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THE DIFFUSION OF RADON SHAPE

VICTOR M. PANARETOS,* University of California, Berkeley

Abstract

In 1977 D. G. Kendall considered diffusions of shape induced by independent Brownian
motions in Euclidean space. In this paper, we consider a different class of diffusions of
shape, induced by the projections of a randomly rotating, labelled ensemble. In particular,
we study diffusions of shapes induced by projections of planar triangular configurations
of labelled points onto a fixed straight line. That is, we consider the process in 213 (the
shape space of triads in R) that results from extracting the ‘shape information’ from
the projection of a given labelled planar triangle as this evolves under the action of
Brownian motion in SO(2). We term the thus-defined diffusions Radon diffusions and
derive explicit stochastic differential equations and stationary distributions. The latter
belong to the family of angular central Gaussian distributions. In addition, we discuss
how these Radon diffusions and their limiting distributions are related to the shape of
the initial triangle, and explore whether the relationship is bijective. The triangular case
is then used as a basis for the study of processes in Z’l‘ arising from projections of an
arbitrary number, &, of labelled points on the plane. Finally, we discuss the problem of
Radon diffusions in the general shape space E,’i.
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decomposition
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1. Introduction

The study of the diffusion of the shape of a number of labelled points randomly moving in
Euclidean space has been connected to the general theory of shape right from its outset. In [8]
D. G. Kendall introduced this area in studying the evolution of the shape of a given number
of labelled points, as these independently perform Brownian motion in Euclidean space. He
concluded that the shape itself performed Brownian motion (after an appropriate time change).
In [10] and [11] W. S. Kendall demonstrated that it is possible to employ computer algebra
techniques to disentangle the study of such problems, and also proposed a diffusion model that
relates to the Bookstein theory of shape [1] in the case of planar triangles. A dual problem was
considered by Le [14]; namely that of determining the characteristics of diffusions in preshape
and preshape-and-size spaces that will induce Brownian motions on the resulting shape and
shape-and-size spaces.
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In this paper we introduce a diffusion of shape induced by the projections of shape-preserving
diffusions of labelled points. What do we mean by this? The initial diffusion is the result of the
action of Brownian motion in SO(2) on the vertices of a planar configuration of labelled points.
Naturally, this sort of process leaves the shape of the configuration invariant. However, what
we wish to consider is the shape of its projection on a line, which is constantly changing as the
Brownian motion on SO(2) acts on the initial triangle. We call the resulting shape diffusions
Radon shape diffusions, as they are the shape-theoretic analogues of a random Radon transform
(see Section 3). Interestingly, in the case of Radon shape diffusions of labelled planar triangles,
the stationary distributions are simple and belong to a known family, the central angular Gaussian
family (see Section 4). The results from the triangular case set the scene for the study of the
case of shape diffusions arising from projections of k labelled planar points.

A motivation for such an investigation comes from the field of biophysics, in particular
that of single-particle electron microscopy (see, e.g. [3] and [4]). Biophysicists wish to learn
about the structure of biological macromolecules, since this is intimately connected with their
functional purpose. To this end they use electron microscopes to image single particles (as
opposed to crystalline structures) in an aqueous environment. This method yields information
on the projected structure of the particles. Since these particles are extremely small (in the
realm of a few angstroms, or 10710 metres) it is impossible to rotate them at will so as to have a
proper Radon transform (see Subsection 3.1). Instead, the projections obtained are at random
angles, as these particles move around in their aqueous environment.

The paper is organized as follows. In Section 2 we introduce some basic concepts and
notation pertaining to the investigation of the shape of projections of planar triangles. In
Subsection 3.1 we recall the definition of the Radon transform and introduce the concept of a
Radon process. We then proceed to study the shape of Radon diffusions arising from planar
triangles in Subsection 3.2, and obtain their stationary distributions in Section 4. In Section 5
we consider a particular singular case (in which the vertices of the ‘triangle’ are collinear). The
results on Radon diffusions for planar triangles are then ‘extended’ to the case of general planar
configurations in Section 6. Finally, the paper closes with a discussion of the general set-up
(projections of R"-ensembles) and some concluding remarks, in Section 7.

2. The shape of a projected planar triangle

In this section we introduce the basic set-up for our investigation along with the pertinent
notation. Consider a labelled triangle on the plane, R?, with vertices a = (x4, va)', b =
(xp, yb)T, and ¢ = (x,, yC)T. We assume that there is no straight line that contains all three
vertex vectors, so that we have a proper triangle. We represent this triangle by a matrix, V,
whose columns are the vertex vectors, so that in block notation

V=(a b c),

i.e. Vis a2 x 3 matrix. As is implicit from our notation, the labels for the triangle vertices are
{a, b, c}. Thus, the order of the columns of V is important, as this encodes the label information
(a permutation of the columns will analogously permute the labels). We will not be interested
in any of the characteristics of V that have to do with location, scale, or orientation. Thus, we
may assume without loss of generality that the centroid of the triangle is O (the centre of gravity
is at 0) and, hence, that the row sums of V are all 0.

Suppose that we rotate the triangle V clockwise by an angle ¢ and then project it onto
a straight line. Without loss of generality, we may assume the latter to be the x-axis. The
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projection, p(V, ¢), of the rotated triangle is essentially the three-vector of x-coordinates of
the ¢-rotated vertex vectors, i.e.

u(p) -a Xq COS ¢ + yg Sin ¢
p(V,¢) = [u@) b | =xpcosdp+ypsing | =VTu@),
u(@) -c Xc COS ¢ + ye sing
where u(¢) := (cos ¢, sin q))T and a dot denotes inner product. In the sequel, the notation

p(V,u(¢)) will be used interchangeably with p(V, ¢). Although p(V, ¢) is an element of
RR3, we prefer to think of it as an arrangement of three points on the real line, as we will be
interested in the shape of such projections. However, it is useful to treat the ensemble as an
ordered triplet, since it is this order that implicitly provides the labels for the points.

Notice that in order to describe the arrangement of the triplet, knowledge of two points and
the centroid will suffice. Consequently, we may orthogonally transform the configuration so
as to use only two points to parametrize it, since, by assumption, the centroid of the triplet
p(V, ¢) will be 0, regardless of the angle ¢. Such a transformation may be carried through by
multiplying p(V, ¢) T from the right by the matrix

0 U N
V3 V2 V6
1 1 1
=\A" 7 | M
L 0 2
73 /6

In order to obtain the shape of the projected triple we must quotient out the group generated by
translations, rotations, and dilatations (quotienting out the group generated only by translations
and rotations provides the shape-and-size of the ensemble).

The effects of location are a-priori removed by the assumption on the centroid of the triangle
V. Furthermore, we recall that the rotation group on R, SO(1), is trivial; hence, rotations have
been quotiented out by degeneracy. Thus, multiplying only by QT from the left yields the
shape-and-size, S, of the projected triangle at angle ¢:

S=0"vVTu@).

Notice that since matrix multiplication is associative, it makes no difference whether we first
orthogonally transform the triangle and then rotate and project it, or first rotate and project it
and then orthogonally transform the projection. Although S is a three-vector, it is essentially a
two-dimensional object, since we may ignore the element of the triple that is identified with 0;
we thus write S = (S, Sz)—r € R%. Hence, we will formally equate the 2 x 3 matrix QTV—r
with the 2 x 2 matrix, I", of its nonzero elements, such that

vo=(0 TT), )
and write
S =Tu(p).
Finally, we obtain the shape, o, of the projected triangle p(V, ¢) upon scaling by the size,
Ip(V. )l = IS = (ST + 5)'/2, of p(V, §):
0'VTiu@) _ Tu@) _
o = ToT = eS'.
1"V iu@l  IITu(@)l

Here S! denotes the unit circle (we use the topology notation rather than the geometry notation).
Notice that since 0 € S' we may formally identify o with arg(S; +1i5>) € [0, 27).

3)
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3. Radon diffusions from planar triangles

We now consider the situation in which the original triangle is randomly rotated as a result
of certain ‘random shocks’ and study the behaviour of the resulting projected shape-and-size
process and the projected shape process. First, though, we make a short digression to discuss
the Radon transform and a stochastic extension thereof.

3.1. The Radon transform and stochastic analogues

The Radon transform was first introduced in 1917 by Radon [21] in the context of a purely
mathematical question: do the integrals of a function over all possible manifolds of its domain
completely determine the function?

Interestingly, Radon’s results remained unnoticed until the 1960s, when their enormous
practical significance started to emerge through the realization of their central role in imaging
problems. One may treat the Radon transform at different levels of abstraction (see [6] and [2]).
In the context of the present paper, the following definition is most appropriate.

Definition 1. (The Radon transform.) Let g: Rt — R be a function of compact support.
The Radon transform of g is a linear operator,

R: Co(R™) = Co(SO(n + 1) x R"),

defined by
o
(RQ(A, X1, ..., xy) 1= / g(ATx) dxypy
—00
forall x = (x1,...,X,41) € R"*land A € SO(n + 1), provided that the integral exists.

The inversion of this transform is typically carried out through the use of Fourier transforms.
Intuitively, the Radon transform maps the contours of a function in R"**! to the set of their
projections (in terms of line integrals) onto every possible n-dimensional hyperplane. For
example, the Radon transform of the density of a bivariate Gaussian distribution with diagonal
covariance matrix c/ is a fixed univariate Gaussian density, regardless of the straight line upon
which we project it (by invariance under orthogonal transformations).

The relevance of the Radon transform to imaging problems is as follows. Suppose that,
instead of observing a three-dimensional object, we are able to observe its two-dimensional
projections at a range of angles, and wish to reconstruct the object from the projections. Then
we may restate this problem as one of inverting a Radon transform. Problems of this nature can
arise in such diverse fields as microscopy, astrophysics, geology, and medical imaging (see [2,
Chapter 1]). It is possible to envisage practical situations in which the rotational aspect of
the transform is both uncontrollable and stochastic (as in the single-particle structural biology
set-up). In fact, we may consider scenarios in which the rotations evolve in time as a stochastic
process. With such possibilities in mind, we are motivated to define a random process analogue
to the Radon transform. In the next subsection we introduce such a set-up within the context
of Kendall’s shape theory.

3.2. Shape-theoretic Radon diffusions

In the scenario we wish to consider, we want the rotation angles to vary continuously. A
mathematically natural choice is thus to make them vary according to Brownian motion modulo
2m. Let {B;};>0 be circular Brownian motion,

g =eb,  1>0,
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where {B;};>0 is standard Brownian motion in R (we shall interchange x + iy and (x, y)T
without special mention, when there is no danger of confusion). At each point in time, we
rotate V according to 8, and obtain the shape-and-size and the shape of the projection p(V, §;),
respectively

S(p(V, ) =QV B =T and o(p(V,B)) = arg(Si(t) +iS2 (1)),

where I is as in (2). We then have the following result.

Theorem 1. Let V be a proper planar triangle and let B; = e'Bt be circular Brownian motion,
where B; is standard Brownian motion in R. Then the shape-and-size, S; = S(p(V, B;)),
of the Radon process {p(V, B;)} evolves as Brownian motion on the ellipse E(I') = {x €
RZ: x "(I'T ")~'x = 1}, solving the It6 stochastic differential equation

dS, = —4S,dt + TAT"'S,dB;,

where A is anticlockwise rotation by 7 /2.
We call the diffusion {S;};>0 a Radon diffusion of shape-and-size.

Proof of Theorem 1. Since the triangle corresponding to V is proper, it must be that V has
rank two. This implies that I is of full rank. Hence, I" transforms the unit circle into the ellipse
E(T"). Now, since S; = '3, the range of {S;} must be £(T"), since the range of {f,} is the unit
circle.

To see that {S;} performs Brownian motion on E(I"), we consider the singular value decom-
position of T, i.e.

F=UAW', 4)

where U and W are 2 x 2 orthogonal matrices and A = diag{A1, A2}. Consider the action of
I' = UAWT on the circular Brownian motion {8;}. Obviously, ¢; = W g, is still circular
Brownian motion, only started at a different point on the unit circle. Hence, AWT B =
(A1 cos ¢y, Ao sin <,ot)—r is Brownian motion on the ellipse E(A) [18, p. 74]. The action of the
orthogonal matrix U is to map the ellipse €(A) onto the ellipse &(T"), implying that UAW T ;
is still Brownian motion on an ellipse, only now on the ellipse E(T").

Finally, since §; is Brownian motion on the unit circle, it satisfies the Itd stochastic differential
equation

dp; = —3Bdt + ABdB;.

Applying It6’s lemma to the process {I"8;} and noticing that I" is of full rank yields
dS, = —4S,dt + TAT"'S,dB;,

completing the proof.

Remark 1. The shape (eccentricity) and orientation of the ellipse £ (I") characterize the Kendall
shape of the triangle V, up to reflections.

To see this, we notice that V T V describes the shape-and-size of V, i.e. all those characteristics
of V that are invariant under rotation and translation, up to a reflection. The entries of VTV tell
us about the norms of all the vertex vectors and the pairwise angles they form, but not the exact
orientation of the vectors. Since Q is orthogonal, the same is true for TTT = QTVTVQ.
Thus, I'T' T encodes the shape-and-size of the triangle V, up to reflections (complete knowledge
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of the initial shape-and-size requires knowledge of the sign of det(I")). The shape of the triangle
V is encoded in

_rr’

T tr(ITT)

(where tr(-) denotes trace), along with the sign of det(I"), the latter distinguishing between
reflections. To make the connection between o (V) and E(I") clearer we use (4), the singular
value decomposition of I' = UAW . When I acts on the plane, it transforms the unit circle
into the ellipse £(I"). The major and minor axes of this ellipse are multiples of the columns of
U. The lengths of these axes are given by twice the entries of A. Since the trace of a matrix is
invariant under a similarity transformation, we may rewrite o (V) as

a(V)

W) UA?UT

o = — 7.
2,32

AT+ A5

Knowledge of the ellipse &(I") will thus provide the diagonal entries of A? (through the lengths

of the half-axes of the ellipse) and the matrix U (through the orientations of the axes of

the ellipse). Hence, (") is a parametrization of the shape, o (V), of V, up to a reflection.

Conversely, o (V) uniquely defines a ‘directed’ ellipse of unit area. Notice that o (V) is a

positive-definite symmetric matrix and, so, admits an eigendecomposition,

o(V)=DWD'.

The square roots of the diagonal elements of W will lead to the lengths of the half-axes of
this ellipse. The orientation of its principal axes will be given by the matrix D. Finally, the
‘direction’ will be given by the sign of det(I").

Summarizing, we have seen that as the initial triangle, V, is rotated according to Brownian

motion modulo 2m, the shape-and-size of its projection, S(p(V, B;)), performs Brownian
motion on an ellipse whose characteristics (eccentricity and orientation) are in bijective corre-
spondence to the Kendall shape, o (V), of the original triangle, modulo reflections. The actual
shape of the projection, o (p(V, B;)), will be a process on the unit circle, since Ef is metrically
S!. For w € S!, let u(w) = (cosw, sinw) " be its extrinsic (Cartesian) representation. Let
p(w, ') = ||F_lu(w) ||_l be the norm of a vector lying on the ellipse £(I") whose argument
is w. We then have the following result.
Theorem 2. Let V be a proper planar triangle and let B; = e'Bt be circular Brownian motion,
where B; is standard Brownian motion in R. Then the shape, oy = o (p(V, Bt)), of the Radon
process p(V, B;) evolves as a diffusion process on the unit circle solving the It stochastic
differential equation

de) det(T)
- 02(0;, 1) p?(o;, T)

We call the diffusion {o;};>0 a Radon diffusion of shape.

u(o,)"TAT 'dr — dB,. 5)

dO’[

Proof of Theorem 2. Let g: R — S! be defined by (x, y) T +— arg(x, y), where

arctan(x/y) ifx >0,
arg(x,y) = yarctan(x/y)+ 7 ifx <Oandy > 0,
arctan(x/y) — 7 otherwise.
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FIGURE 1: Drift coefficient (left) and diffusion coefficient (right) for three different triangles, plotted

against angle. Each row corresponds to a different triangle: an equilateral triangle (fop), a mildly obtuse

triangle (middle), and a very obtuse triangle (bottom). Notice that the scale of the vertical axis is different
in each plot.

Then g is twice continuously differentiable, and we may apply 1t6’s lemma to g(S;) to see that
o (t) will be an Itd process satisfying the stochastic differential equation

_ S TAT!S,sT(rAar—hHTAs, det(I")

do, = - . (6)
' IS 114 IS 2"

If we let u(o;) be the extrinsic representation of oy, i.e. u(o;) = S;/||S;||, then, noting that
(TAT"HTA = det(I')(I'T ), the result follows by appropriately manipulating (6).

The differential equation (5) is revealing as far as the behaviour of the Radon shape diffusion
is concerned. It suggests that there are two ‘accumulation points’ that are antipodal on the circle:
the angles corresponding to the points of intersection of the unit circle by the major axis of
the ellipse €(T"). From the form of the coefficients, we can see that the process spends more
time close to these points than it does elsewhere on the circle. In particular, both coefficients
of the process at any point 6 are inversely scaled by the squared norm of the point on E(T")
with angular component 6. It is also interesting to note that the drift and diffusion coefficients
remain unchanged if we multiply I" by a constant and, so, are invariant under scaling of the
original triangle. Figure 1 contains some plots of the drift and diffusion coefficients on the
interval (—m, ].

The movement of the process can be related to the shape of the initial triangle, specifically to
the characteristics of its angles. An equilateral triangle will correspond to a maximum entropy
case, and the resulting process is Brownian motion on the circle (no time change required).
When the points of the triangle approach collinearity the process tends to be heavily ‘attracted’ to
its accumulation points. In these cases, the process behaves somewhat like a random dynamical
system, spending most time at two ‘attractors’ (the antipodal points on the circle), meaning that
when the process leaves either of these two points, it will quickly return to one or other of
them. Figures 2 and 3 depict sample paths of Radon shape diffusions corresponding to two
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w

\ l%_ t
FIGURE 2: Sample path of a Radon shape diffusion. The process is plotted on a cylinder whose base is
the unit disc, and the dimension corresponding to length is time. The mildly obtuse triangle inducing the

process is depicted in the lower-left corner. The arrow indicates the time dimension: the cylinder slopes
diagonally across the figure, and is presented in perspective view.

FIGURE 3: Sample path of a Radon shape diffusion, where the triangle inducing the process (depicted in
the lower-left corner) is very obtuse.

different planar triangles: respectively a ‘mildly’ obtuse triangle and a ‘very’ obtuse triangle.
We observe that in the mildly obtuse case the process is quite variable, although we note that
the process tends to spend more time around the two antipodal accumulation points. In the
second case, the process spends most of its time close to its accumulation points, and these are
easy to distinguish.

Generally, both the location of the accumulation points and the variability of the sample
paths will depend on the shape of the of the initial triangle (see Figures 2 and 3). In certain
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special cases, this relationship becomes more transparent. For example, all isosceles triangles
with labels {a, b, c} such that ba = bc and ba > ac will give the same accumulation points,
regardless of the height of b (the apex). However, as the angles bac = bca tend to become
right-angles, the variability around these accumulation points decreases.

4. Stationary distributions

If {B;} is Brownian motion on the unit circle started at angle o = 0, then the density of
vy = arg(pB;) exists and admits the Fourier representation (see, e.g. [5])

fo.0 = {1+ZZe cos(kl‘})}, 9 € (—m, 7.

With pu, := dist(¢;), it follows by Scheffé’s theorem [22] that, as t — 00, u; converges to the
uniform measure on (—, ] in total variation norm. This will also be the stationary distribution
of 9.

Since the Radon shape diffusion {o;} is obtained as a continuous function of arg(f8;), say
H (arg(B)), it follows that o; will weakly converge. The limiting distribution will be that of a
random variable X = H (®), where © is uniformly distributed on (—m, 7 ].

In fact, we may force {0;};>0 to be (strongly) stationary to begin with, so that F := dist(X)
is the marginal distribution of o; for all # > 0. To do this, we simply use (strongly) stationary
circular Brownian motion defined as 8, := e‘B' t > 0, where {B,},zo is Brownian motion
on R, with initial distribution U(—, 7], the uniform distribution on (—m, 7]. We may thus
determine the stationary distribution of the Radon shape diffusion from first principles.

Theorem 3. Let V be a proper planar triangle and let { 8;} be circular Brownian motion. Then
there exists a stationary distribution, F, for the Radon shape diffusion o (p(V, B;)), having
density

1 p*@6.1)

FO =5 A2

; 0 € (—m, 7], @)
with respect to the Lebesgue measure on (—m, w]. Here A1 and Ay are again the diagonal
entries of A (see (4)).

Proof. The discussion leading to the statement of the theorem settles the existence part of
the proof. We thus have to show the validity of (7).

First consider the case in which the ellipse € (I") has its principal axes lying on the coordinate
axes of the plane, meaning that U is the identity matrix. In particular, assume that

5 232
E(F):{(x,y)eR :a_2+ﬁ:1}'
We wish to determine the distribution of the random variable H (®) = arg(a cos ®, b sin ©),
where © is a uniform random variable on (—, r]. That is, the distribution we wish to find is
that of the angular component of a point (a cos ©, bsin ®) " on the ellipse &(I").

To this end, we first determine a folded version of this distribution and then proceed to unfold
it. To be more precise, consider the random variable Y = arctan((b/a) tan ®). This mapping
provides the angular component of (a cos ®, b sin @)T modulo 7, in the sense that it does not
distinguish between angles that are 7 radians apart, giving values in (—mx /2, 7 /2].
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When ® ~ U(—m, ] it is not hard to see that tan ® will have the standard Cauchy
distribution and, so, that Z = atan ® /b will have a distribution in the Cauchy family with
density fz(z) = [a/(bm)][1/(1 + az?/b)]. The distribution of ¥ = arctan Z can be seen to
have density

Fry = 2 l+tan’y 1 a’b? _1p%G.D)
Y = e 1+ (a/b)?tan?y  abn b2cos?y +a’sin’y w ab

for y € (—m/2, m/2]. Finally, recalling our definition of arg(x, y), we see that the distribution
of the random variable H(®) has density fy(y) = [1/(2n)][p2(y, M/@b)], y € (—n, .
This completes the proof for the case of an ellipse with principle axes falling on the coordinate
axes of the plane.

To prove the general case, we simply have to rotate this distribution according to the angle
that the major axis of the ellipse forms with the x-axis. In particular, T = UAW " and U gives
the orthogonal transformation we have to perform to obtain the ellipse €(I") from the ellipse

Y

x2 2
€(A):{(x,y)eR2:—+ =1}.
MM

Orthogonally transforming the density according to U gives

1 p2(UTu(y), A)

- T -
SO = foU uy) = o

, y € (—m, 7],

where u(0) = (cos 9, sin#) T and pu@@),-) = p(0,-). Recalling the definition of p(y, I'), we

have
1 1
T = S MRl AU a1
1 1
T 27 MAu() TUATWTWA-TU T u(y)
_ 1 pG, 1)
2w AA2

which proves that the function given in (7) is indeed the stationary density.

The intuition in the proof (that is perhaps obscured by the details of the derivation) is that
we map a circular uniform random variable onto an ellipse. Then we project back onto the unit
circle. We have simply combined both steps into one.

Remark 2. The stationary density for the Radon shape process of a planar triangle belongs to
the family of angular central Gaussian distributions (also known as offset normal or projected
normal distributions).

To see this, we recall the definition of this family (see, e.g. [16, pp. 52-53]).

Definition 2. Let G be a positive-definite symmetric 2 x 2 matrix. The central angular
Gaussian distribution on the unit circle S' with parameter matrix G is defined as the distribution
having density

fO;G) = % det(G) 2w G luyn~t, yes, ®)

with respect to the Lebesgue measure on S'.
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If we set G = I'T'T, we see that (7) is of the form (8). This family was introduced by
Klotz [12] on the unit circle, while Tyler [23] considered the case for general hyperspheres (see
also [25, pp. 109-110]). Watson [24] modelled rock deformations in geology using the central
angular Gaussian distribution, so named because each of its members can be obtained as the
projection on the unit circle of a bivariate Gaussian distribution with variance-covariance matrix
G (or indeed any distribution with G-elliptic contours). It is immediate from this representation
that the matrix parameter I'T'" is identifiable only up to scalar multiples, meaning that the
stationary distribution depends only on the shape of the original triangle, modulo reflections.

This result is noteworthy in two ways. First, it provides an explicit connection between the
central angular Gaussian distribution and a particular diffusion on the circle, indeed a diffusion
of shape. By the term ‘explicit’ it is meant that the central angular Gaussian distribution is the
limiting distribution of this process (in fact, since the process can be made stationary to begin
with, it is also the marginal distribution of this process in stationarity). Another connection
with a diffusion is with planar Brownian motion, through the hitting time of the unit circle,
as follows. If arg(B;) is the angular component of a planar Brownian motion started at some
point (rg, 6p) satisfying ro < 1, then arg(Br) has a circular Cauchy distribution (see, e.g. [16,
pp- 56-57]), where T := inf{r > 0: || B;|| = 1} (see, e.g. [17]). Hence, if we start the Brownian
particle on the straight line Lu(6p) at a distance r( from the origin, the distribution of arg(Br)
will be of angular central Gaussian type, since the circular Cauchy distribution can be easily
obtained by folding the angular central Gaussian distribution.

More importantly, returning to our initial problem, we may use the knowledge of the
stationary distribution of the Radon shape process to estimate the shape of the initial triangle if
only a finite sample path of {o;} is at hand, thus providing a statistical inversion of the Radon
shape diffusion (drawing an analogy with the inversion of the Radon transform). Of course,
statistical inversion through the stationary distribution will never precisely recover the shape
of the true triangle, but will estimate it up to a reflection. This is because the projection of a
triangle V at angle ¢ is the same as the projection of the reflection of V at angle —¢. Intuitively,
the information given to us by the stationary distributions on the shape-and-size of the initial
triangle comes both from the location of its modes and from the spread. However, since the
stationary distribution is symmetric, it does not allow us to distinguish between reflections.

5. The singular case

Consider the case in which the vertices of V are contained in a single straight line and the
triangle is thus not proper (we will call it degenerate). Assuming once more that the triangle is
centred at O (i.e. its centroid is 0), we see that its vertices are collinear. As a result, the matrix
V has rank one, meaning that I is singular. Hence, I" maps the unit circle to a segment of the
straight line defined by either of its columns (say the first one, to be denoted by y), that is, to
a degenerate ellipse. This segment is ‘centred’ at O and its length is equal to twice the single
singular value in the singular value decomposition of T,

A0 T
r=u (0 0) W'
Proposition 1. Ler V be a degenerate planar triangle and let ; = Bt be circular Brownian
motion, where By is standard Brownian motion. Then the shape-and-size, Sy = S(p(V, B)),
of the Radon process {p(V, B;)} evolves as X cos B; on the line-segment

Ly, A :={x eR2: x =ay/|lyl, a € [-A, Al}.
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Proof. The result follows immediately from the singular value decomposition of I", through
the application of It6’s formula.

The resulting shape process will be slightly peculiar; in fact, it will not be well defined
in terms of shape. The reason for this is that the state space of the shape-and-size diffusion
contains the origin. This means that whenever S hits (0, 0) T, the shape o, is undefined (in the
words of D. G. Kendall: ‘from one point of view [coincident points] have no shape, and from
another they “almost” have every shape’). Thus, the state space of the shape process contains
three states: the states 6 and —6, corresponding to the points of the unit circle that intersect
£(y, A); and a state, €, corresponding to undefined shape. In fact, the hitting times of the state
€ bear a resemblance to the zero set of Brownian motion in R: if T := {t > 0: o, € €} then

T = U{tzO:B,:%—i—mn}.

meZ

As aresult, T is an uncountable set that with probability 1 has no isolated points. It is also a
set of measure 0.

We may think of the behaviour of o; once it has hit € in terms of the behaviour of Brownian
motion at 0. The state € will correspond to 0 while 8 and —6 will correspond to (0, co) and
(—o00, 0), respectively. Recalling Blumenthal’s 0-1 law (see, e.g. [7, p. 381]), we see that once
the process hits the state of undefined shape there are an infinity of instantaneous transitions
between the three states (consistent with the pattern —0 <> € <> 6), until the process settles at
one of the two ‘proper states’ for a nonzero time.

The situation described will be the same for any collinear ensemble of k points in n
dimensions (n < k). Whenever it happens that the ensemble is normal to the projection
hyperplane, the shape of the projection onto that hyperplane will be undefined. In all other
cases, the shape of the projection will be one of two reflected shapes in Z,’;l. The behaviour
of the resulting process at the point of undefined shape will be directly analogous to that arising
in the planar case.

6. Radon shape diffusions on E{‘

The case of Radon shape diffusions arising from planar triangles holds a special place among
Radon shape diffusions arising from k points on the plane. This is because the triangular case
contains most of the essence of the theory of Radon shape diffusions from general labelled
planar ensembles.

In the general case we have k > 3 labelled points on the plane, x1, ..., x; € R2, centred at
0. Assume that not all k are collinear. We arrange these as columns of a 2 x k matrix,

M = (_xl _x2 “e e xk) s
and study the process p(M, B;) as Brownian motion on SO(2) acts on the columns of M:
p(M.B)=MT"B,.

Since the centroid of the points xi, ..., xx is 0, we may again orthogonally transform M,
multiplying from the right by an appropriate k x k orthogonal matrix Qy, the generalization of
the matrix, Q, in (1). This matrix maps the columns of M to a new set of vectors,

x5 =0, xp = ————=[mxpyp1 — (x1 +--+x»)], m=1,..., k-1

vm?+m
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FIGURE 4: Representation of the range of motion of the Radon shape-and-size diffusion and the Radon
shape diffusion when k — 1 = 3. The ellipse surrounding S? is the range of the Radon shape-and-size
diffusion, while the great circle on S is the range of the Radon shape diffusion.

Again, we do this since knowledge of the centroid and k — 1 points suffices for the description
of the ensemble. Accordingly, the shape-and-size and shape processes are respectively given
by

U B
ITeBell”

where the (k — 1) x 2 matrix 'k is defined analogously to I". Since we have assumed that not
all k points are collinear, it must be that the matrix I'; has rank two. As a result, I'y maps the
unit circle, Sl, onto a (one-dimensional) ellipse in Rk_l, say

S(p(M, )= QM "B, =T and o(p(M, B)) =

ETp) :={x e R¥ Iy =x, y e SK1).
Specifically, we consider the singular value decomposition of I',
v =HQLT, )

where H is a (k — 1) x 2 matrix with orthogonal columns, Q = diag{w;, wz},and Lisa2 x 2
orthogonal matrix. When 2 acts on the unit circle, it transforms it to the ellipse £(£2) on the
plane. If we regard this plane as the plane {x € R¥~!: x,, = 0 for all m > 2} (thus embedded
in R=1), the ellipse &(I't) is obtained by orthogonally transforming &(£2). The orthogonal
transformation is any element of O(k — 1) whose first and second columns are those of H.

Consequently, it can be seen that the Radon shape-and-size process is yet again Brownian
motion on an ellipse, namely €(I'). As a result, the Radon shape diffusion will be a diffusion
on a great circle of S¥=2 (obtained when projecting the ellipse &(I'y) onto S¥=2). In Figure 4
we present a schematic representation in the case k = 4.

It follows from our discussion that the stochastic differential equations for these diffusions
and the associated stationary distributions for the case k > 3 can be obtained by an appropriate
‘rotation’ of their counterparts in the case k = 3.

Theorem 4. Let M be a k-ad of points in R? not wholly contained in any straight line. Let
B = elBr be circular Brownian motion, where B; is standard Brownian motion in R. Then the
shape-and-size process S; = S(p(M, B;)) is Brownian motion on the ellipse E(I'y), solving
the Ito stochastic differential equation

dS, = —18,dr + TR AT T ') S,dB,. (10
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Proof. Since the points of the k-ad M are not wholly contained in any straight line, I'; has
rank two. By the singular value decomposition 'y, = HQL ", we have

Sy =Tk = HQL' ;.

Since L7 is orthogonal, LT B: is circular Brownian motion and, so, QLT B: is Brownian motion
on the ellipse (). Finally, HQLT f; is equal to K ¢;, where K € O(k — 1) is any orthogonal
matrix whose first and second columns are those of H and &; € R¥~! is a vector whose
components, except for the first two, which respectively correspond to the first and second
components of QLT B:, are 0. Hence, H QLT B is Brownian motion on the one-dimensional
ellipse E(I'y).

Now let g: R? > R*~! be the mapping x — TI'xx. Obviously, g is twice continuously
differentiable, meaning that, by It&’s formula, S; = g(B;) is an Itd process satisfying the
equation

dS; = —3S,dt + T AB,dB,,

where A is as defined above. However, I';, has rank two, so
dS, = —18,dr + TR AT/ T ') SidBy,
and the proof is complete.

Theorem 5. Let M be a k-ad of points in R? not wholly contained in any straight line. Let
B = el be circular Brownian motion, where B, is standard Brownian motion in R. Then the
shape process o, = o (p(M, B;)) is a diffusion on the circle {x € S*%: x = |y| ™'y, y €
E(Tx)}, solving the Ité stochastic differential equation

HAHT
|_2 UtdB[,

1 T
do; = {—5 +n(o)HAH }G,dt - det(Q)m

where
n(o) :=det(Q)Q 'H o |?c THQAQ 'H 0.

Proof. As noted earlier, the shape process will lie on a unit circle that is the projection of
&(I'y) on S¥=2. Consider the shape-and-size process on &(I'x). Intrinsically, this evolves as
does QB;, where I'y, = H QLT is the singular value decomposition of I'y. When embedded
in R¥=1, the process coordinates are given by HpB;, where the action of H is to rotate the
one-dimensional ellipse in space and place it at its ‘proper place’. A similar line of thought can
be used to obtain the differential equation for the shape process. Intrinsically, this process will
evolve as does the shape process corresponding to shape-and-size €28;. Thus, in order to obtain
the equation for o;, we need only transform the shape process corresponding to £28; according
to H.

Let y; be a diffusion on the unit circle solving (5) with I" replaced by . Let g: S! — R¥~!
be defined by g(x) = Hu(x), where u(x) = (cos x, sin x) . Since g is twice continuously dif-
ferentiable, 1t6’s formula applies to the process o; = g(¥;), yielding the following differential
equation for o;:

do (1) = —%otdt + HAu(y)dy,. (11)
Equation (5) gives the form for the differential di;:
det($2) T _1 det(€2)
dy, = ———u(Yy) QAQ™ u(Yy)dt — ———dB;.
I R AT
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However, H has orthogonal columns, so o, = Hu(1;) implies that H "o; = u(1;), yielding

det(Q2)

det(Q2
&) aTHQAQ*‘HTa,dr—ﬁ .
127" H "o ||~

dyy = ——— =
Vi e e 2

If we substitute this expression into (11) we obtain the desired result. This completes the proof.

Theorem 6. Let M be a k-ad of points in R? not wholly contained in any straight line, and let
{B:} be circular Brownian motion. Then there exists a stationary distribution, F, for the Radon
shape diffusion o (p(M, B;)), having density

1
fi(x) = Edet(FZ o) 2T ')t

with respect to the Lebesgue measure on H S!. Here H is as defined above (see (9)).

Proof. We have seen that o; evolves on a unit circle in R, and that the intrinsic movement
of the process is identical to that of the process arg(€28;). Therefore, the stationary density of o;
can be obtained by a suitable transformation of the density, f, given in (7). This transformation
rotates the unit circle in (k — 1)-space. A short pause for thought reveals that fx(x) = f(H Tx),
where f is the central angular Gaussian density with parameter matrix 2. This completes the
proof.

7. Discussion

In this paper, we have introduced a problem that combines concepts from stochastic geometry
(D.G. Kendall’s concept of shape) and integral geometry (the Radon transform), motivated by
a problem in biophysics (single-particle electron microscopy). This is the problem of relating
the shape of a planar configuration to the shape of its projections on random sets of lines.
In particular, we have introduced a stochastic analogue of the Radon transform, essentially
a Radon transform whose angular component is a stochastic process. We then proceeded to
study the properties of Radon diffusions induced by planar configurations of labelled points,
when the angular component evolves as Brownian motion in the rotation group SO(2). We
obtained the stochastic differential equations and stationary distributions for the shape of such
Radon processes. Special emphasis was given to the case in which the planar ensemble is a
triangle, as it was seen that this case contains the basic ingredients for the study of the general
planar case. It was found that the characteristics of these Radon diffusions have immediate
connections to the shape of the initial configuration of points, and that the stationary distributions
of these diffusions are in bijective correspondence with the shape of the initial triangle, modulo
reflections

Further study of this problem might involve the consideration of the intrinsic differential
geometry of Radon diffusions in the general scenario of k points in n < k dimensions. The
complexity of the geometry of general shape spaces Z,’i (see [9], [15], and [13]) makes such a
study quite difficult, although some cases could be tractable. Nevertheless, using the so-called
inner product coordinates for shape and shape-and-size, certain basic results on the general
case have been derived by the author [19]. In particular, necessary and sufficient conditions
have been obtained for the recovery of the Brownian ‘orientation’ process from observation of
the shape process and knowledge of the initial ensemble of points. Furthermore, it has been
shown that, as with the planar case, the shape and shape-and-size processes in the general
case are indeed diffusions, and their stationary distributions may be related to the unoriented
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shape-and-size of the initial ensemble. Finally, work in progress by the author [20] focuses on
the statistical aspects of Radon diffusions.
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