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Abstract

We define an integral function /M(a, x\ a, b) for non-negative integral values of y.
by

/^(CK,*; a, &)= / (In?)*1 t"~ exp(—at — bt~ ) dt
Jx

(x > 0, a > 0, ft > 0, —oo < a < oo).

It is proved that /^(or, x; a, b) satisfies a functional recurrence relation which is
exploited to find a closed form evaluation of some incomplete integrals. New integral
representations of the exponential integral and complementary error functions are
found as special cases.

Introduction

The inverse Gaussian density function, which arises as the density of the first
passage time of the Brownian motion with positive drift, is given by

fr(0 = (v/2nt3) exp(—v(t — /j.)2/2fi2t), r, v, /x > 0. (1)

The model (1) has been used in the statistical theory of demographic rates and
in reliability theory, (see [6], [7], [13], [14], [16], [17], [19], [20]). Good [10]
proposed the generalized inverse Guassian distribution

it M' e
/0(a; a, b)

(t > 0, a > 0, b > 0, -co < a < oo), (2)
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where

/»OO

/0(a; a, b) = / r""1 exp(-ar - brx)dt = 2(b/a)a/2Ka(2Vab)
Jo

(a > 0, b > 0).

Some of the probabilistic properties of the distribution (2) were investigated in
[4], [6], [10], [14], [19], [20].

Sichel [17] used (2) to construct mixtures of Poisson distributions and Barn-
dorff-Nielson [4] used it to obtain the generalized hyperbolic distribution as a
mixture of normal distributions. Chaudhry and Ahmad [1] derived the model
(2) as a solution to a dynamical system in catastrophe theory. It was shown that
several classical densities such as the Weibull, Gamma, Erlang, Exponential,
Raleigh, Chi-square and Log-normal can be derived from (2) by simple trans-
formations of the variable t or by specializing the parameters, a, a and b. This
provided a unified approach to the systematic study of the probability density
functions encountered in probability and reliability theory.

In the course of describing some statistical properties of (2), it was needed as
well to evaluate the incomplete integral

/•OO

/„(«, x; a,b)= / (ln0M f""1 exp(-af - bt'x)dt
J X

(x > 0, a > 0, b > 0, —oo < a < oo), (3)

for non-negative integral values of fx.
An extensive search of the literature was done (see [5], [8], [9], [11], [12],

[18]). It was found that I^(a,x;a,b) is known only when x = 0, fj, = 0,
[11, page 340(3.471)(9)]. The problem still remains open and the search is
continued. However, during this search we were able to evaluate another allied
incomplete integral

f (In Or""1 [a r exp(-ar - brl)dt, (4)

(x > 0 , a > 0, b > 0, - o o <a < oo),fora = n+\,n = 0, ±1 , ±2, ± 3 , . . . .
To the best of our knowledge, the closed form solution to (4) does not seem to
be known for any value of a for x > 0. For x = 0, (4) has recently been solved
by Chaudhry and Ahmad [2] for all a, which exterided the earlier results known
only for a = n + \, n = 0, ±1, ±2, ± 3 , . . . 0 (see [11, pages 577-578]). As a
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corollary to our result, we find a new integral representation

1 f°°
-Ei(-ax) — (Inx)exp(-ax) — I (lnt)exp(—at)dt (x > 0, a > 0),
a Jx

(5)
of the exponential integral function. The new representation (5) is extremely
useful in the study of the well-testing phenomenon when the pressure solution
of the diffusivity equation,

( (6)

0.000264 k 8r \z / ' K)

is expressed in terms of the exponential integral function as a function of two
parameters viz. time and distance (see [15] and the references cited in it).

It should be noted that (5) extends the known result [11, page 926(8.212)(16)]

f°°
Ej(-a) = — a I (lnt)exp(-at)dt, a > 0.

We have also obtained a new integral representation

x f°° V2tx2 — 11
Erfc(x) = -= \ (lnO txp(-tx2)dt, x > 0, (7)

of the complementary error function as a special case of our result.
It is anticipated that the present work will be useful in different fields of

engineering, probability and reliability theory.

THEOREM 1. Let I^(a,x;a, b) be defined as in (3). Then

al^ia + 1, x; a, b) = al^{a,x\ a, b) +bl^{a — \,x; a, b)

+ / zV, (a , x; a, b) + (In*)"xa exp (-ax - bx~l)

(x > 0, a > 0, b > 0, - o o < a < oo). (8)

PROOF. For 0 < t < oo, let F{t) be defined by

F(t) = (\ntY taexp(-at-brx), a > 0, b > 0, -oo < a < oo. (9)

Since at — at2 + b < 0 as t ->• oo, it follows that for sufficiently large t

— =r°- 2 1 {{at - at2+ b) Int + ixt] exp (-at-brl) <0 (10)
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for all a > 0, b > 0 and —oo < a < oo. It is, therefore, allowable to apply
/•OO

the generalized mean value theorem (see [5], [12]) to the integral / F'(t)dt,
Jx

f
J X

x > 0. However l im,-^ F(t) = 0; so we have

F'(t)dt =0- F(x), x>0. (11)

Substituting the value of F'(t) and F{x) in (11) we obtain
/•OO

/ (lnOM {at"-1 - at" + bt"-2} exp (-at - brl)dt
Jx

/•OO

+ /A / (lnO""1 t"-x exp(-at - bt~x)dt
Jx

= -(lnx)^" exp(-at - br1),

which, after simplification, proves the theorem.

REMARK. If x > 0, (8) holds true for all a > 0, b > 0 and - o o < a < oo.
However, if we take x = 0, then, using the fact that

lim F{t) = 0 , (12)

we get

a / M (a+ 1, 0; a, 6) = a/^(a, 0; a, b) + 6/M(a - 1, 0; a, b) + {il^-da, 0; a, b)

{a > 0, b > 0, - o o < a < oo). (13)

COROLLARY. (See [2] and [11, pages 577-578])

I Qnt)ta \a - - - 4 I exp(-ar - br])dt = 2(b/a)a/2Ka(2Va~b)

(a > 0, b > 0, —oo < a < oo). (14)

PROOF. This follows from (13) when we substitute \JL = 1 and replace l\{a —
1, 0; a, b) and /i,o(a, 0; a, 6) by their integral representations. In particular,
when a = 0 in (14) we get [11, page 577(4.356)(4)]

I (lnt)\^—^—\exp(-at-br1)dt = 2K0(2Vab), a > 0, b > 0.

(15)
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It should be noted that the results [11, pages 577-578(4.356)(l-6)] and [11,
page 578(4.359)(l-3)] are special cases of (14) for different values of the para-
meters a, a and b.

THEOREM 2.

/ (]nt)tl/2\a-y-^\exp{-at-brl)dt

= -J- \exp(-2Vab)Erfcly/a~x-J- ) + exp(2y/ab)Erfc(y/ax+J- )

+ (lnx)x1/2exp(—ax — bx~l)

(x > 0, a > 0, b > 0). (16)

PROOF. Substituting \i = 1 and or = \ in (8) we get

ah (-,x;a,b\ - - / , (-,x;a,b) -blx (--,x;a,bj

= Iol-,x;a,b\ +(lnx)x1 / 2exp(-ax-fex~1)

(x > 0, a > 0, b > 0, - o o < a < oo). (17)

It follows from (17) that we need to evaluate /0 (5, x; a, b) only. However, since

/o Q , *; a, ̂  = a'l/2I0 Q , ax; 1, afcV (18)

we solve
/•OO

I(x)= t~l/2exp{-t-brl)dt, x>0. (19)

We note that

( 1 \ poo

- ) = / r1/2exp(-t-br])dt. (20)
Substituting t = 1/r in (20) we get

e-
6- ({^} * [x-We-1*]) , (21)

where '*' is the convolution operator defined by

a(x) * b(x) = f a(x- t)b(t)dt.
Jo
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We can write (20) in the operational form (see [9, page 131(20) and page
246(10)])

\ 2 ^
p-b x

where L~' is the inverse Laplace transform operator.
Using the identity [9, page 246(10)] we get

1
exp(-2Vb)Erfc ly/x-J- ) + exp(2Vb)Erfc/(*) =

. . .. x ̂
' 122)

From (18)-(22) we get

I0(-,x;a,bj = 2 ^

+ exp(2Vab)Erfc

(x > 0, a > 0, b > 0). (23)

Replacing /] ( | , x; a, b) , I\ ( ± | , x; a, b) by their integral representations and
substituting the value of Io Q, x; a, b) from (23) in (17) proves Theorem 2.

The following corollary is the consequence of (16) and does not seem to be
known in the literature.

COROLLARY.

[ 1 ^ J ( l) dtlnt)tl/2 [a - 1 - ^ J exp (-at - brl)

(a > 0, b > 0). (24)

PROOF. This follows from (16) when we take x = 1. In particular, when we
take b = a in (24), we get

a > 0. (25)
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REMARK. It can be seen that

•H-{Io(fx,x;a,b)} = -Io(!U-l,x',a,b), a > 0, b > 0. (26)
do

Therefore, it follows from (8), (17) and (26) that we can evaluate the semi-infinite
integral

Qnt)ta\a---^\exp(-at-brl)dt,

for a = n + \, n = 0, ±2 , ± 3 , . . . , in terms of complementary error functions.
For other values of a the problem remains open.

THEOREM 3.

/

°° dt

(\nt)ta [at - a ] e x p ( - a O — = a ~ T ( a , ax) + (lnx)xa exp(-ax)

(x > 0, a > 0). (27)

PROOF. Since x > 0, we substitute b = 0 and /x = 1 in (8) to get

ahipt + l , x ; a , 0 ) - ah{a, x; a, 0) = Io(a, x; a, 0) + (\nx)xaexp(-ax)
{x > 0, a > 0). (28)

However (see [11, page 317(3.381)(3)])

/0(a, x\ a, 0) = a'Tia, ax), a > 0. (29)

Replacing Ix(a + 1, x; a, 0), /, (a, x; a, 0) by their integral representations in
(28) and using (29) we get the proof of the theorem.

That the following corollaries are the consequence of (27) does not seem to
be known in the literature.

COROLLARY 1.

Erfc(Ja~x~) = J^ \j (lnf) | ' ~ 1 exp(-at)dt - (inx)Vx'exp(-ax) 1

(x > 0, a > 0). (30)
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PROOF. This follows from (27) when we take a = \ and use the fact that
r Q, z2) = y/n Erfc{z). In particular when we take x = 1 and replace a by z2

in (30) we get a new integral representation

= -j= 1 , z > 0, (31)

of the complementary error function.

COROLLARY 2.

1 r0 0

-E,(—ax) = (lnx)exp(-ax) — I (Int)exp(-at)dt (x > 0, a > 0).
(32)

PROOF. This follows from (27) when we take a = 0 and use the fact [11,
page 942(8.359)(1)]. In particular, when we take x - 1 in (32), the result [11,
page 926(8.212)(16)]

1 f°°
-Ei(-a) = - (lnt)exp(-at)dt, a > 0,
a Ji

is recovered.

REMARK. It is interesting to observe that that substitution a = 1 in (32) yields
/<OO

£,(-*) = (In x)exp(-;c)- / (lnt)exp(-t)dt, (33)

that is, the exponential integral function £,•(—*) is equal to the difference of
the value of the integrand (hu)exp(-1) at t = x and its integral over the
semi-infinite interval (x, oo).

COROLLARY 3.

Ei(-x) « (1 + x)(ln;t)exp(-jc) + y as x -> 0+,

where y is Euler's constant.

PROOF. According to (33) we have
/•OO

£,(-.*) = (Inx)exp(-jc) - / (lnf)exp(-Odf. (34)
Jx
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However (see [11, page 576(4.352)(4)]

/ (\nt)exp(-t)dt = - y - [ (\nt)exp(-t)dt (x > 0), (35)
Jx J0

and according to the first mean value theorem [11, page 211(3.012)] we get

(In t)exp(-t)dt «jc(lnjc)exp(-jc) as*->-0 + . (36)

Letting x -*• 0+ in (34) and using (35) - (36) we get the proof of Corollary 3.
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