposition 3.16. Proposition 3.18 is thus proved. �

Over curves, nearby slopes coincide with the traditional notion of slopes recalled in
Definition 1.34. This is given by the following lemma proved in [Tey16, 3.3.1].

Lemma 3.19. Let C be a smooth curve over k. Let 0 be a point in C and let t be a local
uniformizer of C at 0. Let M be an object in MIC(C, 0). Then the nearby slopes of M associated
to t are the slopes of M at 0 in the sense of Definition 1.34.

3.5 Boundedness of nearby slopes
In this paragraph, we will need to resolve the turning locus of a connection M while resolving
a fixed subscheme relatively to the pole locus. Combined with Kedlaya’s Theorem 1.44, this
resolution gives some control on the nearby slopes of M. The existence of this resolution is
achieved by the following.

Lemma 3.20. Let (X,D) be a normal crossing pair over k. Let M be an object of MIC(X,D).
Let Z be a divisor of X such that TL(M) ⊂ Zred. Then, there is a morphism of normal crossing
pairs p : (Y,E)→ (X,D) such that p : Y → X is a resolution of Z relative to D and p+M has
good formal structure.

Proof. From the Kedlaya–Mochizuki Theorem 1.32, there exists a morphism of smooth algebraic
varieties q : Y ′ → X obtained as a composition of blow-up above TL(M) such that E′ = q−1(D)
is a normal crossing divisor of Y ′ and q+M admits good formal structure along E′. From [Sta-a,
080B], there is a closed subscheme T of X with Tred ⊂ TL(M) such that q : Y ′ → X identifies
with the blow-up of X along T . By the universal property of the blow-up, q : Y ′ → X is a
final object in the full subcategory of schemes over X consisting in morphisms Y ′′ → X such
that the inverse image of T is an effective Cartier divisor on Y ′′. By assumption, we have
Tred ⊂ TL(M) ⊂ Zred. Since Z is a divisor and since TL(M) has pure codimension 2 in X in
virtue of Theorem 1.31, TL(M) is nowhere dense in Zred. Hence, Tred is nowhere dense in Zred.
Thus, Lemma 3.5 applies. That is, there exists a resolution p : Y → X of Z relative to D such
that the pull-back scheme p−1(T ) is an effective Cartier divisor on Y . Put E = p−1(D). Then,
there is the following canonical commutative diagram of normal crossing pairs.

(Y,E)
h

��

p
		�

��������
(Y ′, E′)

q


���������

(X,D)

From Proposition 1.30, the connection h+(q+M) � p+M has good formal structure and the proof
of Lemma 3.20 is complete. �

We recall the following boundedness result for nearby slopes, formulated in terms of the
highest slope b-divisor from Remark 1.42. See [Tey16, 3.4.1] for a proof.
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Lemma 3.21. Let (X,D) be a normal crossing pair over k. Let M be an object of MIC(X,D)
with good formal structure. Let f be a non-constant function on X such that div f is supported
on D. Let r ∈ Q≥0 such that for every divisorial valuation v centred at an irreducible component
of div f , we have

R(M)(v) ≤ r · (div f)(v),

where R(M) is the highest slope b-divisor from Remark 1.42. Then the nearby slopes of M

associated to f are smaller than r.

Proposition 3.22. Let (X,D) be a normal crossing pair of dimension d over k. Let M be an
object of MIC(X,D). Let f be a non-constant function on X. Suppose that the turning locus
of M lies in the support of div f . Then, the nearby slopes of M associated to f are bounded by
d · fdeg Irr(X,M).

Proof. Put Z := div f . Since TL(M) ⊂ Zred, Lemma 3.20 ensures the existence of a morphism
of normal crossing pairs p : (Y,E)→ (X,D) such that p : Y → X is a resolution of Z relative
to D and p+M has good formal structure. Let T := p−1(Z) = p∗ div f = div fp be the pull-
back scheme. Let (Z ′, D′) be the transform of (Z,D) by p. Since Z is a divisor, so is Z ′. By
assumption, Z ′ and D′ have only simultaneously normal crossing. Thus, Z ′ ∪D′ is a normal
crossing divisor of Y . Since Z ′ ∪D′ and T ∪ E have the same support, we deduce that T ∪ E is a
normal crossing divisor of Y . We are going to apply Lemma 3.21 on (Y, T ∪ E) to (p+M)(∗T ) and
fp. Since p+M ∈ MIC(Y,E) has good formal structure, so does (p+M)(∗T ) ∈ MIC(Y, T ∪ E).
By assumption, div fp is supported on T ∪ E. Let v be a divisorial valuation centred at an
irreducible component of T = div fp. If the centre of v is not a component of E, we have

R((p+M)(∗T ))(v) = 0 ≤ d · (fdeg Irr(X,M)) · (div f)(v).

Otherwise, R((p+M)(∗T ))(v) = R(M)(v). On the other hand, we have

R(M)(v) ≤ (IrrM)(v)

≤ (Irr(X,M))(v)

≤ d · (fdeg Irr(X,M)) · (div f)(v),

where the first inequality is trivial, the second follows from Kedlaya’s Theorem 1.44 and where
the last inequality comes from Lemma 3.9. From Lemma 3.21, we deduce that the nearby slopes
of (p+M)(∗T ) associated to fp are bounded by d · (fdeg Irr(X,M)). Finally, Proposition 3.18
applied to the proper morphism of pairs p : (Y,E)→ (X,D) yields

Slnb
f (M) ⊂ Slnb

fp((p
+M)(∗T )),

which concludes the proof of Proposition 3.22. �
Proposition 3.23. Let (X,D) be a normal crossing pair of dimension d over C. Let C be a
smooth connected curve over C. Let f : X → C be a dominant proper morphism. Let 0 be a
closed point in C. Suppose that the reduced fibre Z of f over 0 is not empty and is contained
in D. Suppose that cohomological boundedness holds with bound K for the generic fibre of
f : X → C. Then for every effective divisor R of X supported on D, for every integer r ≥ 0 and
every object M of MICr(X,D,R) with TL(M) ⊂ Z, we have

|χ(Z(C),Sol Man)| ≤ d ·K(Rη, r) · fdegR,

where Rη is the pull-back of R to the generic fibre of f : X → C.
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Proof. By the generic smoothness theorem, the generic fibre of X over C is smooth and the
generic fibre of (X,D) over C is again a normal crossing pair. Hence, the statement of cohomo-
logical boundedness makes sense over the generic fibre of (X,D) over C. We reproduce here a
reasoning carried out in [Tey23, Theorem 2] in a particular case. Let t be a local uniformizer of
C around 0. Since Z ⊂ D, we have

(Sol Man)|Z(C) � Irr∗Z(C) Man.

Since the irregularity complex commutes with proper push-forward [Meb90], we deduce

χ(Z(C),Sol Man) = χ(Z(C), Irr∗Z(C) Man) = (−1)d−1χ(0, Irr∗0 f
an
+ Man).

From Theorem 1.13, the irregularity complex of a holonomic DC-module is a skyscraper sheaf
concentrated in degree 1. Hence, Lemma 1.36 gives

χ(0, Irr∗0 f
an
+ Man) =

∑
(−1)i dimH1 Irr∗0 Hi−1fan

+ Man

=
∑

(−1)i irr(0,Hi−1fan
+ Man).

On the other hand, the properness of f yields from [HTT00, 4.7.2] a canonical identification
fan
+ Man � (f+M)an. Since the irregularity number at 0 is a formal invariant, we deduce

χ(0, Irr∗0 f
an
+ Man) =

∑
(−1)i irr(0,Hi−1f+M).

For every integer i, Lemma 3.19 gives

irr(0,Hif+M) ≤ rkHif+M ·Max Slnb
t (Hif+M).

From Proposition 3.16 and the exactness of nearby cycles, we have for every i

Slnb
t (Hif+M) ⊂ Slnb

t (f+M) ⊂ Slnb
f (M).

We deduce

|χ(Z(C),Sol Man)| ≤ Max Slnb
f (M)

∑
rk Hif+M.

Since Z contains the turning locus of M, Proposition 3.22 implies that the nearby slopes of M

associated to f are bounded by d · fdegR. Since cohomological boundedness holds with bound
K for the generic fibre of f : X → C, Proposition 3.23 follows. �

4. Partial discrepancy b-divisors

Before proving cohomological boundedness for surfaces, we make a détour through the theory
of b-divisor to introduce the partial discrepancy of a b-divisor. As usual, k denotes a field of
characteristic 0.

4.1 Chain of blow-up
Let X be a smooth surface over k. Let n ≥ 0. Borrowing the terminology of [CPR02], a chain of
blow-up of X of length n is a sequence p of maps

p : X ′ := Xn

pn−1
�� Xn−1

pn−2
�� · · · p0

�� X0 = X (4.1)

where pi is a blow-up at a single closed point Pi of Xi with pi(Pi+1) = Pi. We let Ep be the
exceptional divisor of pn−1. We denote by p : X ′ → X the composition of the pi, 0 ≤ i ≤ n− 1
and by π : Xn−1 → X the composition of the pi, 0 ≤ i ≤ n− 2.
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The following theorem was proven by Zariski [Zar39] when k is algebraically closed. See
[Cos97] for arbitrary k of characteristic 0.

Theorem 4.2. Let X be a smooth connected surface over k. Let k(X) be the function field
of X. The map associating to any chain of blow-up p of X the valuation on k(X) induced by
Ep is a bijection between the set of chains of blow-up of X and ZRdivis(X).

The map p : X ′ → X corresponding to a divisorial valuation v via Theorem 4.2 is the smallest
modification of X on which the centre of v is a divisor. This is the following Proposition 4.4.
To prove it, we need the following.

Lemma 4.3. Let f : Y → X be a modification between smooth connected surfaces over k. Let
P be a closed point of X. Then either the scheme f−1(P ) has pure dimension 1 or f−1(P ) is a
single point Q. In the latter case, there is a neighbourhood U of P in X such that the induced
morphism f |U : f−1(U)→ U is an isomorphism.

Proof. This follows from the fact [Sta-b, 0C5R] that a proper birational morphism between
smooth connected surfaces is a sequence of blow-up in closed points. �
Proposition 4.4. Let X be a smooth connected surface over k. Let v be a divisorial valuation
of X and let f : Y → X be a modification such that the centre of v on Y is a divisor. Let p
be the chain of blow-up (4.1) corresponding to v via Theorem 4.2. Then, f admits a unique
factorization through p : X ′ → X.

Proof. We argue by induction on the length n ≥ 0 of p. If n = 0, there is nothing to do. Assume
that n > 0 and that p has length n as in (4.1). Let E be the centre of v on Y . Since the centre
of v on X is the point P0, the map f sends E on P0. In particular, the scheme f−1(P0) contains
E. From Lemma 4.3, the scheme f−1(P0) has pure dimension one. It is thus an effective Cartier
divisor on Y . From the universal property of the blow-up, we deduce that f factors uniquely
through p0 : X1 → X via a modification g : Y → X1. Observe that the chain

q : X ′ := Xn

pn−1
�� Xn−1

pn−2
�� · · · p1

�� X1

is the chain corresponding to v via Theorem 4.2 applied to the smooth connected surface X1.
Since q has length n− 1, the recursion assumption applies to g : Y → X1 and v and provides
a unique factorization of g through q : X ′ → X1. We thus get the desired factorization of f
through p. �

4.2 Partial discrepancy divisor
Armed with Zariski’s Theorem 4.2, we are now in a position to define the partial discrepancy
of a b-divisor on a smooth connected surface endowed with a reduced divisor. Although defined
for every Z-valued function on the set of divisorial valuations, the partial discrepancy is better
behaved on a subgroup of the group of b-divisors that we now introduce.

Lemma 4.5. Let (X,D) be a connected pair of dimension 2 over k. Let Z be a b-divisor on X and
let us view D as a b-divisor via Cart(X)→ Div(X). The following conditions are equivalent.

(i) The support of Z : ZRdivis(X)→ Z lies in the support of D : ZRdivis(X)→ Z.
(ii) For every modification f : Y → X, the support of Z(Y ) is contained in the support of f∗D.

Proof. We assume that condition (i) holds. Let f : Y → X be a modification and let v be a
divisorial valuation centred at a divisor in the support of Z(Y ). Then Z(v) = (Z(Y ))(v) �=
0. Hence, D(v) = (f∗D)(v) �= 0 and condition (ii) holds. On the other hand, assume that

2803

https://doi.org/10.1112/S0010437X24007371 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007371


H. Hu and J.-B. Teyssier

condition (ii) holds. Let v be a divisorial valuation on X such that Z(v) �= 0. Then, there
exists a modification f : Y → X such that the centre E of v on Y is a divisor. Since Z(v) =
m(E,Z(Y )) �= 0, the divisor E is a component of Z(Y ). By assumption, we deduce that E is a
component of f∗D. Thus, D(v) = m(E, f∗D) �= 0. �
Definition 4.6. Let (X,D) be a connected pair of dimension 2 over k. Let Z be a b-divisor
on X. If the equivalent conditions of Lemma 4.5 are satisfied, we say that Z is a b-divisor of
(X,D). We denote by Div(X,D) the subgroup of Div(X) formed by b-divisors of (X,D).

Let Z be a b-divisor on (X,D) as in Definition 4.6. We define a new function

δZ : ZRdivis(X) −→ Z

as follows. Let v ∈ ZRdivis(X). Let p be the chain of blow-up of X as in (4.1) corresponding to
v via Theorem 4.2. If n = 0 or if n ≥ 1 and Pn−1 is a singular point of the support of π∗D, we
put (δZ)(v) = 0. Otherwise, we put

(δZ)(v) := (Z(Xn−1))(v)− Z(v),

where Z(Xn−1) is viewed as a b-divisor via Cart(Xn−1)→ Div(X).

Remark 4.7. Assume that n ≥ 1 and that Pn−1 is not a singular point of the support of π∗D.
Then, if Pn−1 does not lie in the support of Z(Xn−1), we have (Z(Xn−1))(v) = 0. Otherwise,
Pn−1 lies in the support of Z(Xn−1). Since the support of π∗D contains that of Z(Xn−1), Pn−1

is not a singular point of the support of Z(Xn−1). Thus, (Z(Xn−1))(v) is simply the multiplicity
of the unique irreducible component of Z(Xn−1) passing through Pn−1.

Example 4.8. If Z lies in the image of Cart(X)→ Div(X), then δZ = 0.

Proposition 4.9. Let (X,D) be a connected pair of dimension 2 over k. Let Z be a b-divisor
of (X,D). Then δZ is a b-divisor of (X,D).

Proof. Let f : Y → X be a modification of X. Let v be a divisorial valuation centred at a divisor
of Y . Let p be the chain of blow-up (4.1) corresponding to v via Theorem 4.2. Assume that
n ≥ 1 and that Pn−1 is not a singular point of the support of π∗D. From Remark 4.7, there are
two cases. If Pn−1 does not lie in support of Z(Xn−1), then

(δZ)(v) = (Z(Xn−1))(v)− Z(v) = −Z(v)

and since Z is a b-divisor, there is only a finite number of v as above for which (δZ)(v) �= 0.
Otherwise Pn−1 is a smooth point of the support of Z(Xn−1). If w is the divisorial valuation
corresponding to the unique irreducible component of Z(Xn−1) passing through Pn−1, we thus
have (Z(Xn−1))(v) = Z(w), so that

(δZ)(v) = Z(w)− Z(v).

On the other hand, Proposition 4.4 implies the existence of the following commutative triangle.

Y

f ��
��

��
��

��
�� X ′

p

��

X

Since the centre of w on X ′ is a divisor, so is its centre on Y . Since Z is a b-divisor, we again
conclude that there is only a finite number of v as above for which (δZ)(v) �= 0. This proves
that δZ is a b-divisor of X. We are left to prove that δZ is a b-divisor of (X,D). Let v be
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a divisorial valuation with D(v) = 0. Since Z is a b-divisor of (X,D), we have Z(v) = 0 and
(Z(Xn−1))(v) = 0. This concludes the proof of Proposition 4.9. �
Definition 4.10. Let (X,D) be a connected pair of dimension 2 over k. Let Z be a b-divisor
of (X,D). Then δZ is called the partial discrepancy of Z.

The following proposition expresses the partial discrepancy without any reference to the
chains of blow-up provided by Zariski’s Theorem 4.2.

Proposition 4.11. Let (X,D) be a connected pair of dimension 2 over k. Let Z be a b-divisor
of (X,D). Let f : Y → X be a modification of X. Let Y ′ → Y be the blow-up of Y at a closed
point P and let E be its exceptional divisor. Let v be a divisorial valuation on X such that the
centre of v on Y is P and the centre of v on Y ′ is E. If P is a singular point of the support of
f∗D, then (δZ)(v) = 0. Otherwise, we have (δZ)(v) = (Z(Y ))(v)− Z(v) where Z(Y ) is viewed
as a b-divisor via Cart(Y )→ Div(X).

Proof. Let p be the chain of blow-up (4.1) corresponding to v via Theorem 4.2. We use the
notation from § 4.1. Since the centre of v on Y is a point, so is the centre of v on X. Thus, we
have n ≥ 1. From Proposition 4.4 applied to the composition Y ′ → Y → X and v, there is the
following commutative diagram.

E ��

��

Y ′ ��

��

X ′

pn−1

��

P �� Y

f ���
��

��
��

��
Xn−1

π

��

X

Let w be the divisorial valuation onX corresponding to the penultimate exceptional divisor En−1

of the chain p. In particular, the centres of v and w on Xn−1 are Pn−1 and En−1, respectively.
They are, in particular, distinct with that of w being a divisor. Thus, E and the centre of w on
Y ′ are distinct divisors. Since all what Y ′ → Y does is to contract E to P , we deduce that the
centre of w on Y is again a divisor. A second application of Proposition 4.4 to f : Y → X and
w yields the following commutative diagram.

E ��

��

Y ′ ��

��

X ′

pn−1

��

P �� Y

f ���
��

��
��

��
h

�� Xn−1

π

��

X

Observe that the scheme h−1(Pn−1) contains P . If h−1(Pn−1) was an effective Cartier divisor,
then the universal property of blow-up would provide the following commutative diagram.

Y ′ ��

��

X ′

pn−1

��

Y



��������� h
�� Xn−1
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In particular, the centre of v on Y would be a divisor. Contradiction. Hence, h−1(Pn−1) is not
an effective Cartier divisor. From Lemma 4.3, we deduce the existence of a neighbourhood U of
Pn−1 in Xn−1 such that h induces an isomorphism h|U : h−1(U)→ U over X. Proposition 4.11
then follows. �

Remark 4.12. The terminology partial discrepancy divisor comes from the fact that we are
looking at the failure of Z to lie in the image of Cart(Y )→ Div(X) with Y → X a mod-
ification by only contemplating the smooth points of Z(Y ). The justification for this comes
from Theorem 5.20, showing that de Rham cohomology only sees the partial discrepancy of the
irregularity b-divisors.

Remark 4.13. Let (X,D) be a connected pair of dimension 2 over k. Let f : Y → X be a mod-
ification and put E := (f∗D)red. Then, the canonical isomorphism Div(X)→ Div(Y ) induces
an isomorphism Div(X,D)→ Div(Y,E). We thus have the following square.

Div(X,D)
∼

��

δ
��

Div(Y,E)

δ
��

Div(X,D)
∼

�� Div(Y,E)

We stress the fact that the above square does not commute. The lemma below asserts, however,
that the only obstruction lies at valuations centred at divisors of Y .

Lemma 4.14. Let (X,D) be a connected pair of dimension 2 over k. Let f : Y → X be a modi-
fication over k and put E := (f∗D)red. Let Z be a b-divisor on (X,D) and let T be the image of
Z under Div(X,D)→ Div(Y,E). Let v be a divisorial valuation on X centred at a closed point
of Y . Then, δZ and δT coincide at v.

Proof. We unveil the definition of (δT )(v). Let

q : Y ′ := Yn

qn−1
�� Yn−1

qn−2
�� · · · q0

�� Y0 = Y

be the chain of blow-up obtained by applying Theorem 4.2 to Y and v. By assumption on v,
there is at least one blow-up, that is n ≥ 1. Let Q be the last blow-up point. Let ρ : Yn−1 → Y
be the composition of the qi, 0 ≤ i ≤ n− 2. If Q is a singular point of (ρ∗E)red = (ρ∗f∗D)red,
then by definition (δT )(v) = 0. On the other hand, Proposition 4.11 applied to Z, v and fρ :
Yn−1 → X yields (δZ)(v) = 0 so that δZ and δT coincide at v in that case. Assume that Q is not a
singular point of (ρ∗E)red = (ρ∗f∗D)red. Then, by definition, (δT )(v) = (T (Yn−1))(v)− T (v). On
the other hand, Proposition 4.11 yields again (δZ)(v) = (Z(Yn−1))(v)− Z(v). Since Z(Yn−1) =
T (Yn−1) and Z(v) = T (v), we conclude that δZ and δT coincide at v in that case. This concludes
the proof of Lemma 4.14. �

4.3 Integral of finitely supported b-divisors
Let X be a smooth connected surface over k. Let f : Y → X be a modification and let A ⊂ Y be
a subset. Let ZRdivis(X,A) ⊂ ZRdivis(X) be the subset of divisorial valuations of X whose centre
on Y is a point of A. For a b-divisor Z of X with finite support as a function on ZRdivis(X), we
put ∫

A
Z :=

∑
v∈ZRdivis(X,A)

Z(v) ∈ Z.
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The goal of what follows is to prove that the partial discrepancy of a nef Cartier b-divisor is
effective and finitely supported.

Proposition 4.15. Let (X,D) be a connected pair of dimension 2 over k. Let Z be a Cartier
b-divisor of (X,D). Let f : Y → X be a modification of X such that Z lies in the image of
Cart(Y )→ Div(X). Then, δZ is supported on the set of divisorial valuations whose centre on
Y is an irreducible component of f∗D.

Proof. Put E := (f∗D)red. Let T be the image of Z under Div(X,D)→ Div(Y,E). By assump-
tion, T is a Cartier b-divisor. Example 4.8 thus gives δT = 0. From Lemma 4.14, we deduce that
δZ vanishes at every divisorial valuation centred at a closed point of Y . This concludes the proof
of Proposition 4.15. �
Proposition 4.16. Let (X,D) be a connected pair of dimension 2 over k. Let Z be a Cartier
b-divisor of (X,D). Then, δZ is a b-divisor with finite support. In particular, the integral

∫
X δZ is

a well-defined integer. If Z is furthermore nef, δZ is effective. Hence,
∫
X δZ is a positive integer.

Proof. That δZ is a b-divisor with finite support follows from Propositions 4.9 and 4.15. We are
thus left to show that δZ is effective if Z is nef. Let v be a divisorial valuation on X. Let

p : X ′ := Xn

pn−1
�� Xn−1

pn−2
�� · · · p0

�� X0 = X

be the chain of blow-up corresponding to v via Theorem 4.2. Since Z is a nef Cartier divisor, we
have Z ≤ Z(Xn−1) in CDiv(X) and Proposition 4.16 follows. �

5. Formula for the characteristic cycle of connections on surfaces

5.1 Local Euler–Poincaré characteristic and characteristic cycle
LetX be a smooth variety over C. LetDb

c(X(C),C) be the derived category of sheaves of C-vector
spaces on X(C) with bounded and constructible cohomology. For an object K of Db

c(X(C),C)
and a point x of X(C), we put

χ(x,K) =
∑
i∈Z

(−1)i rk(HiK)x.

We let CC(K) be the characteristic cycle of K. Let F(X) be the group of Z-valued constructible
functions on X(C). Let LX be the group of Lagrangian cycles of T ∗X and let Eu : LX → F(X)
be the Euler morphism. The following theorem can be found in [KS90, Th.9.7.11].

Theorem 5.1. The diagram

Db
c(X(C),C)

χ
��

CC ������������
F(X)

LX

Eu



��������

is commutative and its arrows are isomorphisms.

If S is a constructible subset of X, we denote by 1S the function on X(C) which sends x ∈ S
to 1 and x ∈ X(C) \ S(C) to 0. By construction, if S is a smooth closed subvariety of X, then
Eu(T ∗

SX) = (−1)codim S1S .
We now define a cycle that will show up frequently in this paper.
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Definition 5.2. Let (X,D) be a simple normal crossing pair over k. Let D1, . . . , Dn be the
irreducible components of D. Let R =

∑
aiDi be an effective divisor supported on D. For every

I ⊂ {1, . . . , n}, set

DI :=
⋂
i∈I

Di and D◦
I := DI \

⋃
i/∈I

Di.

Define

LC(R) :=
∑

I⊂{1,...,n}

(∑
i∈I

ai

)
[T ∗

DI
X].

Remark 5.3. When k = C in the above definition, LC(R) is the unique Lagrangian cycle in T ∗X
such that

Eu(LC(R)) =

{
−ai if x ∈ D◦

i , i = 1, . . . , n,
0 otherwise.

5.2 Characteristic cycle of a connection with good formal structure
The easy direction of the main theorem of [Tey23] gives the following.

Lemma 5.4. Let (X,D) be an analytic pair where D is smooth and connected. Let M be an
object of MIC(X,D). Assume that M has good formal structure. Then Irr∗D M is a local system
of rank irr(D,M) concentrated in degree 1.

Proposition 5.5. Let (X,D) be a normal crossing pair over C. Let D1, . . . , Dn be the irre-
ducible components of D. Let M be an objet of MIC(X,D). Assume that M has good formal
structure. Then,

χ(x,Sol Man) =

⎧⎪⎨⎪⎩
rkM if x ∈ X \D,
− irr(Di,M) if x ∈ D◦

i , i = 1, . . . , n,
0 otherwise.

Proof. The restriction of SolMan to the complement of D is a local system concentrated in
degree 0. This gives the expected formula in that case. The case where x lies in one of the D◦

i

follows from Lemma 5.4. Let I ⊂ {1, . . . , n} and suppose that I contains at least two elements.
Let x be a point of D◦

I . Let i ∈ I such that the number of irregular values of M at x having
no pole along Di is maximal. Such an integer exists by goodness assumption on the irregular
values. If iI : DI → X and ji : D◦

i → X are the inclusions, Corollary 3.4 of [Sab17] implies that
the natural morphism

i∗I Irr∗D Man → i∗IRji∗j
∗
i Irr∗D Man

is an isomorphism. Hence, the germ of SolMan at x is the cohomology complex of a local system
of rank irr(Di,M) on a torus of dimension |I| − 1 > 0. Thus, we have χ(x,Sol Man) = 0 and this
finishes the proof of Proposition 5.5. �
Proposition 5.6. Let (X,D) be a simple normal crossing pair over k. Let M be an object of
MIC(X,D). Assume that M has good formal structure. Then,

CC(M) = rkM · CC(OX(∗D)) + LC(Irr(X,M))

with CC(OX(∗D)) =
∑

I⊂{1,...,n}
[T ∗

DI
X].
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Proof. From Remark 1.6, we can suppose k = C. Then, Proposition 5.6 follows from
Proposition 5.5 after passing to the associated constructible functions. �

Remark 5.7. As pointed out by Budur, Xiao obtained in [Xia15, Theorem 1.4.1] a variant of
Proposition 5.6 where the characteristic cycle is replaced by the log-characteristic cycle and
where the good formal structure assumption is weakened into a cleanness assumption. For
a proof of why good formal structure implies cleanness, see Theorems 3.2.11 and 3.3.12 in
[Xia15, Theorem 1.4.1].

5.3 An application
Lemma 5.8. Let (X,D) be a normal crossing pair over k. Let M1 and M2 be objects of
MIC(X,D). Then, the following statements are equivalent:

(i) IrrM1 = IrrM2 in Div(X);
(ii) for every point 0 of D, for every locally closed smooth curve C → X in X meeting D at 0

only, we have irr(0,M1|C) = irr(0,M2|C).

Proof. Suppose that statement (i) holds. Let C → X be a locally closed smooth curve meeting
D at 0 only. Let p : Y → X be a resolution of the turning points of M1 and M2 as given by the
Kedlaya–Mochizuki Theorem 1.32. By valuative criterion for properness, the immersion C → X
factors uniquely through an immersion C → Y followed by p. At the cost of blowing-up further,
we can suppose that C → Y intersects E := f−1(D) transversely at a point 0′ of Esm. Let Z be
the component of E containing 0′. Then

irr(0,M1|C) = irr(0′, (p+M1)|C) = irr(Z, p+M1) = irr(Z, p+M2) = irr(0,M2|C).

Suppose that statement (ii) holds. Let p : Y → X be a modification and let Z be an irreducible
component of p−1(D). Let 0′ be a point of Zsm such that p+M1 and p+M2 have good formal
decomposition at 0′. Put 0 := p(0′). Let C → Y be a locally closed smooth curve meeting p−1(D)
transversely at 0′ only. Let C → X be the induced locally closed smooth curve of X. Then

irr(Z, p+M1) = irr(0′, (p+M1)|C) = irr(0,M1|C) = irr(0,M2|C) = irr(Z, p+M2)

and the proof of Lemma 5.8 is complete. �

Proposition 5.9. Let (X,D) be a normal crossing pair over k. Let M1 and M2 be objects of
MIC(X,D) with the same rank. Suppose that for every point 0 of D, for every locally closed
smooth curve C → X in X meeting D at 0 only, we have

irr(0,M1|C) = irr(0,M2|C).

Then CC(M1) = CC(M2).

Proof. From Remark 1.6, we can suppose that k = C. From the Kedlaya–Mochizuki
Theorem 1.32 combined with Lemmas 3.17 and 1.18, we can suppose that M1 and M2 have
good formal structure and that D has simple normal crossings. From Lemma 5.8, we have
Irr(X,M1) = Irr(X,M2). Hence, Proposition 5.9 follows from Proposition 5.6. �

Remark 5.10. In the étale setting, Proposition 5.9 is a theorem of Kato [Kat21].

5.4 Partial discrepancy of the irregularity divisor
Applying the partial discrepancy construction to the irregularity b-divisor, § 4 can be summarized
by the following proposition.
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Proposition 5.11. Let (X,D) be a normal crossing connected surface over k. Let M be an
object of MIC(X,D). Then, δ IrrM is an effective b-divisor of (X,D) with finite support. In
particular,

∫
X δ IrrM is a well-defined positive integer.

Proof. From Kedlaya’s Theorem 1.44, the b-divisor IrrM is nef and Cartier. Then,
Proposition 5.11 follows from Proposition 4.16. �

The non-trivial contributions to the above integral are located above the turning points. This
is the content of the following.

Lemma 5.12. Let (X,D) be a connected normal crossing surface over k. Let M be an object
of MIC(X,D) and let V (M) be the complement of TL(M). Then, the restriction of δ IrrM to
ZRdivis(V (M)) is 0. In particular, for every subset A ⊂ X, we have∫

A
δ IrrM =

∫
A∩TL(M)

δ IrrM.

Proof. We know that M|V (M) has good formal decomposition. Thus, (IrrM)|ZRdivis(V (M)) =
IrrM|V (M) lies in the image of Cart(X)→ Div(X). Lemma 5.12 then follows from
Example 4.8. �

5.5 Local Euler–Poincaré characteristic and partial discrepancy divisor
Lemma 5.13. Let (X,D) be a normal crossing connected surface over k. Let M be an object of
MIC(X,D). Let q : Y → X be a modification. Let Q be a closed point of Y . Then, δ IrrM and
δ Irr q+M coincide at every valuation of X centred at Q. In particular,∫

Q
δ IrrM =

∫
Q
δ Irr q+M.

Proof. Put E := (q∗D)red. Then, Irr q+M is the image of IrrM under Div(X,D)→ Div(Y,E).
Thus, Lemma 5.13 follows from Lemma 4.14. �

Theorem 5.14. Let (X,D) be a normal crossing surface over C. Let M be an object of
MIC(X,D). Let P be a closed point of D. If P is a singular point of D, we have

χ(P,Sol Man) =
∫

P
δ IrrM. (5.15)

Otherwise, we have

χ(P,Sol Man) = − irr(Z,M) +
∫

P
δ IrrM, (5.16)

where Z is the component of D containing P .

Proof. We argue by recursion on the number of blow-ups needed to resolve the turning points
of M lying above P . If no blow-up is needed, this means that M has good formal structure in
a neighbourhood of P . Then, Theorem 1.47 ensures that IrrM lies in the image of Cart(X)→
Div(X). Hence, Example 4.8 yields δ IrrM = 0. Theorem 5.14 then follows from Proposition 5.5.

Let n > 0. Let p : Y → X be a sequence of blow-up of length n above P such that p+M has
good formal structure in a neighbourhood of p−1(P ). Then, p = f ◦ q where q : X1 → X is the
blow-up at P and where f : Y → X1 is a sequence of (n− 1)-blow-up above P . Let E be the
exceptional divisor of q. Let D′ be the strict transform of D. Let S be the set of points of E
which are either turning points for q+M or points of E ∩D′. Put U = E \ S and let j : U → E
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and i : S → E be the inclusions. The localization triangle for (Sol q+Man)|E reads as follows:

j!j
∗(Sol q+Man)|E �� (Sol q+Man)|E �� i∗i∗(Sol q+Man)|E .

From Lemma 3.17 and the compatibility of Sol with proper push-forward, we deduce

χ(P,Sol Man) = χc(U, (Sol q+Man)|U ) +
∑
Q∈S

χ(Q,Sol q+Man).

Since (Sol q+Man)|U is a local system of rank irr(E, q+M) on U concentrated in degree 1, we
have

χc(U, (Sol q+Man)|U ) = (|S| − 2) · irr(E, q+M).

For a turning point Q ∈ E for q+M not in D′, the recursion hypothesis gives

χ(Q,Sol q+Man) = − irr(E, q+M) +
∫

Q
δ Irr q+M

= − irr(E, q+M) +
∫

Q
δ IrrM,

where the second equality follows from Lemma 5.13. For a point Q in E ∩D′, the recursion
hypothesis gives

χ(Q,Sol q+Man) =
∫

Q
δ Irr q+M =

∫
Q
δ IrrM,

where the second equality again follows from Lemma 5.13. Let nbD(P ) be the number of local
branches of D around P passing through P . Note that nbD(P ) is equal to the cardinality of
E ∩D′. Putting the above equalities together yields

χ(P,Sol Man) = (nbD(P )− 2) · irr(E, q+M) +
∫

E
δ IrrM.

Let v be the valuation of X corresponding to E, so that

χ(P,Sol Man) = (nbD(P )− 2) · irr(E, q+M)− (δ IrrM)(v) +
∫

P
δ IrrM.

If P is a singular point of D, then nbD(P ) = 2 and (δ IrrM)(v) = 0. Thus, Theorem 5.14 is
true in that case. Otherwise, let Z be the unique irreducible component of D passing through
P . Then, nbD(P ) = 1 and (δ IrrM)(v) = irr(Z,M)− irr(E, q+M). Hence, Theorem 5.14 is again
true in that case. This finishes the proof of Theorem 5.14. �
Corollary 5.17. Let (X,D) be a normal crossing surface over an algebraically closed field of
characteristic 0. Let M be an object of MIC(X,D). Let P be a closed point of D. If P lies in
the smooth locus of D, the multiplicity of T ∗

PX in CC(M) is∫
P
δ IrrM.

If P lies in two irreducible components Z1 and Z2 of D, the multiplicity of T ∗
PX in CC(M) is

rkM + irr(Z1,M) + irr(Z2,M) +
∫

P
δ IrrM.

Proof. From Remark 1.6 and Lemma A.6, we can suppose that the base field is C. Suppose that
P lies in Dsm. Then, at the cost of shrinking X, we can suppose that D is smooth and that T ∗

QX

2811

https://doi.org/10.1112/S0010437X24007371 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007371


H. Hu and J.-B. Teyssier

does not contribute to CC(M) for Q �= P . Thus, we have

CC(M) = rkM · T ∗
XX + (rkM + irr(D,M)) · T ∗

DX +m · T ∗
PX,

where m is the sought-after multiplicity. Applying Theorem 1.15 and passing to the associated
constructible functions yields

χ(−,Sol Man) = rkM · 1X − (rk M + irr(D,M)) · 1D +m · 1P .

From Theorem 5.14, evaluating at P then gives m =
∫
P δ IrrM.

Suppose that P lies in two irreducible components Z1 and Z2 of D. At the cost of shrinking
X, we have

CC(M) = rkM · T ∗
XX + (rkM + irr(Z1,M)) · T ∗

Z1
X + (rkM + irr(Z2,M)) · T ∗

Z2
X +m · T ∗

PX,

where m is the sought-after multiplicity. Applying Theorem 1.15 and passing to the associated
constructible functions yields

χ(−,Sol Man) = rkM · 1X − (rk M + irr(Z1,M)) · 1Z1 − (rk M + irr(Z2,M)) · 1Z2 +m · 1P .

From Theorem 5.14, evaluating at P gives the expected formula. �

Putting together Proposition 5.6 and Corollary 5.17 yields the following.

Theorem 5.18. Let (X,D) be a simple normal crossing surface over an algebraically closed
field of characteristic 0. Let M be an object of MIC(X,D). Then

CC(M) = rkM · CC(OX(∗D)) + LC(Irr(X,M)) +
∑
P∈D

( ∫
P
δ IrrM

)
· T ∗

PX.

Remark 5.19. In the étale setting, Yatagawa obtained an explicit description of the characteristic
cycle for rank-one étale sheaves on surfaces [Yat20]. It seems an interesting question to connect
Yatagawa’s work to the étale analogue of the irregularity b-divisor.

In the complex setting, Kashiwara and Dubson’s formula stated in Theorem 1.17 yields the
following Grothendieck–Ogg Shafarevich-type formula for surfaces.

Theorem 5.20. Let (X,D) be a proper simple normal crossing surface over C. Let M be an
object of MIC(X,D). Put U := X \D. Then

χ(X,DR M) = rkM · χ(U(C)) + (LC(Irr(X,M)), T ∗
XX)T ∗X +

∫
D
δ IrrM.

6. Cohomological boundedness

6.1 Cohomological boundedness for surfaces
Lemma 6.1. Let (X,D) be a proper simple normal crossing surface over k. Let V be an open
subset of X such that DV := V ∩D is the vanishing locus of an algebraic function f : V → A1.
Then, there exists a commutative diagram of smooth varieties over k

V
� �

j
��

f

��

Y

h
��

A1 � � �� P1

(6.2)

satisfying the following conditions.
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(i) The map j : V → Y is a dense open immersion.
(ii) The map h is proper and dominant.
(iii) If E := ((Y \ V ) ∪ h−1(0))red, the pair (Y,E) is a simple normal crossing surface with Y \

E = V \DV .
(iv) For every effective divisor R supported on D, there exists an effective divisor S supported

on E depending only on V , on j : (V,DV )→ (Y,E) and linearly on R such that for every
object M of MIC(X,D,R), the connection j∗M|V is an object of MIC(Y,E, S).

Proof. By Nagata compactification theorem applied to the composition V → P1, there exists a
commutative diagram (6.2) where j : V → Y is a dense open immersion with Y a variety over
k and where h is proper. Observe that h is dominant because f is dominant. By normalizing
and blowing-up enough points above the singular locus Y sing ⊂ Y \ V , resolution of singularities
for surfaces ensures that we can suppose Y to be smooth. Put E := ((Y \ V ) ∪ h−1(0))red. Then
the equality Y \ E = V \DV is automatic. Furthermore, E ∩ V = h−1(0) ∩ V = DV is a simple
normal crossing divisor of V . Hence, at the cost of blowing-up enough points above E \ E ∩ V , we
can further suppose that E is a simple normal crossing divisor of Y . Conditions (i)–(iii) are thus
satisfied. Since h and P1 are proper, so is Y . Hence, condition (iv) is satisfied as a consequence
of Proposition 3.7 and the proof of Lemma 6.1 is complete. �

Lemma 6.3. Let (X,D) be a simple normal crossing surface over C. Let Z be a reduced divisor of
X supported on D. For a smooth point P of Z which is singular in D, let Z(P ) be the component
of Z containing P . Let M be an object of MIC(X,D). Let Irr(X,Z,M) be the effective divisor
supported on Z which coincides with Irr(X,M) on Z. Then,

CC((Sol Man)|Z(C)) = LC(Irr(X,Z,M)) +
∑
P∈Z

(∫
P
δ IrrM

)
· T ∗

PX

+
∑

P∈Zsm∩Dsing

irr(Z(P ),M) · T ∗
PX,

where (SolMan)|Z(C) is viewed as a complex of sheaves on X supported on Z(C).

Proof. We conclude via Theorem 5.14 by looking at the associated constructible functions. �

Proposition 6.4. Let (X,D) be a geometrically connected simple normal crossing surface over
k. Let C be a smooth connected curve over k. Let h : X → C be a dominant proper morphism.
Let 0 be a closed point in C. Suppose that the reduced fibre Z of h over 0 is not empty and is
contained in D. Then, there exists a quadratic polynomial K : Div(X,D)⊕Z→ Z affine in the
last variable such that for every effective divisor R of X supported on D, for every integer r ≥ 0
and every object M of MICr(X,D,R), we have∫

Z
δ IrrM ≤ K(R, r).

Proof. Let R be an effective divisor of X supported on D. Let r be an integer. Let M be an
object of MICr(X,D,R). From Lemma A.4, we can suppose that k is algebraically closed. From
Lemma A.8, we can suppose that k = C. The turning locus of M consists in a finite set of closed
points in D. At the cost of shrinking C, we can thus suppose TL(M) ⊂ Z. On the other hand,
Lemma 2.9 ensures that cohomological boundedness holds with bound K1 for the generic fibre
of h : X → C. Note that K1 is an affine map. Hence, Proposition 3.23 implies

|χ(Z(C),Sol Man)| ≤ 2K1(Rη, r) · fdegR,
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where Rη is the pull-back of R to the generic fibre of h : X → C. Since h is proper, the com-
plex manifold Z(C) is compact. Hence, the index formula for constructible sheaves [Kas85,
Theorem 4.3] yields

χ(Z(C),Sol Man) = (CC((Sol Man)|Z(C)), T
∗
XX)T ∗X

= (LC(Irr(X,Z,M)), T ∗
XX)T ∗X +

∫
Z
δ IrrM

+
∑

P∈Zsm∩Dsing

irr(Z(P ),M),

where the second equality follows from Lemma 6.3. Hence, we have∫
Z
δ IrrM ≤ 2K1(Rη, r) · fdegR+ |(LC(Irr(X,Z,M)), T ∗

XX)T ∗X |.

Let Z1, . . . , Zn be the irreducible components of Z. Then

|(LC(Irr(X,Z,M)), T ∗
XX)T ∗X | ≤

n∑
i=1

m(Zi, R)|(Zi, T
∗
XX)T ∗X |.

If K2(R) denotes the right-hand side of the above inequality, we have∫
Z
δ IrrM ≤ 2K1(Rη, r) · fdegR+K2(R)

and the proof of Proposition 6.4 is complete. �

Putting everything together yields the following absolute version of Proposition 6.4.

Theorem 6.5. Let (X,D) be a geometrically connected proper simple normal crossing surface
over k. Let Z be a subset ofD. Then, there exists a quadratic polynomialK : Div(X,D)⊕Z→ Z

affine in the last variable such that for every effective divisor R of X supported on D, for every
integer r ≥ 0 and every object M of MICr(X,D,R), we have∫

Z
δ IrrM ≤ K(R, r).

Proof. Let R be an effective divisor supported on D. Let r be an integer. Let M be an object of
MICr(X,D,R). Let V be a finite cover of X by open subsets such that for every V ∈ V, the closed
subset V ∩D is either empty or is the vanishing locus of an algebraic function fV : V → A1. From
Proposition 5.11, the b-divisor δ IrrM is effective. Hence,∫

Z
δ IrrM ≤

∑
V ∈V

∫
Z∩V

δ IrrM ≤
∑
V ∈V

∫
D∩V

δ IrrM.

Thus, we are left to prove Theorem 6.5 in the case where there exists an open set V in X such
that Z = D ∩ V and such that Z is the vanishing locus of an algebraic function f : V → A1.
Observe that the choices of V and f depend on X and D only.

From Lemma 6.1, we can assume the existence of a proper map h : X → P1 such that D
contains h−1(0) and Z is an open subset of h−1(0). Since δ IrrM is again effective, we can
further assume that Z is the reduced fibre of h over 0. This case follows from Proposition 6.4.
This concludes the proof of Theorem 6.5. �

We are now in position to prove cohomological boundedness for surfaces.
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Theorem 6.6. Let (X,D) be a projective normal crossing surface over k. Then, there exists a
quadratic polynomial C : Div(X,D)⊕Z→ Z affine in the last variable such that for every effec-
tive divisor R ofX supported onD, for every integer r ≥ 0 and every object M of MICr(X,D,R),
we have

dimH∗(X,DR M) ≤ C(R, r).

Proof. From Lemma 2.9, Corollary 2.17 and Remark 2.12, we are left to prove χ-boundedness
for surfaces over C. From Lemma 1.24 and Proposition 2.4, we can suppose that D is a simple
normal crossing divisor. We can furthermore suppose thatX is connected, and thus geometrically
connected. From Theorem 5.20, we are left to find a quadratic polynomial K : Div(X,D)⊕Z→
Z affine in the last variable such that for every effective divisor R of X supported on D, for
every integer r ≥ 0 and every object M of MICr(X,D,R), we have we have

∫
D δ IrrM ≤ K(R, r).

The existence of K is ensured by Theorem 6.5, which finishes the proof of Theorem 6.6. �

6.2 Boundedness and turning locus
To relate the turning locus to de Rham cohomology, we use the following.

Theorem 6.7. Let (X,D) be a pair over k whereD is smooth. Let M be an object of MIC(X,D).
Then, the following conditions are equivalent:

(i) M has good formal structure along D;
(ii) the singular support of M and EndM is contained in T ∗

XX ∪ T ∗
DX.

If, furthermore, k = C, the above conditions are equivalent to the following condition.

(iii) The complexes Irr∗D(C) Man and Irr∗D(C) EndMan are local systems on D(C) concentrated in
degree 1.

Proof. From Remark 1.6, we can suppose that k = C. The fact that condition (i) implies condi-
tion (ii) follows from Proposition 5.6. Suppose that condition (ii) holds. From Theorem 1.16,
the cohomology sheaves of Irr∗D(C) M and Irr∗D(C) EndM are local systems on D(C). From
Theorem 1.13, the complexes Irr∗D(C) M and Irr∗D(C) EndM are thus necessarily concentrated
in degree 1 and condition (iii) follows. The fact that condition (iii) implies condition (i) is the
main result of [Tey23]. �
Theorem 6.8. Let (X,D) be a normal crossing surface over an algebraically closed field of
characteristic 0. Let M be an object of MIC(X,D). Let P be a point in the smooth locus of D.
Then, P is a turning point of M if and only if∫

P

(
δ Irr(M) + δ Irr(EndM)

)
> 0.

In particular,

|TL(M)| ≤ |Dsing|+
∫

Dsm

(
δ Irr(M) + δ Irr(EndM)

)
.

Proof. From Theorem 6.7, P is a turning point of M if and only if T ∗
PX contributes to CC(M) +

CC(End M). Then, Theorem 6.8 follows from Corollary 5.17. �
Theorem 6.9. Let (X,D) be a projective normal crossing pair over k. Let X → P be a closed
embedding in some projective space. Then, there exists a quadratic polynomial K : Div(X,D)⊕
Z→ Z such that for every effective divisor R of X supported on D, for every integer r ≥ 0 and
every object M of MICr(X,D,R), we have

deg TL(M) ≤ K(R, r).
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Proof. From Proposition 2.4, we can suppose that D has simple normal crossings. From
Remark 1.29, we can suppose that k is algebraically closed. We can thus suppose that X is geo-
metrically connected. If X is a curve, the turning locus is empty and there is nothing to prove. If
X is a surface, TL(M) is a finite set of points. Thus, deg TL(M) = |TL(M)|. On the other hand,
Theorems 6.8 and 6.5 ensure the existence of a quadratic polynomial L : Div(X,D)⊕Z→ Z

affine in the last variable such that for every effective divisor R of X supported on D, for every
integer r ≥ 0 and every object M of MICr(X,D,R), we have

|TL(M)| ≤ |Dsing|+ L(R, r) + L(R, r2).

Hence, Theorem 6.9 holds in that case. Suppose that X has dimension d ≥ 3. Let N be the
dimension of P. Let G be the Grassmannian of projective N − d+ 2-spaces in P. Let η be the
generic point of G. Let Q be the universal family of projective N − d+ 2-spaces in P. Then, there
is the following commutative diagram with cartesian squares.

Xη ��

��

XQ
��

��

X

��

Qη ��

��

Q ��

��

P

η �� G

Let η as a subscript indicate a pull-back along Xη → X. Let R be an effective divisor of X
supported on D. Let r ≥ 0 be an integer. Let M be an object of MICr(X,D,R). From Kedlaya’s
purity Theorem 1.31, the closed set TL(M) has pure dimension d− 2. Hence, deg TL(M) is the
cardinal of TL(M) ∩H where H is a generic projective N − d+ 2-spaces of P. Thus,

deg TL(M) = |TL(M)η| = |TL(Mη)|,
where the last equality follows by Remark 1.29. Since Mη lies in MICr(Xη, Dη, Rη) with (Xη, Dη)
a normal crossing surface over η, Theorem 6.9 follows from the surface case. �

As an application of the above theorem, we deduce the following.

Theorem 6.10. Let (X,D) be a projective normal crossing pair over k. Then, there exists
a quadratic polynomial K : Div(X,D)⊕Z→ Z such that for every effective divisor R of X
supported on D, for every integer r ≥ 0 and every object M of MICr(X,D,R), the number of
irreducible components of TL(M) is smaller than K(R, r).

Proof. Let R be an effective divisor of X supported on D. Let r ≥ 0 be an integer. Let M

be an object of MICr(X,D,R). Let Z1, . . . , Zn be the irreducible components of TL(M). From
Kedlaya’s purity Theorem 1.31, the Zi have the same dimension dimX − 2. Hence, deg TL(M) =
degZ1 + · · ·+ degZn. Since each degZi is strictly positive, we deduce n ≤ deg TL(M). Thus,
Theorem 6.10 follows from Theorem 6.9. �

7. Lefschetz recognition principle

Lemma 7.1. Let P be a projective space over k. Let X ⊂ P be a smooth subvariety of pure
dimension n ≥ 2. Let C ′, C ′′ ⊂ T ∗X be closed conical subsets of pure dimension n where the
base of C ′′ has dimension at most n− 2. Put C = C ′ ∪ C ′′. Let S ⊂ X be a closed subset of
dimension ≤ n− 2 containing the base of C ′′. Let Y ⊂ P be a smooth hypersurface transverse
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to X such that X ∩ Y → X is C ′-transversal and X ∩ Y ∩ S has dimension < n− 2. Then, for
every sufficiently generic hyperplanes E1, . . . , En−2 ∈ P∨, the following hold.

(i) The commutative diagram

is a diagram of smooth varieties such that for every j = 1, . . . , n− 2, the map

X ∩ E1 ∩ · · · ∩Ej → X ∩ E1 ∩ · · · ∩Ej−1

is i◦j−1(C)-transversal.
(ii) The scheme T := X ∩ Y ∩ E1 ∩ · · · ∩En−2 is a smooth curve of X avoiding S such that

T → X is C-transversal.
(iii) The map T → X ∩ E1 ∩ · · · ∩En−2 is i◦n−2(C)-transversal.

Proof. Claim (i) follows from an iterative use of Lemmas 1.5 and 1.4(iii). Let us prove claim
(ii). The scheme X ∩ Y is a smooth variety of dimension n− 1 and X ∩ Y ∩ S ⊂ X ∩ Y is a
closed subset of dimension < n− 2. For E1, . . . , En−2 ∈ P∨ sufficiently generic, Bertini’s theorem
ensures that T := X ∩ Y ∩ E1 ∩ · · · ∩En−2 ⊂ X ∩ Y is a smooth curve avoiding S. An iterative
use of Lemmas 1.5 and 1.4(iii) applied to

ensures that for E1, . . . , En−2 ∈ P∨ sufficiently generic, the map T → X is C ′-transversal. Since
T avoid S and since S contains the base of C ′′, the map T → X is also C ′′-transversal. From
Lemma 1.4(ii), we deduce that T → X is C-transversal. Claim (ii) is thus proved. Claim (iii)
follows from Lemma 1.4(iii) applied to the following.

�

Proposition 7.2. Let (X,D) be a projective simple normal crossing pair of dimension n ≥ 2
over k. Let X → P be a closed immersion in some projective space. Let M be an object of
MIC(X,D). Let H be a hyperplane such that:

(i) H is transverse to X and X ∩H → X is SS(OX(∗D))-transversal;
(ii) X ∩H does not contain any irreducible component of TL(M).

Then, for every E1, . . . , En−2 ∈ P∨ sufficiently generic, the restriction morphism

H0(X,DR M) −→ H0(T,DR M|T ) (7.3)

is an isomorphism, where T = X ∩H ∩ E1 ∩ · · · ∩En−2.

Proof. Let C ′′ be the union of irreducible components of SS(M) whose bases are subsets of
TL(M). Then, Proposition 5.6 yields

SS(M) ⊂ SS(OX(∗D)) ∪ C ′′.

Since dim TL(M) = n− 2, the conditions from Lemma 7.1 are satisfied for Y = H, C ′ =
SS(OX(∗D)) and C ′′, and S = TL(M). Thus, for every E1, . . . , En−2 ∈ P∨ sufficiently generic,
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the commutative diagram

is a diagram of smooth varieties such that for every j = 1, . . . , n− 2, the map

X ∩ E1 ∩ · · · ∩Ej → X ∩ E1 ∩ · · · ∩Ej−1

is i◦j−1(SS(M))-transversal and T → X ∩ E1 ∩ · · · ∩En−2 is i◦n−2(SS(M))-transversal. From
Theorem 1.20, the horizontal and vertical arrows of the above diagram are thus non-characteristic
for the successive restrictions of M. From Proposition 2.13, we deduce that each arrow of the
diagram

induced by the successive restrictions of M are isomorphisms. This concludes the proof of
Proposition 7.2. �
Corollary 7.4. Let (X,D) be a projective simple normal crossing pair of dimension n ≥ 2
over k. Let X → P be a closed immersion in some projective space. Let M1,M2 be objects of
MIC(X,D). Let H be a hyperplane such that:

(i) H is transverse to X and X ∩H → X is SS(OX(∗D))-transversal;
(ii) X ∩H does not contain any irreducible component of TL(Hom(M1,M2)).

Then, for every E1, . . . , En−2 ∈ P∨ sufficiently generic, the restriction morphism

HomDX
(M1,M2) −→ HomDT

(M1|T ,M2|T )

is an isomorphism, where T = X ∩H ∩ E1 ∩ · · · ∩En−2.

Proof. Combine Proposition 1.25 with Proposition 7.2. �
Theorem 7.5. Let (X,D) be a projective simple normal crossing pair of dimension n ≥ 2 over
k. Let X → P be a closed immersion in some projective space. Then, there exists a polynomial
K : Div(X,D)⊕Z→ Z of degree 4 such that for every effective divisor R of X supported on D,
for every integer r ≥ 0, every set H of K(R, r) hyperplanes satisfying the following conditions:

(i) H is transverse to X and X ∩H → X is SS(OX(∗D))-transversal for every H ∈ H;
(ii) D ∩H,H ∈ H are closed subsets of D of pure dimension n− 2 with two by two distinct

irreducible components;

realizes the Lefschetz recognition principle for MICr(X,D,R) (Definition 0.2). In particular,
there is a dense open subset of K(R, r)-uples of hyperplanes realizing the Lefschetz recognition
principle for MICr(X,D,R).

Proof. From Theorem 6.10, there exists a quadratic polynomial L : Div(X,D)⊕Z→ Z such
that for every effective divisor R of X supported on D, for every integer r ≥ 0 and every object
M of MIC4r2(X,D, 2r2 ·R), the number of irreducible components of TL(M) ⊂ D is smaller than
L(2r2 ·R, 4r2). Put

K(R, r) = L(2r2 ·R, 4r2) + 1.

Choose a set H of K(R, r) hyperplanes satisfying conditions (i) and (ii) above. We
want to show that H realizes the Lefschetz recognition principle for MICr(X,D,R).
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Let M1,M2 ∈ MICr(X,D,R) such that M1|X∩H and M2|X∩H are isomorphic for H ∈ H. In
particular, for every H ∈ H and every smooth subvariety T ⊂ X ∩H, the connections M1|T and
M2|T are isomorphic. We now want to show that M1 and M2 are isomorphic. To do this, it is
enough to show the existence of H ∈ H and a smooth subvariety T ⊂ X ∩H such that

HomDX
(Ma,Mb) −→ HomDT

(Ma|T ,Mb|T )

is an isomorphism for every a, b ∈ {1, 2}. From Corollary 7.4, it is enough to show the existence of
H ∈ H such thatX ∩H does not contain any irreducible component of TL(Hom(Ma,Mb)), a, b ∈
{1, 2}. If we put

M :=
⊕

a,b∈{1,2}
Hom(Ma,Mb),

we have ⋃
a,b∈{1,2}

TL(Hom(Ma,Mb)) ⊂ TL(M).

Since turning loci have pure dimension n− 2 in virtue of Theorem 1.31, we deduce that the
irreducible components of the TL(Hom(Ma,Mb)), a, b ∈ {1, 2} are irreducible components of
TL(M). Thus, it is enough to show the existence of H ∈ H such that X ∩H does not con-
tain any irreducible component of TL(M). Note from Proposition 2.2 that M is an object of
MIC4r2(X,D, 2r2 ·R). Hence, TL(M) has strictly less than K(R, r) irreducible components.
Thus, condition (ii) above ensures the existence of the sought-after hyperplane. �

8. Tannakian Lefschetz theorem

As usual, k denotes a field of characteristic 0. For an abelian category C, we denote by Css the
full subcategory of C spanned by the semisimple objects. If F : C→ D is an additive functor
between abelian categories, we let F−1(Dss) be the full subcategory of C spanned by the objects
sent in Dss by F .

As a general reference for Tannakian categories, let us mention [DM82]. If (C,⊗C) is a
Tannakian category and if M is an object of C, we denote by 〈M〉 the Tannakian subcategory
of C generated by M . If ω : C→ Vectk is a neutralization for (C,⊗C), we denote by π1(M,ω)
the Tannakian algebraic group of 〈M〉 at ω.

Example 8.1. Let (X,D) be a pair over k. Then (MIC(X,D),⊗OX(∗D)) is an abelian rigid
tensor category over k. For a morphism of pairs f : (Y,E)→ (X,D) over k, the pull-back
f+ : MIC(X,D)→ MIC(Y,E) is an exact tensor functor. If, furthermore, X is connected and k
is algebraically closed, the restriction to any closed point of X \D endows (MIC(X,D),⊗OX(∗D))
with a structure of neutral Tannakian category.

Lemma 8.2. Let F : (C,⊗C)→ (D,⊗D) be an exact tensor functor between neutral Tannakian
categories over k. Then, F−1(Dss) is a neutral Tannakian subcategory of (C,⊗C).

Proof. Let f : X → Y be a morphism in F−1(Dss) and let K be its kernel in C. Since F is
exact, F (K) � KerF (f) is semisimple since F (X) is semisimple [Mil17, 4.14]. Hence, K lies in
F−1(Dss) and similarly for the cokernel of f . Thus, F−1(Dss) is an abelian subcategory of C.
Let X,Y be objects of F−1(Dss). Since F is a tensor functor between rigid tensor categories, we
have

F (Hom(X,Y )) � Hom(F (X), F (Y )) � F (X)∨ ⊗D F (Y ),
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where the first equivalence follows from [DM82, 1.9] and the second from [DM82, 1.7]. Since
the tensor product of two semisimple finite-dimensional representations of a group is again
semisimple [Che54, p.88], we know that F (X)∨ ⊗D F (Y ) is semisimple. Hence, Hom(X,Y ) lies in
F−1(Dss). Furthermore, the identity object of C lies in F−1(Dss). Hence, F−1(Dss) is stable under
finite tensor product and dual. Thus, F−1(Dss) is a rigid abelian tensor subcategory of (C,⊗C).
A neutralization of (C,⊗C) induces a neutralization of F−1(Dss) and the proof of Lemma 8.2 is
complete. �

Remark 8.3. Lemma 8.2 applied to the identity functor implies that Css is a neutral Tannakian
subcategory of (C,⊗C).

The following ground-breaking theorem is due to Mochizuki [Moc11, § 13.2.3].

Theorem 8.4. Let (X,D) be a projective simple normal crossing pair over k. Let L be an ample
line bundle on X. Let M be a semisimple object of MIC(X,D). Then, for every m1 > 0, there is
m > m1 such that for every generic hyperplane H of Lm, the restriction M|X∩H is a semisimple
object of MIC(X ∩H,D ∩H).

Remark 8.5. In the statement of Theorem 8.4, the integer m depends on M.

Corollary 8.6. Let (X,D) be a connected projective simple normal crossing pair over k.
Assume that k is algebraically closed. Let L be an ample line bundle on X. Let M be an object
of MIC(X,D). Then, for every integer m1 > 0, there is an integer m > m1 such that for every
generic hyperplane H of Lm, for every semisimple object N of 〈M〉, the restriction N|X∩H is a
semisimple object of MIC(X ∩H,D ∩H).

Proof. Since 〈M〉 admits a tensor generator, the general yoga of neutral Tannakian categories
[DM82, 2.20 (b)] ensures that so does 〈M〉ss. Let N be a tensor generator for 〈M〉ss. From
Mochizuki’s Theorem 8.4 applied to N, there exists an integer m > m1 such that the set of hyper-
planes H of Lm with N|X∩H semisimple contains a dense open subset V of P(Γ(X,Lm))∨. Let
H ∈ V (k). Let F : 〈M〉 → MIC(X ∩H,D ∩H) be the exact tensor functor given by the restric-
tion toX ∩H. Then, Lemma 8.2 ensures that F−1(MIC(X ∩H,D ∩H)ss) is a neutral Tannakian
subcategory of 〈M〉. Since it contains N, it also contains 〈M〉ss. The proof of Corollary 8.6 is
thus complete. �

Lemma 8.7. Let (X,D) be a projective pair of dimension at least 2 over k. Assume that k is
uncountable. Let L be a very ample line bundle on X. Let C be a full subcategory of MIC(X,D)
spanned by a countable number of objects. Then, for every very generic hyperplane H of L, the
restriction to X ∩H induces a fully faithful functor on C.

Proof. Let M1 and M2 be objects in C. From Lemma 1.5, the set of hyperplanesH of L transverse
to X such that X ∩H → X is non-characteristic for Hom(M1,M2) contains a dense open subset
V (M1,M2). From Corollary 7.4, the set of hyperplanes H of L transverse to X such that

HomDX
(M1,M2) −→ HomDX∩H

(M1|X∩H ,M2|X∩H)

is an isomorphism contains V (M1,M2). Then the intersection of the V (M1,M2) for M1,M2 ∈ C

gives the sought-after set of very generic hyperplanes. �

Before proving Theorem 8.10, we recall the following abstract lemma [Sta08, 1.1.4].

Lemma 8.8. Let F : C→ D be an exact k-linear fully faithful functor between abelian categories
over k. Assume that for every object M of C, the length of M is finite and the endomorphism
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algebra of M has finite dimension over k. Assume that F sends semisimple objects of C to
semisimple objects of D. Then, the essential image of F is closed under subquotients in D.

Remark 8.9. Let X be a smooth variety over k. Let M be a holonomic DX -module. Then M has
finite length. Furthermore, the space

HomDX
(M,M) � H0(X,DR M∨ ⊗L

OX
M)

is finite dimensional over k as a consequence of Proposition 1.10.

Theorem 8.10. Let (X,D) be a connected projective simple normal crossing pair of dimension
at least 2 over k. Assume that k is uncountable and algebraically closed. Let L be an ample
line bundle on X. Let M be an object of MIC(X,D). Then, for every integer m1 > 0, there is
an integer m > m1such that for every very generic hyperplane H of Lm and every point x of
(X \D) ∩H, the induced morphism of differential Galois groups

π1(M|X∩H , x) −→ π1(M, x)

is an isomorphism.

Proof. Let m1 > 0. We have to show the existence of m > m1 such that for every very generic
hyperplane H of Lm, the functor FH : 〈M〉 → 〈M|X∩H〉 of neutralized Tannakian categories
induced by the restriction to X ∩H is an equivalence. This amounts to show the existence of
m > m1 such that for every very generic H, the functor FH is fully faithful and its essential
image is closed under taking subquotients. From Remark 8.9, Lemma 8.8 applies to FH and we
are left to show the existence of m > m1 such that for every very generic H, the functor FH is
fully faithful and sends semisimple objects to semisimple objects. This follows from Corollary 8.6
and Lemma 8.7. �
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Appendix A. Base field extension lemmas

The goal of this purely technical appendix is to prove various compatibilities with base field
extension of some constructions considered in this paper.

A.1 Cohomological boundedness and base field extension
Lemma A.1. Let d ≥ 0 be an integer. Let k be a field of characteristic 0. Then, cohomological
boundedness holds in dimension d over k if it holds in dimension d over C.

Proof. Let (X,D) be a normal crossing pair over k. Let R be an effective divisor of X supported
on D. Let κ be a finitely generated extension of Q such that (X,D) descends to a normal crossing
pair (Xκ, Dκ). Put S := (fdegR) ·Dκ. Then, R ≤ Sk and S depends linearly on R. Choose an
embedding κ→ C. Let M be an object of MIC(X,D,R). Then, there exists an intermediate
extension κ ⊂ κM ⊂ k such that κM/κ is finitely generated and such that M descends to an
object MκM

of MIC(XκM
, DκM

), where (XκM
, DκM

) is the pull-back of (Xκ, Dκ) over κM. From
Lemma 1.41, we have

Irr(XκM
,MκM

)k ≤ R ≤ Sk = (SκM
)k.

Thus,
Irr(XκM

,MκM
) ≤ SκM

.

Hence, MκM
is an object of MIC(XκM

, DκM
, SκM

). Choose an embedding κM→ C over κ.
Observe that the complex variety

C×κM
XκM

� C×κ Xκ

does not depend on κM, and thus does not depend on M. Furthermore, C×κ Dκ is a normal
crossing divisor and C×κ Xκ is projective over C if X is projective over k. Let us assume that X
is projective of dimension d over k. By assumption, let C : Div(C×κ Xκ,C×κ Dκ)⊕Z→ Z be
a polynomial of degree at most d affine in the last variable such that cohomological boundedness
holds for (C×κ Xκ,C×κ Dκ) with bound C. From Lemma 1.41, we know that (MκM

)C is an
object of MIC(C×κ Xκ,C×κ Dκ, SC) with SC = (fdegR) · (C×κ Dκ). From Remark 1.11, we
deduce

dimH∗(X,DR M) ≤ C(SC, r)

and the proof of Lemma A.1 is complete. �

A.2 Partial discrepancy and base field extension
The goal of this subsection is to prove Lemma A.6. Lemma A.6 is used to reduce the computation
of the characteristic cycle of a connection on a surface to the case where the base field is C.

Lemma A.2. Let (X,D) be a geometrically connected normal crossing surface over k. Let k ⊂ K
be a field extension. Let w be a divisorial valuation on X and let v be an extension of w on XK .
Let M be an object of MIC(X,D). Then,

(IrrMK)(v) = (IrrM)(w).

Proof. Let f : Y → X be a modification of X such that w is centred at a divisor E of Y . Then,
v is centred at an irreducible component F of EK . Let ηE be the generic point of E and let
ηF be the generic point of F . Observe that a uniformizer of OY,ηE

pulls-back along YK → Y
to a uniformizer of OYK ,ηF

. Hence, irr(F, f+
KMK) = irr(E, f+M) and the equality (IrrMK)(v) =

(IrrM)(w) follows. �
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Lemma A.3. Let (X,D) be a geometrically connected normal crossing surface over k. Let k ⊂ K
be a field extension. Let w be a divisorial valuation on X and let v be an extension of w on XK .
Let M be an object of MIC(X,D). Then,

(δ IrrMK)(v) = (δ IrrM)(w).

Proof. If the centre of w on X is a divisor, then the centre of v on XK is also a divisor. In that
case, (δ IrrMK)(v) = (δ IrrM)(w) = 0. Hence, we can suppose that w is centred at a closed point
of X. Then, there exists a modification p : Y → X of X such that w is centred at a closed point
P of Y and w is centred at the exceptional divisor E of the blow-up Y ′ → Y of Y at P . Then,
v is centred at a closed point Q of YK lying over P . Let S ⊂ YK be the set of closed points of
YK lying over P . Let Y ′

K be the blow-up of YK at S. Since blowing-up commutes with flat base
change, there is the following canonical cartesian diagram of varieties.

Y ′
K

��

��

Y ′

��

YK
�� Y

Hence, v is centred at the exceptional divisor F of Y ′
K lying over Q. Thus, Proposition 4.11

applies to v and w. Consider the following cartesian diagram.

YK
��

fK

��

Y

f

��

XK
�� X

Since XK → X is étale, so is the map f∗KDK → f∗D. In particular, the point Q is a singular
point of f∗KDK if and only if P is a singular point of f∗D. Thus, if Q is a singular point of
f∗KDK , we have

(δ IrrMK)(v) = (δ Irr M)(w) = 0.

Otherwise,

(δ IrrMK)(v) = ((IrrMK)(YK))(v)− (IrrMK)(v)

= ((IrrM)(Y ))(w)− (IrrM)(w)

= (δ IrrM)(w),

where the second equality follows from Lemma A.2. Lemma A.3 is thus proved. �

Lemma A.4. Let (X,D) be a geometrically connected normal crossing surface over k. Let k ⊂ K
be a field extension. Let P be any point of X. Let Q be a point of XK lying over P . Then,∫

P
δ IrrM ≤

∫
Q
δ IrrMK .

Proof. Every divisorial valuation on X centred at P admits an extension to a divisorial valuation
on XK centred at Q. Then, Lemma A.4 follows from Lemma A.3. �

Lemma A.5. Let (X,D) be a connected normal crossing surface over k. Assume that k is
algebraically closed. Let k ⊂ K be a field extension. Let P be a rational point of X/k. Let Q be
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the unique rational point of XK/K lying over P . Then∫
P
δ IrrM =

∫
Q
δ IrrMK .

Proof. Let f : Y → X be a modification such that f+M has good formal structure. In
particular, f+

KMK has good formal structure. Thus, IrrM = Irr(Y, f+M) in Div(X) and
IrrMK = Irr(YK , f

+
KMK) in Div(XK). Hence, Proposition 4.15 ensures that δ IrrM is supported

on the set A of divisorial valuations associated with the irreducible components of f∗D. Simi-
larly, δ IrrMK is supported on the set B of divisorial valuations associated with the irreducible
components of f∗KDK . Let F be an irreducible component of f∗D. Since k is algebraically closed,
F is geometrically irreducible. Thus, FK is irreducible. Hence, the map f∗KDK → f∗D induces a
bijection on the sets of irreducible components. Thus, the map B → A induced by restriction is
bijective. Let AP be the subset of A of valuations centred at P on X. Let BQ be the subset of
B of valuations centred at Q on XK . Then, the bijection B → A induces a bijection BQ → AP .
Hence, ∫

P
δ IrrM =

∑
w∈AP

(δ IrrM)(w) =
∑

v∈BQ

(δ IrrMK)(v) =
∫

Q
δ IrrMK ,

where the second equality follows from Lemma A.3. Lemma A.6 is thus proved. �
Lemma A.6. Let (X,D) be a geometrically connected normal crossing surface over k. Let k ⊂ K1

and k ⊂ K2 be field extensions where K1 and K2 are algebraically closed. Let P be a closed point
of X. For i = 1, 2, let Qi be a rational point of XKi/Ki lying over P . Then,∫

Q1

δ IrrMK1 =
∫

Q2

δ Irr MK2 .

Proof. For i = 1, 2, let ki be the algebraic closure of k in Ki. Since K1 and K2 are algebraically
closed, k1 and k2 are isomorphic over k. Let Pi be the image of Qi via XKi → Xki . Consider the
following commutative diagram over k.

Q1
��

��

P1

��

�� P

��

P2

��

�� Q2

��

��

XK1
�� Xk1

�� X Xk2
�� XK2

��

Choose an isomorphism between k1 and k2 over k. Let P21 be the pull-back of P2 along the
induced isomorphism Xk1 → Xk2 . Then,∫

P2

δ IrrMk2 =
∫

P21

δ IrrMk1 .

Since P21 and P1 are two rational points of Xk1/k1 lying over P , there exists an automorphism
σ of k1 over k such that σ(P1) = P21. Thus,∫

P21

δ IrrMk1 =
∫

P1

δ Irrσ+Mk1 =
∫

P1

δ IrrMk1 .

From Lemma A.5, we deduce∫
Q1

δ Irr MK1 =
∫

P1

δ IrrMk1 =
∫

P2

δ IrrMk2 =
∫

Q2

δ Irr MK2

and Lemma A.6 is proved. �
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Remark A.7. Applying Lemma A.6 to the case where K1 = K2 = K, we conclude that the inte-
gral

∫
Q δ IrrMK does not depend on the choice of a rational point Q of XK/K lying over

P .

Lemma A.8. Let (X,D) be a geometrically connected normal crossing surface over k. Let k ⊂ K1

and k ⊂ K2 be field extensions where K1 and K2 are algebraically closed. Let Z be a locally
closed subset of X. Then ∫

ZK1

δ Irr MK1 =
∫

ZK2

δ Irr MK2 .

Proof. We are going to use Lemma A.6. We first argue that the points of ZK1 and ZK2 not sent
to a closed point of Z do not contribute to the above integrals. From Remark 1.29, we have
TL(MK1) = TL(M)K1 . Hence, Lemma 5.12 yields∫

ZK1

δ IrrMK1 =
∫

(Z∩TL(M))K1

δ IrrMK1 .

Since TL(M) is a finite set of closed points of X, so is Z ∩ TL(M). In particular, (Z ∩ TL(M))K1

is a finite set of rational points of XK1 lying above closed points of X. For every point P of
Z ∩ TL(M), choose a rational point Q1(P ) of XK1 above P and let us denote by degP the
degree of P over k. Since K1 is algebraically closed, XK1 admits exactly degP rational points
above P . From Remark A.7, we deduce∫

ZK1

δ IrrMK1 =
∑

Q1∈(Z∩TL(M))K1

∫
Q1

δ IrrMK1 =
∑

P∈Z∩TL(M)

degP ·
∫

Q1(P )
δ IrrMK1 .

Since the same formula holds with K2, Lemma A.8 follows from Lemma A.6. �
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Institut de Mathématiques de Jussieu, 4 place Jussieu, Paris, France

2827

https://doi.org/10.1112/S0010437X24007371 Published online by Cambridge University Press

https://arxiv.org/abs/0806.0308
https://doi.org/10.1112/S0010437X24007371

	1 Geometric and D-module preparations
	1.1 Base field
	1.2 Pair of varieties
	1.3 Transversality
	1.4 Universal hyperplane
	1.5 Characteristic cycle for coherent D-modules
	1.6 De Rham cohomology
	1.7 The solution and the irregularity complexes
	1.8 Characteristic cycle and the de Rham and solution complexes
	1.9 Characteristic cycle and functorialities
	1.10 Meromorphic flat connections
	1.11 Good formal structure for connections
	1.12 Irregularity number
	1.13 b-divisors
	1.14 The irregularity b-divisor

	2 Cohomological and -boundedness conjectures
	2.1 Connections with bounded irregularity
	2.2 Bounded irregularity and H om
	2.3 Bounded irregularity and pull-back
	2.4 Bounded irregularity and change of compactification I
	2.5 Cohomological boundedness conjecture
	2.6 The -boundedness conjecture
	2.7 The cohomological and -boundedness conjectures are equivalent

	3 Nearby slopes and boundedness
	3.1 Resolution relative to a normal crossing divisor
	3.2 Bounded irregularity and change of compactification II
	3.3 Resolution and multiplicity estimate
	3.4 Nearby slopes for D-modules
	3.5 Boundedness of nearby slopes

	4 Partial discrepancy b-divisors
	4.1 Chain of blow-up
	4.2 Partial discrepancy divisor
	4.3 Integral of finitely supported b-divisors

	5 Formula for the characteristic cycle of connections on surfaces
	5.1 Local Euler–Poincaré characteristic and characteristic cycle
	5.2 Characteristic cycle of a connection with good formal structure
	5.3 An application
	5.4 Partial discrepancy of the irregularity divisor
	5.5 Local Euler–Poincaré characteristic and partial discrepancy divisor

	6 Cohomological boundedness
	6.1 Cohomological boundedness for surfaces
	6.2 Boundedness and turning locus

	7 Lefschetz recognition principle
	8 Tannakian Lefschetz theorem
	Acknowledgements
	Appendix A. Base field extension lemmas
	A.1 Cohomological boundedness and base field extension
	A.2 Partial discrepancy and base field extension

	References

