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PARTITION FORCING AND INDEPENDENT FAMILIES

JORGE A. CRUZ-CHAPITAL, VERA FISCHER, OSVALDO GUZMÁN, AND JAROSLAV ŠUPINA

Abstract. We show that Miller partition forcing preserves selective independent families and P-points,
which implies the consistency of cof(N ) = a = u = i < aT = �2. In addition, we show that Shelah’s
poset for destroying the maximality of a given maximal ideal preserves tight mad families and so we
establish the consistency of cof(N ) = a = i = �1 < u = aT = �2.

§1. Introduction. One of the oldest questions regarding the theory of cardinal
invariants of the continuum is the following question of Vaughan [50]: Is the
inequality i < a consistent?1 The problem involves two fundamental objects in
infinite combinatorics (maximal independent families and MAD families) and
moreover, a positive answer will most likely require the development of new ideas
and forcing techniques.2 In order to gain more insight into the above question, we
compare i with the following cardinal invariant introduced by Miller in [40].

Definition. Define aT as the smallest size of a partition of�� into compact sets.

It is well-known that the Baire space�� is not �-compact (see [32]), which implies
that aT is uncountable. Furthermore, d is the least size of a family of compact sets
covering �� (see [3]), so it follows that d ≤ aT . It is known that the compact
subspaces of the Baire space are in correspondence with the finitely branching
subtrees of �<�. Using this correspondence and König’s lemma, it is easy to prove
that aT is equal to the least size of a maximalAD family of finitely branching subtrees
of �<�. Džamonja, Hrušák, and Moore proved that �d implies that aT = �1 (see
Theorem 7.6 of [43]). Thus, since �d holds in most of the natural models of d = �1

(see [28, 43] for a precise formulation of this statement), aT = �1 also holds in these
models.

On the other hand, given a partition C of�� into compact sets, Miller introduced
a proper forcing notion Q(C) which has the Laver property and destroys C, that
is, C no longer covers �� after forcing with Q(C). The forcing notion is known
as Miller partition forcing and plays an important role in the current article (see
Definition 2.1). Spinas showed that Q(C) is ��-bounding, which together with
Miller’s result establishes the Sacks property ofQ(C) (see [49]). Thus, every partition
of �� into compact sets can be destroyed with a proper forcing that has the Sacks

Received August 27, 2021.
2020 Mathematics Subject Classification. Primary 03E17, 03E35.
Key words and phrases. cardinal characteristics, independent families, almost disjoint families,

P-points, Miller partition forcing, fusion, Laflamme filter game.
1For definitions of cardinal characteristics, we refer the reader to [6].
2An interesting discussion of the problem can be found in Section 6.

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/23/8804-0013
DOI:10.1017/jsl.2022.68

1590

https://doi.org/10.1017/jsl.2022.68 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2022.68
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2022.68&domain=pdf
https://doi.org/10.1017/jsl.2022.68


PARTITION FORCING AND INDEPENDENT FAMILIES 1591

property, which implies the consistency of cof (N ) < aT and in particular the
consistency of d < aT . In [52, Proposition 4.1.31], Zapletal proved that Q(C) is
forcing equivalent to the quotient of the Borel sets of�� modulo a �-ideal generated
by closed sets. In this way, the forcing Q(C) falls into the scope of the theory
developed in [51, 52].

In this article, we study the effect of Miller partition forcing on the independence
number i and obtain the consistency of i < aT . The key argument is the fact that
Miller partition forcing preserves selective independent families, a fact for which
we provide two proofs: one building on the notion of fusion with witnesses (see
Definition 2.5) and one building on Laflamme’s filter games (see [34]). Both, the
fusion with witnesses and the use of Laflamme’s filter game in the context of Miller’s
partition forcing, are highly innovative and do not occur in earlier work on Q(C).

The notion of selective independent family was introduced by Shelah in his work on
the consistency of i < u (see [46]). Selective independent families are families with
very strong combinatorial properties, which resemble the combinatorial features of
Ramsey ultrafilters. Studying the similarities and differences between selective inde-
pendent families and Ramsey ultrafilters remains a very interesting line of research.
For more recent work on maximal independent families see [13, 14, 17, 18, 45].

Employing our notion of fusion with witnesses, we show also that Q(C) preserves
P-points. Together with the fact that Miller partition forcing and its iterations
preserve tight mad families (see [25]), we obtain the consistency of the following
constellation:

Theorem. It is relatively consistent that i = a = u = �1 < aT .

The question if one can increase simultaneously u and aT , while preserving small
witnesses to a and i becomes of interest. Further, we show that Shelah’s poset QI
for destroying the maximality of a given maximal ideal from [46] strongly preserves
tight MAD families. The following result appears as Corollary 5.14 in the current
article:

Theorem. It is relatively consistent that i = a = �1 < u.

Finally, combining Miller partition forcing, Shelah’s QI , our preservation results,
as well as the preservation results of [25, 46], in Corollary 5.15 we obtain:

Theorem. It is relatively consistent that i = a = �1 < u = aT = �2.

§2. Miller partition forcing.

2.1. Fusion with witnesses. Recall that Sacks forcing S consists of all perfect trees
in 2<� ordered by inclusion. That is, p ∈ S if and only if:

(1) p ⊆ 2<� ,
(2) ∀� ∈ p ∀� ∈ 2<�

(
� ⊆ � → � ∈ p

)
,

(3) ∀� ∈ p ∃�, �′ ∈ p
(
� ⊆ � ∧ � ⊆ �′ ∧ � 	⊆ �′ ∧ �′ 	⊆ �

)
.

We will use standard notation: If p ∈ S and � ∈ p we let p(�) = {� ∈ p | � ⊆
� or � ⊆ �} and call � a splitting node if ��i ∈ p for each i ∈ 2. Let split(p) = {� ∈
p | � is a splitting node }. For each n ∈ � let splitn(p) = {� ∈ split(p) | |{� ∈
split(p) | � � �}| = n} and stem(p) the unique element in split0(p). Finally, for
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1592 JORGE A. CRUZ-CHAPITAL ET AL.

p ∈ S let [p] = {f ∈ 2� | ∀n ∈ �( f|n ∈ p )}. More about Sacks forcing can be
found in [4, 5, 15, 23, 29, 42, 53].

Definition 2.1 (Miller partition forcing). Let C ⊆ P(2�) be an uncountable
partition of 2� into closed sets and let

Q(C) = {p ∈ S | for every K ∈ C, K ∩ [p] is nowhere dense in [p]}
ordered by reversed inclusion.

This forcing destroys the partition C in the following way. If G is a Q(C)-generic
filter, then

rgen =
⋃ ⋂

G

is an element of 2� which does not belong to the interpretation in V [G ] of any
element of C. So in V [G ], C is no longer a partition of 2� . Thus, if we start with a
model of CH and define PM as the resulting model after forcing with a countable
support iteration of length�2 of all forcing notions of the form Q(C) with C ranging
over all uncountable partitions in closed sets of 2� in all intermediate models, then
PM will not have any uncountable partition in closed sets of 2� of size less than �2.
Note that, Miller defined and used PM in [40] to show that cov(M) = �1 does not
imply that aT = �1.

Notice that if C is the partition of 2� into singletons, then Q(C) = S. Actually,
it can be seen that if C is an analytic subset of K(2�), where K(2�) is the space of
non-empty closed subsets of 2� equipped with the Vietoris topology, then Q(C) is
forcing equivalent to Sacks forcing S.

Theorem 2.2. Let C ⊆ K(2�) be an uncountable analytic partition of 2� . Then
Q(C) is forcing equivalent to Sacks forcing S.

Proof. Let p ∈ Q(C). It is enough to find q ∈ Q(C) such that q ≤ p and {r ∈
Q(C) | r ≤ q} = {r ∈ S | r ⊆ q}. To do this consider continuous f : K(2�) −→ 2�

given by f(A) = minA and let X = {K ∩ [p] | K ∈ C}\{∅}. Notice that X is an
uncountable analytic subset of K(2�), f|X is injective, and im(f|X ) ⊆ [p]. This
implies that there is q ∈ S such that [q] ⊆ im(f|X ). It is easy to see that q ⊆ p and
|[q] ∩K | ≤ 1 for every K ∈ C. Checking that q is as desired is straightforward. �

A main difficulty in adapting Sacks fusion sequences to Q(C) is guaranteeing
that the fusion is indeed an element of Q(C). To have a better control over
fusion sequences in Q(C) we introduce the notion of a fusion with witnesses (see
Definition 2.5). We begin with some auxiliary notions.

Definition 2.3. Let C = {Cα}α∈�1 be an uncountable partition of 2� into closed
sets.

(1) We say that x, y ∈ �2 are C-different if x, y belong to different elements of C.
(2) A tree p ⊆ 2<� is said to be C-branching if for any s ∈ p there are C-different

branches in [p] extending s.

Note that, a C-branching tree is perfect. We will use the following notation:
whenever C as above is given, for each x ∈ 2� we denote by αx the unique ordinal
such that x ∈ Cαx .

The equivalence of (a) and (c) in the lemma below can be found in [25].
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Lemma 2.4. Let p ⊆ 2<� be a tree. The following are equivalent:

(a) p ∈ Q(C).
(b) p is C-branching.
(c) p is perfect and [p] contains a countable dense subset with C-different branches.

Proof. ((a) ⇒ (c)) Let p ∈ Q(C). p is a perfect tree by the definition. Thus
arrange split(p) and assign by induction to each splitting node s a real x from
[p] extending s which was either already considered or belongs to a different set
from C than all previously selected reals. This is possible since any s ∈ split(p) may
be extended to t ∈ split(p) with [p(t)] being disjoint with finitely many sets from
C containing all previously selected reals. The set of all assigned branches is the
required dense set.

((c) ⇒ (b)) Trivial.
((b) ⇒ (a)) Let � < �1 and s ∈ p. There are x, y ∈ [p] such that s ⊆ x, y and

αx 	= αy . We take z ∈ {x, y} such that αz 	= � . Since z ∈ [p] \ C� and C� is closed,
there is s ⊆ t ⊆ z such that [p(t)] ∩ C� = ∅. �

The particular enumeration constructed in Lemma 2.4 will be applied several
times. Therefore we state explicitly that we may assume the dense set in Lemma 2.4
is enumerated as {xt : t ∈ p} such that s ⊆ xs , and if s ⊆ t ⊆ xs then xt = xs .

Definition 2.5 (Fusion sequence with witnesses).

(1) Let p be a condition in Q(C). We say that a set X ⊆ �2 is a p-witness for the
n-th level if X ⊆ [p], for each s ∈ splitn(p) there is x ∈ X extending s, and X
has C-different elements. Note that if X is a p-witness for the (n + 1)-st level
then each node from the n-th splitting level of p is contained in C-different
branches in X.

(2) Let (p,X ), (q, Y ) be pairs with p, q conditions in Q(C). Let X be a p-witness
for the (n + 1)-st level and let Y be a q-witness for the n-th level. Then

(p,X ) ≤n (q, Y ) if and only if p ≤ q and X ⊇ Y.

Note that if (p,X ) ≤n (q, Y ) then split<n(p) = split<n(q).
(3) A sequence {(pn,Xn)}n∈� is a fusion sequence with witnesses if

(pn+1, Xn+1) ≤n (pn,Xn) for each n.

Lemma 2.6. If a sequence {(pn,Xn)}n∈� is a fusion sequence with witnesses then
the fusion

⋂
{pn : n ∈ �} is a condition in Q(C).

Proof. We denote p =
⋂
{pn : n ∈ �}, X =

⋃
{Xn : n ∈ �}, and we assume

that we have s ∈ p. We take n ∈ � and t ∈ splitn(p) such that t extends s. Since
splitn(p) = splitn(pn+1), the set Xn+1 contains C-different branches extending t.
Hence, X is dense in [p]. One can easily see that X is contained in [p]. Finally, by
Lemma 2.4 we conclude that p ∈ Q(C). �

Miller [40] and Spinas [49] applied separate fusion arguments in their proofs,
while Miller [40] introduced the notion of a fusion even formally. The partial order
Q(C) was recently used in [25], where the notion of a nice sequence was isolated
from Spinas’s fusion arguments. Our definition of fusion sequence covers both
approaches. The sequence {Xn}n∈� in our definition may be obtained as sets of
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leftmost branches in Miller’s fusion argument, and as certain terms of nice sequence
in Spinas’s approach.

In addition to fusion sequences, we shall use two basic schemas to amalgamate
conditions. Let us have a condition p ∈ Q(C), and for each s ∈ splitn(p), i ∈ {0, 1},
a condition q(s, i) extending p(s�i). Using Lemma 2.4, one can easily see that the
tree

q =
⋃

{q(s, i) : s ∈ splitn(p), i ∈ {0, 1}}

is a condition in Q(C) as well. In the second amalgamation technique, we are given
a decreasing sequence {qi}i∈� of extensions of p with strictly increasing stems
sn = stem qn. We set x =

⋃
i∈� si and take q =

⋃
i∈� qi(s

�
i 〈1 – x(|si |)〉). Again,

using Lemma 2.4, one can easily see that q is a condition in Q(C).
The proof of the fact that Q(C) is ��-bounding is underlying many fusion

arguments associated with Q(C). For convenience of the reader, we repeat it here.
We will make use of the following two lemmas.

Lemma 2.7. Let ḟ be a Q(C)-name for a function in �� and let h be a function in
�� ∩ V . The set of all conditions q satisfying the following property is dense in Q(C):
There is a real x ∈ [q] and a sequence {fs}s∈x�split(q) of functions in <�� such that
for any s = x � splitn(q) we have q(s) � ḟ � h(n) = fs .

Proof. Let p ∈ Q(C). One can construct a decreasing sequence {qi}i∈� of
extensions of p with strictly increasing stems such that qn � ḟ � h(n) = fn for some
fn ∈ h(n)�. We denote sn = stem(qn) and we set x =

⋃
i∈� si . Finally, we take the

amalgamation q =
⋃
i∈� qi(s

�
i 〈1 – x(|si |)〉). �

Lemma 2.8. Let ḟ be a Q(C)-name for a function in ��. The set of all conditions q
satisfying the following property is dense in Q(C): For all m ∈ �, for all t ∈ splitm(q)
there is ft ∈ m+1� such that

q(t) � ḟ � (m + 1) = f̌t .

Proof. Let p ∈ Q(C). We build a fusion sequence {(qn, Xn)}n∈� with q0 ≤ p
such that its fusion q has the required property. Let the condition q0, branch x, and
sequence {fs}s∈x�split(q0) be obtained from Lemma 2.7 for p and h(n) = n + 1. We
set X0 = {x}.

Let 0 ≤ n < �. Suppose we have defined qn ∈ Q(C) and finite Xn ⊆ [qn]. Let s ∈
splitn(qn). Take the unique branch x ∈ Xn extending s, node r = x � splitn+1(qn),
and number i = x(|s |) in {0, 1}. We set q(s, i) = qn(r). Let t ⊇ s�〈1 – i〉 be such
that [qn(t)] ∩ Cαx = ∅ for all already considered branches x (i.e., all branches in Xn
and those assigned to previous nodes in some order of splitn(qn)). Use Lemma 2.7
for qn(t) and h(j) = n + j + 2 to obtain q(s, 1 – i) ≤ qn(t), branch x, and sequence
{fs}s∈x�split(qn).

Finally, let Xn+1 be the set of all considered branches in this step, and

qn+1 =
⋃

{q(s, i) : s ∈ splitn(qn), i ∈ {0, 1}}.

One can verify that the sequence {(qn, Xn)}n∈� is a fusion sequence with
witnesses. �
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As an application, we obtain a straightforward proof of the fact that Q(C) is
��-bounding. Since the poset has the Laver property (see [40]), this also gives the
Sacks property of Q(C).

Lemma 2.9 (Spinas [49]). The poset Q(C) has the Sacks property.

Proof. As explained above, by Miller’s result it is sufficient to show that Q(C)
is ��-bounding. Let ḟ be a Q(C)-name for a function in �� and let p ∈ Q(C). We
will show that there is q ≤ p and g ∈ V ∩ �� such that q � ḟ ≤∗ ǧ.

By Lemma 2.8 we can assume that there is q ≤ p such that for all m ∈ �, for all
t ∈ splitm(q) there is ft ∈ m+1� such that q(t) � ḟ � (m + 1) = f̌t . Define g ∈ ��
as follows:

g(n) = max{fs(n) + 1: s ∈ splitn(q)}.

Then q � ∀n(ḟ(n) < g(n)). �

2.2. Preservation of P-points. Next, we show that Miller partition forcing
preserves P-points. We will make use of the following notation: Given G ⊆ P(�),
let 〈G〉up = {X ∈ P(�) : ∃G ∈ G(G ⊆ X )} and 〈G〉dn = {X ∈ P(�) : ∃G ∈ G
(X ⊆ G)}.

Theorem 2.10. The forcing notionQ(C) preserves P-points and Ramsey ultrafilters.

Proof. We prove just the first part. The second claim follows from the first
one and the fact that the forcing notion Q(C) is ��-bounding (see [26, Lemma
21.12]). Note that a filter base G generates an ultrafilter on � if and only if P(�) =
〈G〉up ∪ 〈G∗〉dn.

Let U be a P-point in V. We shall prove that the family U generates an ultrafilter
in V Q(C), i.e., V Q(C) � P(�) = 〈U〉up ∪ 〈U∗〉dn. Fix p ∈ Q(C) and a Q(C)-name Ẏ
such that p � Ẏ ⊆ �. By Lemma 2.8 we can assume that for all m ∈ �, for all
t ∈ splitm(p) there is ut ∈ m+12 such that

p(t) � Ẏ � (m + 1) = ǔt .

Note that the latter property remains true for any stronger condition q, since t in the
m-th level of q is an extension of some s in the m-th level of p. Let {xt : t ∈ p} ⊆ [p]
be a dense set in [p] containing C-different elements (enumerated such that s ⊆ xs ,
and if s ⊆ t ⊆ xs then xt = xs). Let Yt =

⋃
{us : s ⊆ xt}.

Claim. We can assume that Y0 ={Ys : s ∈p}⊆U or Y1 = {� \ Ys : s ∈p} ⊆ U .

Proof. We set U0 = {s ∈ p : Ys ∈ U} and U1 = {s ∈ p : (� \ Ys) ∈ U}. The
sets U0, U1 are disjoint and their union is p. We may distinguish two cases:

(i) There is s ∈ p such that p(s) ⊆ U0. In this case, just take p(s).
(ii) For each s ∈ p there is t ∈ p(s) such that t ∈ U1. We build a fusion sequence

{(pn,Xn)}n∈� such that the fusion has the required properties. Taking s ∈
split0(p) there is t ∈ p(s) such that t ∈ U1. We set p0 = p(t) and X0 = {xt}.

Let 0 ≤ n < �. Suppose we have defined pn ∈ Q(C) and finite Xn ⊆ [pn].
Let s ∈ splitn(pn). Take node r = xs � splitn+1(pn), and number i = xs(|s |) in
{0, 1}. We set p(s, i) = pn(r). Let t ⊇ s�〈1 – i〉 be splitting such that t ∈ U1.
We set p(s, 1 – i) = p(t).
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Finally, let

pn+1 =
⋃

{p(s, i) : s ∈ splitn(pn), i ∈ {0, 1}}.

and let Xn+1 be the set of all xt ’s for t ∈ splitn+1(pn+1). One can verify that
the sequence {(pn,Xn)}n∈� is a fusion sequence with witnesses. Moreover the
fusion q of this sequence satisfies that (�\Ys) ∈ U for all s ∈ q. �

We assume that Y0 ⊆ U , the other case may be handled analogously. We take
a pseudointersection Z of Y0 in U , with Z ⊆ Y∅. We shall simultaneously build
two fusion sequences with witnesses, namely {(p0

n, X
0
n )}n∈� , {(p1

n, X
1
n )}n∈� , and a

partition of Z into two sets Z0, Z1 such that for their respective fusions q0, q1 ≤ p
we obtain q0 � Ž0 ⊆ Ẏ and q1 � Ž1 ⊆ Ẏ .

Let p0
0 = p1

0 = p, X 0
0 = X 1

0 = {Y∅}, and k0 = 0, k1 = 2. We assume that p0
n,

p1
n, k2n, and k2n+1 are constructed. Let t ∈ splitk2n

(p) ∩ split(p0
n), and set w∗(t) =

xt � splitk2n+1
(p). For each i ∈ {0, 1}, we take w∗(t, i) ∈ splitk2n+1+1(p) extending

w∗(t)�i . There is k2n+2 > k2n+1 + 1 such that

Z \ k2n+2 ⊆
⋂

{Yw∗(t,i) : t ∈ splitk2n
(p) ∩ split(p0

n), i ∈ {0, 1}}.

We setw(t, i) = xw∗(t,i) � splitk2n+2
(p). Takep0

n+1 =
⋃
{p(w(t, i)) : t ∈ splitk2n

(p) ∩
split(p0

n), i ∈ {0, 1}} and X 0
n+1 = {xw(t,i) : t ∈ splitk2n

(p) ∩ split(p0
n), i ∈ {0, 1}}.

One can see that p0
n � Ž ∩ [k2n, k2n+1) ⊆ Ẏ . The construction of condition p1

n and
the choice of numberk2n+3 are done similarly, and leads top1

n � Ž ∩ [k2n+1, k2n+2) ⊆
Ẏ . Finally, we define

Z0 = Z ∩
⋃

{[k2n, k2n+1) : n ∈ �} and Z1 = Z ∩
⋃

{[k2n+1, k2n+2) : n ∈ �}.

Since Z ∈ U , Z0 or Z1 is in U , and so q0 � Ẏ ∈ 〈U〉up or q1 � Ẏ ∈ 〈U〉up. �

§3. Selective independence.

3.1. Dense maximality. Recall the definition:

Definition 3.1. A family A ⊆ P(�) is an independent family if for every distinct
A0, ... , An ∈ A and h : {A0, ... , An} −→ 2, the set

⋂
i≤n
A
h(Ai )
i is infinite where A0

i =

�\Ai and A1
i = Ai . It is maximal independent, if it is independent and maximal

under inclusion.

We will be exclusively interested in infinite independent families. For an
independent family A let FF(A) be the set of all finite partial functions from A
to 2 and order it by inclusion. For h ∈ FF(A), we let Ah =

⋂
{Ah(A) | A ∈ dom(h)}

where A0 = �\A and A1 = A for A ⊆ �. The density ideal of A, denoted id(A) is
the set of all X ⊆ � such that for all h ∈ FF(A) there is h′ ⊇ h in FF(A) such that
Ah′ ∩ X is finite (or equivalently empty). Dual to the density ideal ofA is the density
filter of A denoted fil(A) and consisting of all X ⊆ � such that for all h ∈ FF(A)
there is h′ ⊇ h in FF(A) such that Ah′\X is finite (or equivalently empty).3

3In the notation of [14], fil(A) = FA and CA = FF(A). The density ideal and filter have been also
studied in [17].
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Lemma 3.2. Let A be an infinite independent family. The following are equivalent:

(1) For all X ∈ P(�) and all h ∈ FF(A) there is h′ ⊇ h such that Ah′ ∩ X or
Ah′\X is finite.

(2) For all h ∈ FF(A) and allX ⊆ Ah eitherAh\X ∈ id(A) or there is h′ ∈ FF(A)
such that h′ ⊇ h and Ah′ ⊆ Ah\X .

(3) For each X ∈ P(�)\ fil(A) there is h ∈ FF(A) such that X ⊆ �\Ah .
Proof. First we show that (1) implies (2). Let h ∈ FF(A), let X ⊆ Ah , and

suppose Ah\X /∈ id(A). Thus, there is h′ ∈ FF(A) such that for all h′′ ⊇ h′ the
set Ah′′ ∩ (Ah\X ) is non-empty. Note that if h and h′ are incompatible, then
Ah′ ∩ (Ah\X ) = ∅, which is a contradiction. Therefore h and h′ are compatible
and without loss of generality, we can assume that h′ ⊇ h. Thus, we have that for
all h′′ ⊇ h′, the set Ah′′\X 	= ∅. Now, since (1) holds, there is h′′ ⊇ h′ such that
Ah′′ ∩ X = ∅. That is, Ah′′ ⊆ Ah\X .

Next, we show that (2) implies (3). Thus, consider any X ∈ P(�)\ fil(A). Then,
in particular �\X /∈ id(A) and so there is h ∈ FF(A) such that for all h′ ⊇ h,
|Ah′ ∩ (�\X )| = |Ah′\X | = �. Let Y = Ah\X . Thus, Y ⊆ Ah . By part (2) either
Ah\Y ∈ id(A) or there is h′ ⊇ h such that Ah′ ⊆ Ah\Y . Suppose Ah\Y ∈ id(A).
Then, there is h′ ⊇ h such that Ah′ ∩ (Ah\Y ) = Ah′\Y = ∅. However Ah′\Y =
Ah′ ∩ X = ∅ and so X ⊆ �\Ah′ and we are done. If there is h′ ⊇ h such that
Ah′ ⊆ Ah\Y = Ah ∩ X , then Ah′ ∩ (�\X ) = Ah′\X = ∅, contradicting the choice
of h.

To see that (3) implies (2), consider any h ∈ FF(A) andX ⊆ Ah . LetY = Ah\X .
If �\Y ∈ fil(A), then Y = Ah\X ∈ id(A). Otherwise, there is h∗ such that �\Y ⊆
�\Ah∗ , which implies that Ah∗ ⊆ Y = Ah\X and so Ah∗∪h ⊆ Ah∗ ⊆ Ah\X .

To see that (2) implies (1) consider any X ∈ [�]� and let h ∈ FF(A). We want to
show that there is h′ ⊇ h such that either Ah′ ∩ X = ∅, or Ah′\X = ∅. LetY = X ∩
Ah . Thus,Y ⊆ Ah . IfAh\Y ∈ id(A), thenAh\X ∈ id(A) and so there is h′ ⊇ h such
that Ah′ ∩ (Ah\X ) = Ah′\X = ∅. Otherwise, there is h′ ⊇ h such that Ah′ ⊆ Ah\Y
and so Ah′ ∩ Y = ∅. However, Ah′ ∩ Y = Ah′ ∩ (X ∩ Ah) = Ah′ ∩ X = ∅. �

An independent family A is said to be densely maximal if any one of the above
three properties holds. Note that if an independent family is densely maximal, then
it is also maximal. The notion of dense maximality of independent families appears
(to the best knowledge of the authors) for the first time in [24]. In particular, we
obtain:

Corollary 3.3. Let A be an infinite independent family. Then, A is densely
maximal iff

P(�) = fil(A) ∪ 〈�\Ah : h ∈ FF(A)〉dn.4

The fact that partial orders has the Sacks property implies in particular:

Lemma 3.4 [14]. Let W be a P-generic extension of V, where P has the Sacks
property. If A ∈ V is an independent family, then in W, fil(A) is generated by fil(A)V .

4Thus, in the notation of [14], A is densely maximal iff P(�) = FA ∪ 〈CA〉dn .
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3.2. Selectivity. Recall the following definitions. Let F ⊆ P(�). Then F is
centered if for every finite subfamily H,

⋂
H ∈ F ; F is a P-set, if every countable

subfamily has a pseudo-intersection in F ; F is a Q-set, if for every partition E of �
into finite sets, there is an X ∈ F meeting each element of the partition in at most
one point, i.e., |X ∩ E| ≤ 1 for each E ∈ E .

Definition 3.5. Let F be a filter over� containing the Fréchet filter. We say that
F is a selective filter if and only if for every partition {Xi}i∈� of � into elements of
F∗, where F∗ is the dual ideal of F , there exists Y ∈ F such that |Y ∩ Xi | ≤ 1 for
each i ∈ �.

Note that a filter F ⊆ P(�) is selective (also called Ramsey) if and only if F
extends the Fréchet filter and is both a P-set and a Q-set.

Definition 3.6. An independent family is said to be selective if it is densely
maximal and fil(A) is a selective filter.

Selective independent families exist under CH, a result which is due to Shelah (see
[46]). Further studies of selective independent families can be found in [14, 17].

Of particular interest for us will be the following combinatorial characterization
of Q-filters which is similar to a characterization of happy families (see Proposition
0.7 in the work of Mathias [37] or Proposition 11.6 in [26]), as well as the fact that
Q-filters are preserved by ��-bounding forcing notions (see Lemma 3.8).

Lemma 3.7. Let F be a filter. The following are equivalent:
(a) F is a Q-filter.
(b) For any increasing function f ∈ �� there is {k(n) : n ∈ �} ∈ F such that
f(k(n)) < k(n + 1).

Proof. ((a) ⇒ (b)) Note that the partition relations occurring in this proof, and
so implicitly the proof itself, can be found in [46]. Inductively, choose a sequence
{n(l)}l∈� such that n(0) = 0 and

n(l + 1) = min{n : n(l) < n and ∀m ≤ n(l)(f(m) ≤ n)}.
We consider the partition E0 = {[n(3l), n(3l + 3))}l∈� . There is C1 ∈ F such that
C1 is a selector for E0. Now, consider the relation E1 on C1 defined as follows:

m ∼E1 k iff m = k ∨m < k ≤ f(m) ∨ k < m ≤ f(k).

Note that E1 is clearly reflexive and symmetric. Transitivity holds, since no three
pairwise distinct elements of C1 are E1-equivalent: Indeed, suppose m1 < m2 < m3

are such that m1E1m2 and m2E1m3. Then m1 < m2 < m3 ≤ f(m1). There are l1 <
l2 < l3 such thatmi ∈ [n(3li), n(3li + 3)). Thenm1 < n(3l2) ≤ m2 < n(3l3) ≤ m3 ≤
f(m1). However, on the other hand by the definition of sequence {n(l)}l∈� we have
f(m1) ≤ n(3l2 + 1) < n(3l3), a contradiction. Thus, E1 is an equivalence relation
on C1 and each E1-equivalence class has at most two elements.

Extend E1 to an equivalence relation E2 on � by defining

m ∼E2 k iff m = k ∨m ∼E1 k.

There is C2 in F such that C2 is a selector for E2. Without loss of generality C2 ⊆ C1

and 0 ∈ C2. Let {k(n)}n∈� enumerate in increasing order C2. Thus for all n, n′ we
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have that k(n) 	∼E2 k(n′). Thus, if n < n′ then k(n′) 	≤ f(k(n)) and so for all n ∈ �,
f(k(n)) < k(n + 1).

((b) ⇒ (a)) Let E be a partition of � into finite sets. We set

f(n) = max
⋃

{E ∈ E : (∃i ≤ n) i ∈ E}.

There is {k(n) : n ∈ �} ∈ F such that f(k(n)) < k(n + 1) for each n ∈ �. The set
{k(n) : n ∈ �} is a selector for E . Indeed, k(n) ≤ f(k(n)) < k(n + 1) and therefore
k(n + 1) is from a different set of partition E than all k(i) for i ≤ n. �

In particular, we get the following, which we state for completeness.

Lemma 3.8. An ��-bounding forcing notion preserves Q-filters.

Proof. If P is an ��-bounding forcing notion, F a Q-filter in V, then we use
part (2) of Lemma 3.7 for f ∈ V ∩ �� dominating function g ∈ V P ∩ ��. �

Selective filter has a property similar to Mathias’ notion of a happy family [37] (see
[26] as well). Note that Mathias [37, Proposition 0.10] has shown that an ultrafilter
G is Ramsey if and only if G is happy (see Proposition 11.7 in [26] as well).

Lemma 3.9. Let F be a filter over� containing the Fréchet filter. The following are
equivalent:

(a) F is selective.
(b) For any sequence {Gn}n∈� of finite subsets of F there is a ∈ F such that

a(n + 1) ∈
⋂

Ga(n).

Proof. ((a) ⇒ (b))F is a P-set and therefore there is C0 ∈ F such that C0 ⊆∗ G
for each G ∈

⋃
{Gn : n ∈ �}. Thus, for some function f ∈ ��

(∀n ∈ �) C0 \ f(n) ⊆
⋂

Gn.

Let us take {k(n) : n ∈ �} ∈ F from Lemma 3.7 such that C = {k(n + 1): n ∈
�} ⊆ C0. Hence, we have k(n + 1) ∈ C0 \ f(k(n)), and so k(n + 1) ∈

⋂
Gk(n).

((b) ⇒ (a)) First we shall show that F is a P-set. Let {Gi}i∈� be a sequence in F .
We set Gi = {G0 ∩G1 ∩ ··· ∩Gi}, and we take a ∈ F such that a(n + 1) ∈

⋂
Ga(n).

The set a is a pseudointersection of {Gi}i∈� . Indeed, if Gj is such that j ≤ a(n)
then {a(k) : k ≥ n + 1} ⊆ Gj .

We shall show that F is a Q-set using Lemma 3.7. Indeed, let the functionf ∈ ��
be increasing. We consider sets Gi = {(f(i),+∞)}, and we take a ∈ F such that
a(n + 1) ∈

⋂
Ga(n). Hence, a(n + 1) > f(a(n)). �

The following preservation theorem will be central to the proof that iterations of
Miller partition forcing, as well as other partial orders which are of interest for this
article, preserve selective independent families.

Lemma 3.10 [46, Lemma 3.2]. Let F be a selective filter and let H ⊆ P(�)\F
be cofinal in P(�)\F with respect to ⊆∗. If 〈Pα, Q̇α | α < �〉 is a countable support
iteration of ��-bounding proper forcing notions such that for all α < �, we have
1Pα � “H is cofinal in P(�)\〈F〉, ” then the same holds for �.
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The forcing iterations, that we will be interested in, all have the Sacks property.
Thus, in the corresponding generic extensions fil(A) is generated by fil(A) ∩ V ,
where V denotes the ground model (see Lemma 3.4). Thus, if fil(A) is selective in
the ground model, then it will remain selective in the desired generic extensions.
Thus, the above preservation theorem implies that in order to guarantee that a given
selective independent family remains selective (in our desired generic extensions),
it is sufficient to guarantee that each iterand preserves the dense maximality of the
family. Note that the fact that the density filter is selective will play a crucial role
in this preservation arguments. That is, our techniques do not imply that densely
maximal independent families are preserved, but only selective ones. Before giving
detailed proofs of these crucial preservation properties of Miller partition forcing
(see Theorem 4.1 and Corollary 4.10) which are also the most technical arguments
in the paper, we state our main result:

Theorem 3.11. Assume CH. There is a cardinals preserving generic extension in
which

cof(N ) = a = u = i = �1 < aT = �2.

Proof. Let V denote the ground model. We assume that A is a selective
independent family in V, U is a P-point in V, and E is a tight MAD family in V
(according to [25]). Using an appropriate bookkeeping device define a countable
support iteration 〈Pα, Q̇� : α ≤ �2, � < �2〉 of posets such that for each α, Pα forces
that Qα = Q(C) for some uncountable partition C of 2� into compact sets and
such that V P�2 � aT = �2. P�2 has the Sacks property and therefore cof(N ) = �1.
By Shelah’s preservation Theorem 3.10 and Corollary 4.10, or alternatively by
Theorem 4.1, the family A remains selective independent in V P�2 and so a witness
to i = �1. Similarly, U generates a P-point in V P�2 , so u = �1 as well. And finally,
a = �1 since E is a tight MAD family (see [25]). �

§4. Miller partition forcing preserves selective independent families. We proceed
with taking care of the successor stages of our forcing construction, i.e., the fact
that Miller partition forcing preserves selective independent families. In Section 4.1
using the technique of fusion with witnesses, we give a proof of this fact, while in
Section 4.2 we give yet one more proof using Laflamme’s filter games.

4.1. Fusion sequences and selectivity.

Theorem 4.1. Let A be a selective independent family and let G be a Q(C)-generic
filter. Then, in V [G ], A is still selective independent.

Proof. Recall that by Lemmas 3.4 and 3.8, fil(A) remains a selective filter. Thus,
it is sufficient to show that A remains densely maximal in the generic extension. In
V Q(C), take any Y ∈ P(�)\〈fil(A) ∩ V 〉up. Suppose Y /∈ 〈{�\Ah : h ∈ FF(A)}〉dn.
Thus, for all h ∈ FF(A), Y 	⊆ �\Ah and so for all h ∈ FF(A), |Y ∩ Ah | = �.
Therefore in V we can fix p ∈ Q(C) and a Q(C)-name Ẏ for Y such that for all
h ∈ FF(A), p � |Ẏ ∩ Ah | = ∞.
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By Lemma 2.8 we can assume that for all m ∈ �, for all t ∈ splitm(p) there is
ut ∈ m+12 such that p(t) � Ẏ � (m + 1) = ǔt . Now, in V for each t ∈ p, let

Yt = {m ∈ � : p(t) 	� m̌ /∈ Ẏ}.
Claim 4.2.

(i) p(t) � Ẏ ⊆ Y̌t .
(ii) If s ⊆ t then Yt ⊆ Ys .
(iii) Yt ∈ fil(A) ∩ V .
(iv) If m ∈ Ys for s ∈ splitn(p), and n < m then there is t ∈ splitm(p) extending

s such that p(t) � m̌ ∈ Ẏ .

Proof. (i) Let m ∈ Ẏ [G ] for a generic G containing p(t). If p(t) � m̌ /∈ Ẏ
then m /∈ Ẏ [G ], a contradiction.

(ii) Since p(t) ⊆ p(s), from p(t) 	� m̌ /∈ Ẏ we obtain p(s) 	� m̌ /∈ Ẏ .
(iii) If Yt /∈ fil(A) ∩ V then by Lemma 3.2(3), there is h ∈ FF(A) such that
Yt ⊆ �\Ah , i.e., Yt ∩ Ah = ∅. Since p(t) � Ẏ ⊆ Y̌t , p(t) � Ah ∩ Ẏ = ∅.
However, p(t) � |Ẏ ∩ Ah | = ∞, which is a contradiction.

(iv) Since p(s) 	� m̌ /∈ Ẏ there is a condition q ≤ p(s) such that q � m̌ ∈ Ẏ .
However, by our assumption on p due to Lemma 2.8, for any t ∈ splitm(p) we
have either p(t) � m̌ ∈ Ẏ or p(t) � m̌ /∈ Ẏ . Since {p(t) : t ∈ splitm(p), t ⊇
s} is pre-dense in p(s), there is t ∈ splitm(p) extending s such that p(t) �
m̌ ∈ Ẏ . �

Claim 4.3. We can assume that a dense set X ⊆ [p] with C-different elements
has the associated family {yx : x ∈ X} of sets in fil(A) such that if t = x � splitn(p)
then p(t) � yx(n) ∈ Ẏ .

Proof. By Claim 4.2(iii), Yt ∈ fil(A) ∩ V for each t ∈ split(p). By Lemma 3.9
for Gn being the family of all Yt ’s with t ∈ split≤n(p), we obtain {k(n) : n ∈ �} ∈
fil(A) such that

k(n + 1) ∈
⋂

{Yt : t ∈ split≤k(n)(p)}.

Moreover, by part (iv) of Claim 4.2 for any s ∈ splitk(n)(p) there is t ∈
splitk(n+1)(p) extending s such that p(t) � ǩ(n + 1) ∈ Ẏ . For each branch x ∈ [p]
we consider the set

i(x) = {i : p(t) � ǩ(i + 1) ∈ Ẏ for t = x � splitk(i+1)(p)}.

We say that x ∈ [p] is an acceptable branch if i(x) is cofinite. The smallest n with
i(x) ⊇ [n,∞) is called the degree of acceptability of x. Note that for each acceptable
branch x,yx = {k(i + 1): i ∈ i(x)} ∈ fil(A). Moreover, each s ∈ p can be extended
to an acceptable branch. Indeed, if s ∈ splitl (p), take j such that l ≤ k(j). Thus,
we assume that k(j + 1) ∈ Ys . By part (iv) of Claim 4.2 there is t ∈ splitk(j+1)(p)

extending s such that p(t) � ǩ(j + 1) ∈ Ẏ . Repeat the procedure recursively to
build an acceptable branch extending s. In the following, we continue using a fusion
argument. We build a fusion sequence {(pn,Xn)}n∈� .

To define p0, take some acceptable branch x extending some node in splitk(0)+1(p)
with degree of acceptability at most 0, and a node s = x � splitk(1)(p). We set
p0 = p(s) and X0 = {x}.
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Let us assume thatpn andXn are defined, and consider s ∈ splitk(n)(p) ∩ split(pn).
Take the unique acceptable branch x ∈ Xn extending s. Define i = x(|s |) ∈ {0, 1}
and si = x � splitk(n+1)(p). Then we set s1–i to be an extension of s�〈1 – i〉 such
that:

(i) [p(s1–i)] ∩ Cαx = ∅ for all already considered acceptable branches x (i.e.,
all branches in Xn and those assigned to previous nodes in some order of
splitk(n)(p) ∩ split(pn)). This can be easily achieved since eachCαx is nowhere
dense in [p].

(ii) s1–i = x � splitk(j+1)(p) with j ∈ i(x) for some acceptable branch x ∈ [p]
with degree of acceptability at most j. Let us recall that each node can be
extended to an acceptable branch.

Finally, let Xn+1 be the set of all considered acceptable branches in this step, and

pn+1 =
⋃

{p(si) : s ∈ splitk(n)(p) ∩ split(pn), i ∈ {0, 1}}.

One can see that the sequence {(pn,Xn)}n∈� is a fusion sequence with witnesses.
Let q =

⋂
{pn : n ∈ �} and let X =

⋃
{Xn : n ∈ �}.

We shall show that the family {yx : x ∈ X} possesses the desired properties.
Indeed, let x ∈ X . For each n ∈ � we have yx(n) = k(i(x)(n) + 1). Due to
construction of q we have x � splitn(q) = x � splitk(jn+1)(p) for some increasing

sequence {ji}i∈� , and if t = x � splitn(q) then p(t) � ǩ(jn + 1) ∈ Ẏ . Thus k(jn +
1) ∈ yx and consequently jn ≥ i(x)(n) for each n. Let us now fix n and consider
t = x � splitn(q). The definition of yx guarantees that p(s) � ǩ(i(x)(n) + 1) ∈ Ẏ
for s = x � splitk(i(x)(n)+1)(p). Thus we have q(s) � y̌x(n) ∈ Ẏ . On the other hand,
s = x � splitk(i(x)(n)+1)(p) ⊆ x � splitk(jn+1)(p) = x � splitn(q) = t. �

The last part of our proof resembles the proof of the previous claim. Let xs for
s ∈ split(p) be the branch in X extending s such that if s ⊆ t ⊆ xs then xt = xs . The
corresponding yxs is denoted by ys . The set ys belongs to fil(A) ∩ V . By Lemma 3.9
for Gn being the family of all yt ’s with t ∈ split≤n(p), we obtain {l(n) : n ∈ �} ∈
fil(A) such that

l(n + 1) ∈
⋂

{yt : t ∈ split≤l(n)(p)}.

Let us denote C = {l(n + 1): n ∈ �}. We shall construct a condition q∗ ≤ p such
that q∗ � Č ⊆ Ẏ . Then q∗ � Ẏ ∈ fil(A) which is a contradiction.

We build a fusion sequence {(pn,Xn)}n∈� . Let p0 = p, X0 = {xt} for t ∈
split0(p), and suppose we have defined pn. For each t ∈ splitn(pn) ⊆ splitl(n)(p)
and each i ∈ {0, 1} take w∗(t, i) ∈ splitl(n)+1(p) such that w∗(t, i) end-extends t�i .
Then

l(n + 1) ∈
⋂

{yw∗(t,i) : t ∈ splitn(pn), i ∈ {0, 1}}

and so for each t, i we take w(t, i) = xw∗(t,i) � splitl(n+1)(p). Note that by Claim 4.3
and the fact that l(n + 1) ≥ j for l(n + 1) = yw∗(t,i)(j) we obtain

p(w(t, i)) � ľ(n + 1) ∈ Ẏ .
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Takepn+1 =
⋃
{p(w(t, i)) : t∈ splitn(pn), i ∈{0, 1}},Xn+1 ={xw(t,i) : t∈ splitn(pn),

i ∈ {0, 1}}. Finally, let q∗ be the fusion of {(pn,Xn)}n∈� . Then, since q∗ � l(n +
1) ∈ Ẏ for all n ∈ �, q∗ is as required. �

4.2. Laflamme’s filter game. We give yet one more proof of the fact that
Miller partition forcing preserves selective independent families, which is based
on Laflamme’s filter game. We will make use of the following property, which can
be deduced from [52, Propositions 4.1.2 and 4.1.31].

Lemma 4.4. Let p ∈ Q(C) and let ḟ be a Q(C)-name such that p � ḟ ∈ 2� . Then
there exists q ≤ p and a continuous H : [q] −→ 2� such that q � H (ṙgen) = ḟ.

Definition 4.5 (Laflamme [34]). LetF be a filter over�. The gameG(F , �,F) is
defined as follows. On the n turn, Player I plays someUn ∈ F and Player II responds
with some an ∈ Un. After � turns, Player II wins if the sequence {an}n∈� belongs
to F . Otherwise, Player I wins.

It is not hard to prove that Player II never has a winning strategy in this game.
On the other hand, we have the following theorem of Laflamme, see [34] (as well as
[35]).

Theorem 4.6 (Laflamme). A filter F is not selective if and only if Player I does
have a winning strategy for the game G(F , �,F).

Lemma 4.7. LetF be a selective filter,p ∈ S, andH : [p] −→ P(�) be a continuous
function such that for every s ∈ p,⋃

H
[
[p(s)]

]
∈ F .

Then there are q ∈ S, Y ∈ F such that q ⊆ p and for every f ∈ [q], Y ⊆ H (f).

Proof. For every q ∈ S such that q ⊆ p, let L(q) =
⋃
H

[
[q]

]
. Now consider

the game G(F , �,F). Player I will play the following strategy, while constructing a
sequence {t�}�∈2<� ⊆ p such that:

(a) ∀� ∈ 2<�∀i ∈ 2
(
t� � t��i

)
.

(b) ∀�, � ∈ 2n
(
� 	= � → (t� and t� are incomparable )

)
.

On the first turn Player I defines t∅ = ∅ and plays U0 = L(p(t∅)). As the rules
dictate, Player II responds with some a0 ∈ U0. Since a0 ∈

⋃
H

[
[p(t∅)]

]
, there is

f ∈ [p(t∅)] such that a0 ∈ H (f). As H is continuous there is k ∈ � such that for
every g ∈ [p(f|k)] we have a0 ∈ H (g). Now Player I extends f|k to incomparable
t0, t1 ∈ p such that t∅ � t0, t1 and plays U1 = L(p(t0)) ∩ L(p(t1)). As the rules
dictate Player II responds with some a1 ∈ U1.

In general, suppose that it is the n + 1 turn and that Player I has con-
structed {t�}�∈2≤n and for every m ≤ n played Um =

⋂
�∈2≤m

L(p(t�)). As an ∈⋂
�∈2n

(⋃
H

[
[p(t�)]

])
, for every � ∈ 2n there is f� ∈ [p(t0)] such that an ∈ H (f�).

Since H is continuous, there is k ∈ � such that for every � ∈ 2n and every g ∈
[p(f� |k)], an ∈ H (g). Now Player I extends each f� |k to incomparable t��0, t��1 ∈
p such that t� � t��0, t��1 and plays Un+1 =

⋂
�∈2≤n+1

L(p(t�)). As the rules dictate,

Player II responds with some an+1 ∈ Un+1.
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Since F is a selective filter, this is not a winning strategy for Player I. Therefore
there is a match where Player I plays by the above strategy, but Player II wins. Let
{an}n∈� and {t�}�∈2<� be the sequences associated with one of these matches and
let q = {� ∈ p | ∃� ∈ 2<�

(
� ⊆ t�

)
}. It is straightforward that q and Y = {an}n∈�

are the objects we are looking for. �

Theorem 4.8. Let F be a selective filter and let G be a Q(C)-generic filter. InV [G ],
for every X ∈ P(�) one of the following statements occurs:

(a) There is Y ∈ F ∩ V such that Y ⊆ X .
(b) There is Z ∈ V , such that Z /∈ F and X ⊆ Z.

Proof. Let Ẋ be a name for a subset of �, p ∈ Q(C), and suppose no condition
below p forces (b). By Lemma 4.4 there is a continuousH : [p] −→ P(�) such that
p � H (ṙgen) = Ẋ . For every q ∈ S such that q ⊆ p, let L(q) =

⋃
H

[
[q]

]
and note

that if q ∈ Q(C) then L(q) ∈ F . This holds, because q � Ẋ ⊆ L(q) and q does not
force (b). We say that a condition q ∈ S, which is not necessarily in Q(C), is special
if q ⊆ p and for every s ∈ q we have that L(q(s)) ∈ F .

We will make use of the following notion: Given s ∈ p we say that the pair (q, T )
is s-special if q ∈ S is special, T ∈ C, [q] ⊆ [p(s)] ∩ T . We divide the proof in cases.

Case 1. For every s ∈ p, there is an s-special pair (q, T ).

In this case, consider the game G(F , �,F). Player I will play by the following
strategy, while recursively constructing sequences {q�}�∈2<� ⊆ S, {s�}�∈2<� ⊆ p,
and {T�}�∈2<� ⊆ C such that:

(a) ∀� ∈ 2<� the pair (q�, T�) is s�-special;
(b) ∀� ∈ 2<�

(
q��0 ⊆ q�

)
;

(c) ∀� ∈ 2<�
(
T��0 = T�

)
;

(d) ∀�, � ∈ 2n
(
� 	= � → T� 	= T�

)
;

(e) ∀� ∈ 2<�∀i ∈ 2
(
s� � s��i

)
;

(f) ∀� ∈ 2<�
(
s��0 ∈ q� ∧ [p(s��1)] ∩ T� = ∅

)
.

On the first turn, Player I defines s∅ = ∅, an s∅-special pair (q∅, T∅) and plays
U0 = L(q∅). As the rules dictate, Player II responds with some a0 ∈ U0. Since a0 ∈⋃
H

[
[q∅]

]
, there is some f ∈ [q∅] such that a0 ∈ H (f) and since H is continuous

there is k ∈ � such that for every g ∈ [p(f|k)], a0 ∈ H (g). Notice that since (q∅, T∅)
is s∅-special, we have that f|k is compatible with s∅ and moreover we can extend
f|k to incomparable s0, s1 ∈ p such that s∅ � s0, s1, s0 ∈ q∅ and [p(s1)] ∩ T∅ = ∅.
Now Player I defines q0 = q∅(s0), T0 = T∅, an s1-special pair (q1, T1) and plays
U1 = L(q0) ∩ L(q1). As the rules dictate, Player II responds with some a1 ∈ U1.

In general, suppose that it is the n + 1 turn and Player I has constructed q�, s� , and
T� for every � ∈ 2≤n. Moreover, suppose that for every m ≤ n Player I has played
Um =

⋂
�∈2m

L(q�). Since an ∈
⋂
�∈2n

( ⋃
H

[
[q� ]

])
, for every � ∈ 2n there is f� ∈ [q� ]

such that an ∈ H (f�). As H is continuous, there is k ∈ � such that for every � ∈ 2n

and every g ∈ [p(f� |k)], an ∈ H (g). As each (q�, T�) is s�-special, we have thatf� |k
is compatible with s� and that

⋃
�∈2n
T� ∩ [p] is nowhere dense in [p]. Then we can

extend eachf� |k to incomparable s��0, s��1 ∈ p such that s� � s��0, s��1, s��0 ∈ q�
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and [p(s��1)] ∩ T� = ∅. Now Player I defines q��0 = q�(s��0), T��0 = T� , an s��1-
special pair (q��1, T��1) and playsUn+1 =

⋂
�∈2n+1

L(q�). As the rules dictate, Player

II responds with some an+1 ∈ Un+1.
Since F is a selective filter, the above is not a winning strategy for Player I and so,

there is a match where Player I follows the strategy, but Player II wins. Let {an}n∈� ,
{q�}�∈2� , {s�}�∈2� , and {T�}�∈2� be the sequences associated with one of these
matches. To finish Case 1, define q = {� ∈ p | ∃� ∈ 2�

(
� ⊆ s�

)
}. Moreover, if c0 is

the constant 0 function in 2� and � ∈ 2<� then g� =
⋃
{s� | � ⊆ ��c0} ∈ T� and

the setQ = {g� | � ∈ 2<�} is dense in [q]. But then, by Lemma 2.4, q ∈ Q(C). Since
for every n ∈ �, every � ∈ 2n+1, and every g ∈ [p(s�)], we have that an ∈ H (g)
and every g ∈ [q] satisfies this condition for some � ∈ 2n+1, we obtain that for
every g ∈ [q], {an}n∈� ⊆ H (g). In particular we have that q � {an}n∈� ⊆ Ẋ . Since
{an}n∈� ∈ F , we are done.

Case 2. There is s0 ∈ p for which there is no s0-special pair (q, T ). That is, every
ordered pair (q, T ) does not satisfy one of the following conditions: q ∈ S is special,
T ∈ C, or [q] ⊆ [p(s0)] ∩ T .

In this case, we use Lemma 4.7 to find q ∈ S andY ∈ F such that q ⊆ p(s0) and for
everyf ∈ [q],Y ⊆ H (f). Notice that q is special. Suppose towards a contradiction
that q /∈ Q(C). Since every element of C is closed, this means that there is some
T ∈ C such that T ∩ [q] has non-empty interior in [q] and so we can find � ∈ q such
that [q(�)] ⊆ T . Then (q(�), T ) is s0-special, which is a contradiction. Therefore
q ∈ Q(C). To finish this case, just note that as before q � Y ⊆ Ẋ . �

Suppose that C is the partition of 2� in singletons. Then Q(C) = S and so Case 1
of Theorem 4.8 never occurs. Therefore Lemma 4.7 actually yields a complete proof
of Theorem 4.8 for Sacks forcing. Additionally, we obtain once again:

Corollary 4.9. The poset Q(C) preserves selective ultrafilters.

Corollary 4.10. Let A be a selective independent family and let G be a Q(C)-
generic filter. Then, in V [G ], A is still selective independent.

Proof. Since Q(C) is proper and has the Sacks property, 〈fil(A)V 〉 is a selective
filter in V [G ], but by Lemma 3.4 we know that fil(A)V [G ] = 〈fil(A)V 〉. To show
that A remains densely maximal in V [G ], note that by Theorem 4.8, the family
P(�)V \ fil(A)V is cofinal in P(�)V [G ]\〈fil(A)V 〉. However, by hypothesis {�\Ah :
h ∈ FF(A)} is cofinal in P(�)V \ fil(A)V and so we are done. �

§5. No small ultrafilter bases and tightness.

5.1. The poset QI . For a maximal ideal I on �, QI denotes the forcing notion
introduced by Shelah in [46] for obtaining the consistency of i < u. In [46] it is
shown that QI is proper [46, Claim 1.13], ��-bounding [46, Claim 1.12], and even
has the Sacks property [46, Claim 1.12]. In the QI-generic extension, I is no longer
a maximal ideal [46, Claim 1.5]. For completeness of the presentation we repeat
below the definition and some of the key properties of QI .
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Definition 5.1. Let I be an ideal on �.

(1) An equivalence relation E on a subset of � is an I-equivalence relation if
domE ∈ I∗ and each E-equivalence class is in I.

(2) For I-equivalence relationsE1, E2, we denoteE1 ≤I E2 if domE1 ⊆ domE2,
and E1-equivalence classes are unions of E2-equivalence classes.

(3) LetA ⊆ �. A function g is A-n-determined if g : A{0, 1} → {0, 1} and there is
w ⊆ A ∩ (n + 1) such that for any �, 	 ∈ A{0, 1} with � � w = 	 � w we have
g(�) = g(	).

For i ∈ A, by gi we denote the function from A{0, 1} to {0, 1} which maps
� ∈ A{0, 1} to �(i).

Claim 5.2. Each A-n-determined function is equal to a function ϕ(g0, ... , gn)
which is obtained as an interpretation of a formula ϕ(a0, ... , an) of propositional
calculus. The symbols ∧, ∨, ¬ are interpreted as a maximum, minimum, and
complement (i.e., 1 – gi), respectively. The formula ϕ(a0, ... , an) may contain
constant symbols 0, 1 which are interpreted as constant functions 0, 1.

For an I-equivalence relation E we denote A = A(E) = {x : x ∈ domE,
x = min[x]E}.

Definition 5.3 (Set of conditions in QI). Let I be an ideal on �. We define a
forcing notion QI :

p ∈ QI iff p = (H,E) = (Hp,Ep) where :

(1) E is an I-equivalence relation,
(2) H is a function with domH = �,
(3) a value H (n) is an A(E)-n-determined function,
(4) if n ∈ A(E) thenH (n) = gn,
(5) if n ∈ domE \ A(E) and nEi for i ∈ A(E) thenH (n) is gi or 1 – gi .

For a condition q ∈ QI , let Aq be A(Eq) in the following.

Definition 5.4. If p, q ∈ QI with Ap ⊆ Aq then for each n ∈ �\ dom(Eq) we
write Hp(n) =∗∗ Hq(n) if for each � ∈ Ap{0, 1} we have Hp(n)(�) = Hq(n)(�′)
where

�′(j) =

{
�(j), j ∈ Ap,
Hp(j)(�), j ∈ Aq \ Ap.

Definition 5.5 (The order of QI). If p, q ∈ QI then p ≤ q if:

(1) Ep ≤I E
q .

(2) If Hq(n) = gi for n ∈ domEq then Hp(n) = Hp(i).
(3) If Hq(n) = 1 – gi for n ∈ domEq thenHp(n) = 1 – Hp(i).
(4) If n ∈ � \ domEq thenHp(n) =∗∗ Hq(n).

Finally, p ≤n q if p ≤ q and Ap contains the first n elements of Aq .

The following has been proven in [46]. Items (1) and (2) correspond to [46, Claim
1.7(2)], and item (3) is a straightforward modification of [46, Claim 1.8].
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Claim 5.6. Let p ∈ QI . For an initial segment u of Ap, and h : u → {0, 1}, let
p[h] be the pair q = (Hq,Eq) defined by (i) and (ii) below:

(i) Eq = Ep �
⋃
{[i ]Ep : i ∈ Ap \ u}.

(ii) If Hp(n) is ϕ(g0, ... , gn) then Hq(n) is ϕ(g0, ... , gi/h(i), ... , gn), where the
substitution is done just for i ∈ u.

Then we have:

(1) p[h] is a condition in QI stronger than p.
(2) The set {p[h] : h ∈ u{0, 1}} is predense below p.
(3) If u is the set of first n elements of Ap, D a dense subset of QI then there is
q ∈ QI such that q ≤n p and q[h] ∈ D for any h ∈ u{0, 1}.

Definition 5.7 (The game GMI(E)). GMI(E) is the following game. In the
n-th move, the first player chooses an I-equivalence relation E1

n ≤I E
2
n–1 (E1

0 = E),
and the second player chooses an I-equivalence relation E2

n ≤I E
1
n . In the end, the

second player wins if ⋃
n>0

(domE1
n \ domE2

n) ∈ I∗.

Otherwise, the first player wins.

Remark 5.8. If the second player wins in the game GMI(E), then the game is
invariant to taking subsets. That is, the game is invariant to taking ≤I-extensions
{E2,∗
n }n∈� with dom(E2,∗

n ) ⊆ domE2
n .

The next lemma corresponds to [46, Claim 1.10(1)]

Lemma 5.9. The game GMI(E) is not determined for a maximal ideal I.

5.2. Tight MAD families. Tight MAD families were investigated in [25, 33, 36]. An
AD family A is called tight if for every {Xn : n ∈ �} ⊆ I(A)+ there is B ∈ I(A) such
that B ∩ Xn is infinite for every n ∈ �.

A preservation theorem for tight MAD family under countable support iteration of
proper forcing notions was developed by Guzmán, Hrušák, and Téllez [25].

Definition 5.10. Let A be a tight MAD family. A proper forcing P strongly
preserves the tightness of A if for every p ∈ P, M a countable elementary submodel
of H (κ) (where κ is a large enough regular cardinal) such that P,A, p ∈M and
B ∈ I(A) for which |B ∩ Y | = � for every Y ∈ I(A)+ ∩M , there is q ≤ p an
(M,P)-generic condition such that

q � “(∀Ż ∈ I(A) ∩M [Ġ ]) |Ż ∩ B | = �, ”

where Ġ denotes the name of the generic filter.

We restate Corollary 32 of [25] which is crucial for preserving MAD families in the
forthcoming model.

Theorem 5.11 (Guzmán, Hrušák, and Téllez). Let A be a tight MAD family. If the
sequence 〈Pα, Q̇� : α ≤ �2, � < �2〉 is a countable support iteration of proper posets
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such that

Pα �α “Q̇α strongly preserves the tightness of A, ”
then P�2 �α “A is a tight MAD family.”

We need the following fact about the outer hulls observed in [25].

Lemma 5.12. Let A be an AD family, P a partial order, Ḃ a P-name for a subset of
�, and p ∈ P such that p � “Ḃ ∈ I(A)+.” Then the set {n : (∃q ≤ p) q � “n ∈ Ḃ”}
is in I(A)+.

And now we are ready to show the main result of this section.

Theorem 5.13. Let A be a tight MAD family, I being a maximal proper ideal on �.
The poset QI strongly preserves the tightness of A.

Proof. Let p ∈ QI , M a countable elementary submodel of H (κ) such that
I,A, p ∈M and B ∈ I(A) for which |B ∩ Y | = � for every Y ∈ I(A)+ ∩M . We
fix an enumeration {Dn : n ∈ �} of all open dense subsets of QI that are in M, and
an enumeration {Żn : n ∈ �} with infinite repetitions of all QI-names for elements
of I(A)+ that are in M.

We define a strategy for the first player in the game GMI(E), which cannot be
winning in all rounds. Work in M. We set p0 = q0 = p and u0 = ∅. We assume that
the first player has chosen E1

n , qn, pn, un, and the second one has chosen E2
n . We

give instructions to choose E1
n+1, qn+1, pn+1, un+1. We begin with qn+1:

(1) domEqn+1 = domEpn .
(2) xEqn+1y iff one of the following holds:

(i) xE2
ny.

(ii) There is k ∈ un with x, y ∈ [k]Epn and x, y 	∈ domE2
n .

(iii) x, y /∈
⋃
{[i ]Epn : i ∈ un} ∪ domE2

n .
(3) Hqn+1 is chosen such that:

(i) If l ∈ Aqn+1 , then Hqn+1(l) = gl .
(ii) If l ∈ Apn\Aqn+1 , then Hqn+1(l) = gmin[l ]

E
qn+1

.
(iii) If l ∈ domEpn \ Apn , Hpn (l) = gi then Hqn+1(l) = Hqn+1 (i).
(iv) If l ∈ domEpn \ Apn , Hpn (l) = 1 – gi thenHqn+1 (l) = 1 – Hqn+1(i).
(v) If l ∈ � \ domEpn then Hqn+1(l) =∗∗ Hpn (l).

Note that for the already defined condition qn+1 we have qn+1 ≤n pn. Let zn be the
least element of domEqn+1 generating the Eqn+1 -equivalence class of (2)(iii) above
and let un+1 = un ∪ {zn}. By Lemma 5.12, the set D′

n = {r ∈ QI : r � “(Żn ∩ B) \
n 	= ∅”} is open dense below p (and also below qn+1). Then D′

n ∩Dn is dense below
qn+1. Therefore we can apply Claim 5.6(3) to obtain pn+1 ≤n+1 qn+1 such that
for each h ∈ un+1{0, 1}, the condition p[h]

n+1 ∈ D′
n ∩Dn ∩M . In particular, if h ∈

un+1{0, 1} then p[h]
n+1 � “(Żn ∩ B) \ n 	= ∅” and p[h]

n+1 ∈ Dn ∩M . By Claim 5.6(2) we
have pn+1 � “(Żn ∩ B) \ n 	= ∅.” Finally, we set

E1
n+1 = Epn+1 � (domEpn+1 \

⋃
{[i ]Epn+1 : i ∈ un+1}).

We define a fusion q of the sequence 〈pn : n ∈ �〉. The relation Eq has domEq =⋂
n∈� domEpn and xEqy if for every n large enough, xEpny. The function Hq
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is equal to Hpn for large enough n. In order to guarantee that domEq ∈ I∗, it is
sufficient to choose a play with the first player using the described strategy, but
loosing, which by Lemma 5.9 exists. The other properties for q ∈ QI are satisfied
by the definition of q.

Finally q is (M, QI)-generic, q ≤n pn for all n and so q � “(∀Ż ∈ I(A) ∩
M [Ġ ]) |Ż ∩ B | = �.” �

As a corollary we obtain that in Shelah’s model of i < u (see [46]), also the almost
disjointness number is small.

Corollary 5.14. It is relatively consistent that a = i < u.

Moreover, using the preservation results of the current article, together with the
preservation results of [25], as well as the fact that QI has the Sacks property, we
obtain:

Corollary 5.15. It is relatively consistent that cof(N ) = i = a = �1 < aT =
u=�2.

Proof. Work over a model of CH. Let A0 be Shelah’s selective independent
family and let A1 be a tight mad family. Using an appropriate bookkeeping device
define a countable support iteration 〈Pα, Q̇� : α ≤ �2, � < �2〉 of posets such that
for even α, Pα forces that Qα = Q(C) for some uncountable partition C of 2� into
compact sets, for odd α, Pα forces that Qα = QI for some maximal ideal I on �,
and such that V P�2 � aT = u = �2. The iteration P�2 has the Sacks property and
therefore cof(N ) = �1. By the indestructibility of selective independence the family
A0 remains maximal independent in V P�2 and so a witness to i = �1. Moreover, by
the preservation properties of tightMAD families (see [25]), and the above preservation
theorems, A1 is a witness to a = �1 in the final model. �

§6. Appendix: The problem of Vaughan. We conclude the paper with an overview
of the problem of Vaughan and point many of the difficulties surrounding a possible
solution of it, in particular the fact that the most common forcing methods do not
seem to help with the problem:

(1) Finite support iteration of ccc forcings of length a regular cardinal over a
model of CH. This approach cannot work since in the models obtained in
this way, the size of the continuum is equal to cov (M) and it is known that
cov (M) ≤ i.5

(2) Countable support iteration of definable proper forcings of length �2 over a
model of CH. It follows by the results of Džamonja, Hrušák, and Moore in
[43] that in all of these models the equality b = a will hold, so in particular
we will have that a ≤ i.

(3) Countable support iteration of non-definable proper forcings of length �2 over a
model ofCH. This approach could work; however a model of i < a obtained by
this method will also be a model of �1 = d < a (since d ≤ i), thus solving the
problem of Roitman, which is considered to be one of the hardest problems
in the theory of cardinal invariants.

5Shelah proved that d ≤ i (see the Appendix of [50]). This result was improved by Balcar, Hernandez-
Hernández, and Hrušák in [2] where they proved that cof (M) ≤ i.
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(4) Forcing with ultrapowers and iterating along a template. The method of forcing
with ultrapowers and iterating along a template was introduced by Shelah in
[48] to build models of d < a and u < a. This is a very powerful method
that has been very useful and has been successfully applied to this day.
Unfortunately, it seems that all forcings obtained using this method tend
to increase i for the same reason they increase a. To learn more about this
powerful method, see [8–10, 16, 20, 22, 39].

(5) Short finite support iterations over models of MA. Performing a finite support
iteration of length�1 over a model of MA (for example) is a powerful method
to add “small witnesses” of some cardinal invariants while keeping others
large. Models obtained in this way are often called “dual models” (see [12]
for several interesting results and applications of these methods). In [2] a dual
model was constructed to add a small maximal independent family in order
to build a model of i <non (N ). Unfortunately, it is not clear how one could
avoid adding a small MAD family with this method. Moreover, it seems likely
that the principle �d of Hrušák will hold in these models6 (see [28]).

In principle, it could be possible to construct a model of i < a using matrix
iterations (see [7, 11, 38] to learn more about this method), but one would need to
be very careful in order to avoid problems like in the points 1 and 5 above.
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rationals. Fundamenta Mathematicae, vol. 183 (2004), no. 1, pp. 59–80.
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Rohanovem/Zahrádky u České Lı́py, 2001). Acta Universitatis Carolinae, vol. 42 (2001), pp. 43–58.
[30] ———, Almost disjoint families and topology, Recent Progress in General Topology. III, Atlantis,

Paris, 2014, pp. 601–638.
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Logic, vol. 68 (2003), pp. 1337–1353.
[32] A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer,

New York, 1995.
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E-mail: jaroslav.supina@upjs.sk

https://doi.org/10.1017/jsl.2022.68 Published online by Cambridge University Press

mailto:chapi@matmor.unam.mx
mailto:vera.fischer@univie.ac.at
mailto:oguzman@matmor.unam.mx
mailto:jaroslav.supina@upjs.sk
https://doi.org/10.1017/jsl.2022.68

	1 Introduction
	2 Miller partition forcing
	2.1 Fusion with witnesses
	2.2 Preservation of P-points

	3 Selective independence
	3.1 Dense maximality
	3.2 Selectivity

	4 Miller partition forcing preserves selective independent families
	4.1 Fusion sequences and selectivity
	4.2 Laflamme's filter game

	5 No small ultrafilter bases and tightness
	5.1 The poset QI
	5.2 Tight MAD families

	6 Appendix: The problem of Vaughan

