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BOUND SETS IN PARTIAL ORDERS AND 
THE FIXED POINT PROPERTY 

BY 

HARTMUT HÔFT 

ABSTRACT. In this paper we introduce several properties closely 
related to the fixed point property of a partially ordered set P: the 
comparability property, the fixed point property for cones, and 
the fixed point extension property. We apply these properties to the 
sets of common bounds of the minimal (maximal) elements of 
the partially ordered set P in order to derive fixed point theorems 
for P. 

In this paper we develop sufficient and also an equivalent condition for the 
fixed point property of posets. These conditions will be expressed in terms of 
certain sets of common bounds. Earlier results in this direction which imply the 
fixed point property imposed a variety of restrictions on the poset; the set of 
minimal elements is finite and such that each non-empty subset has a 
supremum, Theorem 2 in [4]; the poset is finite and all common bound sets of 
non-empty subsets of the set of maximal elements have the fixed point property, 
Theorem 2 in [3]; the poset is finite and admits a cutset such that every non
empty subset has an infimum or a supremum, Corollary 2.6 in [1]. 

A straightforward argument which goes back to Theorem 2 in [2] shows that 
in a poset which satisfies the fixed point property every maximal chain is 
complete; in particular, every element of the poset is in between a minimal and 
a maximal element of the poset. Therefore, it seems natural to start with the sets 
of extremal elements of a poset in order to gain insight into the fixed point 
property. 

1. Bound sets and fixed point properties. Let ? be a poset. Max(P) = 
[p e P\\fq ^Pq^p=>q=p} denotes the set of maximal elements and 
Min(P) = {p e P\\/q <EPq^kp=>q=p} the set of minimal elements of P. 
We shall call P chain closed if every maximal chain C in P is a complete lattice; 
chain bounded if every chain in P has a lower and an upper bound; and element 
bounded if for every p e P there is u e Max(P) and 1 e Min(/>) such that 
1 ^ p ^ u. It is obvious that the following implications hold: chain closed =» 
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chain bounded =̂> element bounded. The example below shows that the reverse 
implications are false. 

EXAMPLE 1.1. Let N denote the natural numbers, Nd their dual and de
fine P0 = N U{oo} where n < oo, for all n E N; P, = N U{a, b} where 
n < a, n < b, a\\b, and a\\b means a $ b\ and a % b; P2 = N U Nd where for 
all m G N and n e Nd m < w; P3 = U{ {«} X P0|« e N} is a disjoint 
union with the order inherited in each fiber P0 and where the only other 
order relations between elements are given through the "diagonal" elements, 
(m, m) < (n, n) in P3 whenever m < n. 

P3 is element bounded, but not chain bounded, and P2 is chain bounded, but 
not chain closed, while Pl is chain closed. 
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For an arbitrary subset Q c P we define the following kinds of bound sets 
of Q: 

https://doi.org/10.4153/CMB-1987-062-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-062-7


1987] THE FIXED POINT PROPERTY 423 

(1) I(Q) = [p G P\3q G Qp ^ q) the ideal generated by Q, 
(2) F(Q) = {p G P|3<? <E Qp ^ q} the filter generated by Q, 
(3) cone(g) = I(Q) U g U P ( g ) the awe generated by g, 
(4) P ^ ô ) = {p G P|V# G g/? ^ 4} the /ow^ bound set of £>, 
(5) P^XÔ) = {/? G P|V# G g/? ^ 4} the w/?/?er bound set of £>, 

and if L, £/ c P are two subsets: 

(6) P(L, U) = {p G P|V/ G L VM G £// ^ /? ^ w} the bound set of the pair 
of sets L and £/. 

Using the notion of bound set we define the following setsystems for the 
poset P: 

£>(P) = {B<(U) |0 ¥= U c Max(P), £<(£/) ^ 0} 

qt(P) = {B>(L) |0 ^ L c Min(P), P > ( L ) ^ 0} 

^ ( P ) = {P(L, U) |0 # L c Min(P), 0 * t/ c Max(P), P(L, U) ¥= 0}. 

Each of the setsystems is a partial order under set inclusion. Every m a p / : P —* P 
induces a map &(f):&(P) —> &(P) in a natural manner as follows. For 
S G &(P), put L7 = B<(f(S) ) n Min(P) and Uf = B>(f(S) ) n Max(P); 
then neither set is empty and 0 ^ f(S) c P(Zy ty). Thus &(f)(S) : = 
^(iy, ty) is a well-defined map. Using only the appropriate half of the construc
tion above we obtain the maps«^(/):J^(P) -* &(P) and <%(f)\<%(P) -> #(P) . 

Straightforward calculations establish 

LEMMA 1.1. If f.P —> P is order preserving then so are &(f), <&(f), and 

In the context of fixed points of order preserving maps we need the following 
properties of posets. Poset P has the fixed point property (fpp) if every order 
preserving m a p / : P —» P has a fixed point, i.e. there is/? G P SO that / ( /?) = p. 
Poset P has the comparability property (cpp) if every order preserving map 
fP —» P has a point of comparability, i.e. there is p G P SO that f(p) ~ p , 
i.e. / ( p ) = p or f(p) ^ /?. Poset P has the cone fixed point property (cfpp) if for 
every element/? G P each order preserving map f:I(p) —> I(p) has a fixed point 
and each order preserving map f:F(p) —» P(p) has a fixed point. A subset 
Q c P has the fixed point extension property (fpep) if for every order preserving 
m a P f'Q ~* Q each order preserving extension g:P —> P of / , i.e. g|<2 = / , has a 
fixed point. 

We collect some simple facts about these notions. 

LEMMA 1.2. Let P be a poset. 

(a) P has fpp if and only if 6 has fpep. 
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(b) P has fpp then P has cpp. 
(c) P has fpp then P has cfpp. 

PROOF. Parts (a) and (b) are obvious. For (c), let/? e P and let f:I(p) —>/(/>) 
be order preserving. Define the map g:P —» P by g(x) = f(x)9 for x e /(/?), 
and g(x) = p otherwise. Then g is order preserving and its fixed points are 
those of / . • 

THEOREM 1.1. Let P be a poset. P has fpp if and only if P has cpp and P 
has cfpp. 

PROOF. The necessity of the two conditions follows from Lemma 1.2. Let now 
f:P-+Pbe order preserving. Property cpp guarantees/? e P so that/7 ~f(p). 
Suppose that p < /(/>), then f(F(p) ) c F(p) so that by cfpp / has a fixed 
point in F(p). • 

THEOREM 1.2. Let P be a poset. If P has cfpp then P is chain closed. 

PROOF. Let C c P be a maximal chain and let 0 ^ D c C be a subchain. 
Pick a well-ordered cofinal subchain D a D with first element d0 and a dually 
well-ordered cofinal subchain E c C — B>(D). Assume that #(£), £ ) = 0. 
Define a map fl(d0) —> 7(d0) as follows 

/oo 
d, if df e Z) is the smallest p <E D such that p $ x 

e, if £ G £ is the largest p ^ E such that /? ^ x, and 
if for all d G 5 d ë x. 

Obviously, / is order preserving and fixed point free which contradicts the 
hypothesis. Thus, B(D, E) ¥^ 0 holds so that the maximality of C implies 
B(D, E) c C. Hence B(D, E) contains a single element which is the supremum 
supcD. The dual argument shows the existence of inîcD. 

If D = 0, then let C c C be a well-ordered cofinal subchain of C with first 
element c0. As with / above, define g:I(c0) —» 7(c0) as g(x) = c, if c e C is 
the smallest /? e C such that /? $ x. Following the argument above we see 
that C has a largest element. The dual construction establishes a smallest 
element for C. • 

LEMMA 1.3. Let P be a poset and let Q c P Z>e arbitrary. 

(a) £> Aos fpp //ze« () /zos fpep. 
(b) P has fpp //ze« Q /20s fpep. 
(c) cone(Q) has fpp then Q has fpep. 

PROOF. Parts (a) and (b) are obvious. For (c) let f:Q —> Q be order preserving 
and g\P —» P be an extension of/. Then g(cone(<2) ) c cone(g) and thus has a 
fixed point by hypothesis. Hence Q has fpep. • 
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Simple examples show that the converses of Lemma 1.2 (b) and (c) and of 
Lemma 1.3 (a), (b) and (c) are false. The converse of Lemma 1.3 (c) is false even 
if Q is a bound set. 

EXAMPLE 1.2. Let P be the poset drawn below and let Q = {5, 9, 12} = 
B>( {1, 2} ) G <%(P). Then Q has fpep since it has fpp. On the other hand, 
cone((2) = I(Q) has the 4-element crown {5, 3, 9, 12} as a retract and thus 
fails to have the fpp. The retraction is indicated by arrows. 

9 10 11 12 

An interesting connection between the three fixed point properties is given in 
the next lemma. We shall call a subset Q c P order autonomous 

ifV/? e P - Q(3q ^Qp<q=*Vq^Qp<q) 

and Vp e P - Q(3q e Qp > q =*Vq e Q p > q) holds. 

Thus a subset Q c P is order autonomous exactly when it is a lexico
graphic component in a representation of P as a lexicographic sum with 
one-element components in P — Q. 

LEMMA 1.4. Let Q c P be order autonomous and suppose that Q has cfpp. Then 
the following statements are equivalent 

(1) Qhas fpp or B<(Q) has fpp or B>(Q) has fpp 
(2) Q has fpep. 

PROOF. If Q = 0 then the equivalence follows from Lemma 1.2 (a) and 
Lemma 1.3 (b), and we may assume that Q =£ 0. 
(1) => (2). Let/:<2 ~^ (? be order preserving and let g:P —> P be an extension of 
/ . Suppose, for example, that g(B>(Q) ) £ P > ( 0 ) , i.e. for some x G P > (Ô) . 
g(x) £ P > ( g ) . Then for all y G Q, g(jc) ^ f(y) implies g(x) G g since Q is 
order autonomous. Thus, x > g(jc) and g{E) c E where E = I( {g(x) }) D Q. 
Since g has cfpp, g has a fixed point. Likewise we produce a fixed point of 

g if g(fi<(e) ) <t B < ( Ô ) . 

(2) =» (1). Suppose that / : g -> g, / < : J B < ( Ô ) -> 2?<(Ô) and / > : J B > ( Ô ) -> 
5 > ( g ) are order preserving and without fixed points. Pick some element q ^ Q 
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and define g:P - ^ ? a s 

/ / ( /» ) if/' e Ô 

J />(/>) if/» e 5>(g) 
\̂  q otherwise. 

Since Q is order autonomous, g is order preserving. By construction g extends / 
and has no fixed points so that fpep fails for Q. 

2. Fixed point theorems. One of the limitations of Theorem 2 in [3] aside from 
its finiteness hypothesis is that it fails as soon as one of the bound sets is empty, 
in particular if this applies to JB

<(Max(i>) ). The systems of bound sets in
troduced in section 1 sidestep this problem since they contain only non-empty 
bound sets. 

THEOREM 2.1. Let P be a poset satisfying 

(1) P is element bounded 
(2) ££{P) has fpp, and 
(3) for each S e j£?(P), S has fpp 

then P has fpp. 

PROOF. Let f:P -> P be order preserving and let <S?(f):£>(P) -> &(P) be 
the induced map. By hypothesis (2), J?(f) has a fixed point 0 ¥= S = 
<&V)(S) = ^(Uf). Now, for all M G [^ and all s e S, f(s) ^ u holds, but 
that means f(s) e B<(Uf), for all s e S. Therefore, / < » G £<(££) - S 
holds and hypothesis (3) establishes a fixed point for / . • 

Obviously, the theorem is also true for the operators 96 and °ll\ in addition, 
for the operators ££ and Q£ one only needs to demand the appropriate one
sided version of "element bounded". Note that if P is finite then it is ele
ment bounded and if, in addition, B<(Max(P) ) ¥= 0, then J?(P) has a least 
element and hence fpp. 

COROLLARY 1. (Duffus, Poguntke, Rival) 
IfP is finite, P<(Max(i>) ) =t 0, and for each S e j£?(P), S has fpp, f/iew also P 
has fpp. 

If Min(P) is finite then so is °U(P), and if B>(Uin(P) ) * 0 then <^(P) has 
fpp. Therefore Theorem 2.1 generalizes Corollary 5.3 in [1]. 

COROLLARY 2. (Baclawski, Bj orner) 
IfP is element bounded, Min(P) finite, P > (Min(P) ) ¥= 6, and S has fpp, for each 
S <E °U(P\ then P has fpp. 
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On the other hand, Theorem 2.1 for operator °ll is a special case of Theorem 
5.2 in [1] for the class of those posets P which satisfy B>(Min(P) ) ¥* 0. In order 
to see this, let L be the dual of the power set of poset P and let F.P —> L be 
defined as F(p) = B>(I(p) D Min(P) ). Then <%(P) is isomorphic to the (join) 
sub-semilattice LM of L generated by P(Min(P) ). Now the conditions (a)-(d) of 
Theorem 5.2 in [1] are the same as the conditions (l)-(3) of Theorem 2.1. 

The connections between the two theorems for the class of posets P which 
satisfy B>(Min(P) ) = 0 are not clear. 

Condition (3) of Theorem 2.1 is too strong as the following example shows. 

EXAMPLE 2.1. Let P be the partial order drawn below. P has fpp and £P(P) 
has a least element B<( {8, 9, 10} ) = {1, 2} which does not have fpp. All other 
bound sets in J?(P) have fpp. It is easy to check that {1, 2} has fpep. • 

This observation together with Lemma 1.3 (a) leads to the following 
generalization of Theorem 2.1. 

THEOREM 2.2. Let P be a poset satisfying 

(1) P is element bounded, 
(2) Se{P) has fpp, and 
(3) for each S e -^(P), S has fpep, 

then P has fpp. 

PROOF. AS in the proof of Theorem 2.1 there is S e J£?(P) such that 
f(S) c S. Since / is an extension of f\S, f has a fixed point by hypoth
esis (3). • 

As before, analogous versions of Theorem 2.2 hold for the operators °ll and £8. 
Applying Lemma 1.3 (b), we obtain the following characterization of the fixed 
point property. 

COROLLARY. Let P be element bounded and suppose that J?(P) has fpp. Then 
the following statements are equivalent 
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(1) P has fpp 
(2) each bound set S Œ &{P) has fpep. 

Note that because of Theorem 1.2 the hypothesis "P is element bounded" in 
the theorems of this section imposes no restrictions whatsoever. 
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