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Some Properties of Rational Functions
with Prescribed Poles

Abdul Aziz-Ul-Auzeem and B. A. Zarger

Abstract. Let P(z) be a polynomial of degree not exceeding n and let W(z) = ?:1 (z — aj) where |a;] > 1,
j = 1,2,...,n. If the rational function r(z) = P(z)/W(z) does not vanish in |z| < k, then for k = 1itis
known that

P < 518G Sup [r(2)]

|z|=1

where B(Z) = W*(2)/W(z) and W*(z) = z"W(1/z). In the paper we consider the case when k > 1 and
obtain a sharp result. We also show that

Sup{
|z]=1

where r*(z) = B(2)r(1/z), and as a consquence of this result, we present a generalization of a theorem of
O’Hara and Rodriguez for self-inversive polynomials. Finally, we establish a similar result when supremum is
replaced by infimum for a rational function which has all its zeros in the unit circle.

r'(2) '

B'(2)

(@)
B'(2)

} = Sup |r(2)|

|z|=1

1 Introduction and Statement of Results

Let P, denote the class of all complex polynomials of degree at most n. Let Dy_ denote the
region inside the circle Ty := {z;|z| = k > 0} and Dy, the region outside Tj. Fora; € C

with j = 1,2,...,n, write
- Ll —aiz
W(z) = —a: = J )
@=Ie-a. 5@ =T1(=
j=1 j=1
and @
P(z
R, =R, (a1, as,...,a,) = ; Pe®,.
(a1, a; a) W(z) n
Then R, is the set of all rational functions with poles ay, a,, . . ., a, at most and with finite

limit at infinity. We observe that B(z) € R,,. For f defined on T} in the complex plane, we
set || f|| = Sup,cr, | f(2)], the Chebyshev norm of f on T;. Throughout this paper, we shall
always assume that all poles a;, ay, ..., a, are in Dy,.

The following famous result is due to Bernstein (for reference see [8]).

Theorem A IfP € P, then ||P'|| < n||P|.
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As a refinement of Theorem A, we mention the following result due to A. Aziz [2] and
M. A. Malik [5].

Theorem B If P € P, and P*(z) = z"P(1/Z), then

11(P*2)'| + P@)| | = n|P].

The next result was conjectured by P. Erd§s and later verified by P. D. Lax [4].
Theorem C IfP € P, and all the zeros of P(z) lie in Ty U Dy, then for z € Ty, we have

n
1) 2] < )l

Equality in (1) holds for P(z) = az" + B with |a| = |3

Recently Li, Mohapatra, and Rodriguez [6] (see also [3]) have proved Bernstein-type
inequalities similar to Theorem A and Theorem C for rational functions with prescribed
poles where they replaced z" by Blaschke product B(z). Among other things, they proved
the following generalization of Theorem C.

Theorem D Suppose r € R,, and all the zeros of r lie in Ty U D\, then for z € Ty, we have
/ 1 /
@) F@I < 3 B@ ]|

Equality in (2) holds for r(z) = aB(z) + 8 with |a] = |8| = L.

We first prove the following generalization of Theorem D.

Theorem 1 Suppose r € R, and all the zeros of r lie in Ty U Dy, where k > 1, then for
z € Ty, we have

k — 2
(3) ‘T,(Z)| S %{B/(ZN . f’l( 1) |T(Z)| }|r||

k+1) ||

Equality in (3) holds for r(z) = ((z +k)/(z — a))n wherea > 1, k > 1, and B(z) =
((1 —az)/(z — a))" evaluated at z = 1.

For k = 1, this reduces to Theorem D.
The next result is a generalization of Theorem B for rational functions.

Theorem 2 Ifr € R, and r*(z) = B(z)r(1/z), then we have

(4) Sup{
ze€Ty

Moreover, the suprema of both sides in (4) are attained at the same point zy € T;.

r'(2)
B'(2)

= Sup |r(z)].
ze€T

(aal

B'(z)
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The rational function r € R, is self-inversive if r*(z) = ur(z) for u € T;. The following
result, which is a generalization of Theorem 1 of [7] for self-inversive polynomials, easily
follows from Theorem 2.

Corollary 1 Ifr € R, is a self-inversive rational function, then

r') = Sup |r(z)].

2Sup|——
P B'(z)| er

z€Ty

Finally we establish the following result which is a generalization of the corresponding
result for polynomials [1, Remark 1].

Theorem 3 Suppose r € R, has n zeros and all the zeros of r lie in Ty U Dy_. If r*(z) =
B(2)r(1/2), then for z € Ty,

(5) zIeanl{ } = zIeanl r(2)].

Moreover, the infima of both sides in (5) are attained at the same point zy € T).

(r* (z)) !
B'(2)

r'(2)
B'(z)

From Theorem 3 we can easily deduce

Corollary 2 Suppose r € R, and all the zeros of r liein Ty U D, _, then for z € Ty we have

/
Inf{ r'(z)
zeTy

> Inf .
B } 2 el
Corollary 2 is a generalization of Theorem 1 of [1].

Lemmas

For the proof of these theorems we need the following lemmas. The first result is due to Li,
Mobhapatra and Rodriguez [6, Theorem 2].

Lemmal Ifr € R, andr*(z) = B(2)r(1/z), then for z € T| we have
(6) (@) +]r'(2)] < [B'@)] |Ir]-
Equality in (6) holds for r(z) = uB(z) withu € T).

Lemma2 Ifz € Ty, then

Re(zW’(z)) _n— |B(2)|
W(z) 2

and

Re(z(W*(z))/) _ n+[B(2)]
W+(z) 2

where W (z) = H';:l(z —aj), and W*(z) = 2"W(1/z).
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Proof of Lemma 2 We have W*(z) = z"W(1/z). By direct calculation, we obtain

(7) 2(W*(2)) = nz"W(1/2) — 2"~ 'W'(1/2).

Now for z € T}, we have z = 1/z and from (7), we get

Z(W*(Z)), o _W
WH(z) W(z) )’

This gives forz € T

(Wr@) W)

(8) Re ) e W@

Also we have
n

s =11(5=7)
_ J

which gives

B'(2) ¢ —a 1
B(z) _],_le<l—6_ljz z—aj>
B - z(|aj]* = 1)
;(l—djz)(z—aj)'

This implies for z € Ty,

zB'(z) ! laj> — 1
e => > 0.

Hence

zB’
B(2)

9) |B(z)| = forz € Tj.

Also, we have

B'2) (W) W)
Bz)  W*(2) Wi(z)

(10)

From (9) and (10), we get forz € T;

Z(W*(Z))/ _ZW/(2)

‘B/(z)| = W*(Z) W(Z) .
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This gives for z € T1,

(11) Re(M> - Re(ZW/(Z)> = |B'(2)|.

W*(2) W(z)

Finally, from (8) and (11), we obtain for z € Tj,

Re(z(W*(z))/> _nt |B(z)]

W+(z) 2

and

W(z) 2

This completes the proof of Lemma 2.

Re(zW’(z)) _n- |B’(z)|-

Proofs of the Theorems

Proof of Theorem 1 Letr(z) = P(z)/W(z) € R,;if by, by, . .., by, are all the zeros of P(z),
thenm < n, |bj| > k>1,j=1,2,...,mand we have

zr'(z)  zP'(2) B ZW'(2)
rz) Pz W(z)

_ Em: z ZW'(2)
~z- b W)~

For z € Tj, this gives, with the help of Lemma 2, that

zr "(2) ZW'(2)
¢ e Zz—bk Re 30

"z n— |B'(2)]
= R — .
ez z— bk ( 2
j=1
Now it can be easily verified that forz € Ty, |b| > k > 1,

Re(zil) = ﬁ(

(12)

Using this in (12), we get forz € T},

zr'(2) m n— |B'(2)|
Re r(z) <1+k_< 2 )
n n  |B'(z)]
“1+k 2 2
|B'(z)]  n(k—1)
2 2k+1)°
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Hence for z € T} we have [6, p. 529],

z(r*(z))/ zr (Z)
S| e
T
= [B'@)P + F’(f) —2|B'(2)| Re ”((‘j)
(13) r(z r(z
S zr'(2) |? n(k—1)
> B0k + [ 22| - o o) - S
2
k—
Z:(Z) Ll
This implies for z € Ty,
k— : :
{irar+ B Diar e} <i0@)'
Combining this with Lemma 1, we get
@i+ {ir o + o @I} < Fel

or equivalently,

n(k

r'(2)* + |<>| 1B'(2)| < {|B'@)| ||| - | (2)[}?

= |B' @ Ir|I* = 21B'@)| I @)| [Ir]| + Ir' (2)*
which after a short simplification yields for z € T) that

nk —1) |r(z)|2 ”
&k+1) || Il

el <) {B( -

This proves (3).
To show equality in (3) holds for (z) = ((z+k)/(z—a))n and B(z) = ((l—az)/(z—a))n,
a>1,k>1atz =1, we observe that

k n
Sup|r<z>—{(” )} — ] = . B =1,

zeT (a - 1)
1+k (k+a) n(a+1)
1| = ( ) d [B'(1)] = .
ol =n(355)" (G0) a0 =R
It can now be seen easily that two sides of (3) are equal. This completes the proof of Theo-

rem 1.
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Proof of Theorem 2 Let r(z) € R,, then we have
r*(z) = B(2)r(1/32).
A straightforward computation shows that

z(r*(z))/ _zB'(2) r'(1/2)

r*(z)  Ble)  zr(1/2)

This implies with the help of (9) for z € T; that

(22

r*(2) r(z)

which gives

(14)

r*(2) r(z) r(z) r*(2)

Using the fact that for z € Ty, |r(z)| = |r*(2)], it follows from (14) that

Z(,*(Z))" . ‘(zw(z)ﬂ S ’(zr’(2)> . Z(r*(z))/) = |B'(2)|.

(15) r'(2) +|((2)] > |B'(2)] [r(2)].
This gives

F2) | | (@)
(1) sod |+ || 2 supire

Also from Lemma 1, we easily get

(17) Sup{ r'(2) . (r(2)) }SSup|r(z).

z€Ty B/(Z) B,(Z) zeT)

From (16) and (17), we obtain

Sup {
zeT)
This proves (4).
We now show the suprema of both sides in (4) are attained at the same point z, € Tj.
Let

r'(2)
B'(2)

= Sup |r(2)].
zeTy

5]

B'(z)

Sup [r(2)| = [r(z0);
zeT

then from Lemma 1, we get

(r*(20))
B'(z)

r'(zo)
B'(zp)

(18)

‘ <|r(z)| =z € Ti.
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Also from (15), we have

(r*(20))’
B'(z)

T/(Zo)
B'(zy)

(19)

‘ > |r(z)| 20 € T1.

From (18) and (19), we obtain

(r*(20))’
B'(z)

r/(Zo)
B'(z)

’ = |r(z0)|-

This completes the proof of Theorem 2.

Proof of Theorem 3 Suppose all the n zeros of r € R, liein T} U D;_ and let m =
Inf,e1, |r(2)], then we have m < |r(z)| for z € T;. We show for every complex number «
with |a| < 1, the rational function F(z) = r(z) + am has all its zeros in T} U D;_. This is
obvious if m = 0, that is, if 7(z) has a zero on Tj. So we suppose all the zeros of r(z) lie in
D, _ so that m # 0 and we have

lam| <m < |r(z)] forze T.

Applying Rouché’s theorem, it follows that F(z) = r(z) + am has all its zeros in D; _. Hence
in any case F(z) has all its zeros in T} U D; _ for every a with || < 1. Let

F*(z) = B(z)F(1/z)
= B(2)r(1/z) + amB(z)
=r*(z) + amB(z).

Then all the zeros of F*(z) lie in T;UD;,. Now it follows from (13) with k = 1 and r
replaced by F*,
[(F*(2)'| < |F'(2)] forze T,

or equivalently,
|(r*(2))" +amB'(2)| < |r'(2)] forze T.

Choosing argument of « suitably, we get

|(r*(z))/| +|a|lm|B'(2)| < |r'(z)] forz e T.
Letting || — 1, we obtain
(20) r'(2)] = |(r*(2))| > m|B'(2)| forzeT.
which implies

r'(2)
B'(z)

(r*(z))l
B(2) ‘} 2 el

(21) Inf{
zeT)
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Again r*(z) = B(z)r(1/z) and it can be easily verified that for z € Ty,

[(r*(2))'| = |B'(2)r(2) — 7' (2)B(2))|
> |r'(z)| — |B'(2)| |r(2)]-

This gives
(22) B'2)|[r(2)| > |r'(2)| = |("(2))| forze T,
T,(Z) (T’* (Z))/ B
(23) zIeanl{ 50| | B ’} < zIeanl |r(2)| = m.
Combining (21) and (23), we get
r/(Z) (T* (Z))/ B
zIeanl{ B@| | B '} = f I

This proves (5).
We now show the infima of both sides in (5) are attained at the same point zy € T;. Let

ZlenTt: [r(2)| = |r(20)].
Then from (20), we get
' (z0) (r* (zo)) '

(24) 5| | B@) ' > |r(z0)| forzy € Ty.
Also from (22), we obtain

r'(z) (r*(zo))/

Ba)| | B ' < Il
From (24) and (25), it follows that

' (z) (T*(Zo))/ B

Ba)| | B ‘ = Il

This completes the proof of Theorem 3.
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