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WEAK SOLUTIONS OF DIFFERENTIAL

EQUATIONS IN BANACH SPACES

NIKOLAOS S, PAPAGEORGIOU

We consider the Cauchy problem x(t) = f(t,x(t)), x(0) = xQ in

a nonreflexive Banach space X and for f:Tx-X-±X a weakly

continuous vector field. Using a compactness hypothesis

involving a weak measure of noncompactness we prove an existence

result that generalizes earlier theorems by Chow-Shur, Kato and

Cramer-Lakshmikantham-Mitchell.

1. Introduction

In recent years the study of ordinary differential equations in a

Banach space has been developed extensively. However almost all of the

work was done using the strong topology (see, for example, Deimling [7],

Szufla [72]) while the study of Cauchy problems involving the weak

topology is lagging behind. In [JJ] Szep proved a Peano type theorem for

o.d.e. defined in a reflexive Banach space and having a weakly continuous

vector field. His main tools were the Eberlein-Smulian theorem and the

well known fact that in a reflexive Banach space a set is weakly compact

if and only if it is weakly closed and norm bounded (a simple consequence

of Alaoglu's theorem and the fact that in a reflexive Banach space weak
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and weak topologies coincide) . The result of Szep was extended to non-

reflexive Banach spaces by Boundourides [33 and Cramer-Lakshmikantham-

Mitchell [5]. Both papers based their existence result on a compactness

type condition, involving the weak measure of noncompactness introduced

by DeBlasi [6]. It should be noted however that the result of Cramer-

Lakshmikantham-Mitchell [51 is more general than that of Boudourides [3].

Furthermore the proof of the theorem in [3] has a mistake. Specifically,

when the author interprets the notion of weak uniform continuity, he

claims that the corresponding inequality holds for all elements of the

dual space simultaneously (see p. 460) . This is not true. The proper

way to define weak uniform continuity can be found in [5, p. 170J.

The purpose of this note is to prove a more general existence

theorem for weak vector fields that includes the above mentioned as well

as some earlier ones obtained by Chow-Shur [ 4] and Kato [ 9] . We will use

a compactness type condition introduced by Pianigiani [JO] in connection

with the strong (norm) topology.

2. Preliminaries

Let X be a Banach space and X its topological dual. By [_0,b]

we will denote a bounded, closed interval in IR . To economize in the

notation we will write T to denote [0,bl .

In [6] DeBlasi introduced the following measure of noncompactness.

Let A be a nonempty, bounded subset of. X ,

8(A) = infit > 0: 3(K e P ,(X)) (A ̂ K + tB )}

where P ,(X) = {B £ X: B / $ and B weakly compact} and B- is the

closed unit ball in X .

The following lemma can be found in [6 ] and shows that 6 (' ) is,

according to the terminology of Banas-Goebel [2 J , a sublinear measure of

noncompactness.

LEMMA 2.1. If A, B are bounded subsets of X,

then 1) A c_B implies &(A) < &(B) 3
2) &(A) = Q(w-olA) where w-el denotes the weak closure,

3) Q(A) = 0 if and only if w-alA is weakly compact,
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4) 6(A u B) = maxl&(A),

5) 8(A) = $(aonv A) ,

6) &(A + B) < B(A) + B(B) ,

7) &(x + A) = &(A) for all x e X ,

8) $(X A) = \\\&(A) for all X e m ,

9) ef <J tA) = t &(A) .
O*t*tQ

The next lemma is a result analogous to the one proved by Ambrosetti

[/] for the Kuratowski measure of noncompactness.

LEMMA 2.2. If E <= CV(T) is bounded and equiaontinuous for the
~~ A.

strong topology, then &(E) = sup &(E(t)) = &(E(T)) where
t e T

E(t) = {f(t) : f(-) e E, t e T} .

Proof. The first equality can be found in [3] and its proof is

based on the "weak" Arzela-Ascoli theorem [5, Theorem 1.2] .

Now we will show that $(E(T)) £ sup Q(E(t)) = X .
t e T

Since by hypothesis E is an equicontinuous family, given any

e > 0 we can find a 6 > 0 such that if \t-t'\ < 6 then \\fCt) -

f(t')\\ < e for all f(-) e E . Let {*,}?_0 b e a partition of T

such that for all i. e {0, 1,. .. ,n-l} 11 2 - t j < 6 . Also let

K. e P , (X) be such that

% £ K% + (X 1

n
The claim is that E(T) c u K. + (X + 2z)B . To see this, let

~ 1=0 l 2

x e E(T) . Assume that x = fit), t / &jfj^Q o r otherwise there is

nothing to prove. Then t e (t 3t -) for some S. e {0,1,. . . ,n-l] and

we can write:

x e f(t%) + (f(t) - f(t%)) e K% + (X + e)B1 + efl1 = K% + (X

from which the claim follows. Then directly from the definition of

we get
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Let e 4- 0 . We have

6(E(T)) < A = sup QCE(t)) . (.1)
t e T

On the other hand using property 1 in Lenma 2.1 we have

&(E(t)) < &(E(T))

for all t e T . Hence

sup £(E(t)) < &(E(T)) . (2)
t e T

Combining (1) and (2) above, we finally get the lemma.

3. The Main Result.

In the sequel by X we will denote the Banach space X with, the
w

weak topology. Also by T we will denote the subinterval [ j

of T (provided t + r < b ) . When t is fixed, we will simply write

By a Kamke function we mean a function w: T x IR -*• ]R such tha t

for a l l y e. •#?,., t -»• w(t,y) i s measurable and w(t,y) < §(t)

with c(i (•) e L , for a l l t e T, y •*• w(t,y) i s continuous, and

t
y(t) = 0 is the only solution of y (t) < j w(s,y(s) )ds, y(0) = 0.

0

Given a weakly continuous vector field f:T*X->-X, we will

consider the following Cauchy problem:

| 'x(t) = f(t,x(t))\

{ x(0) = x. / •

By a solution of (*) we understand a strongly continuous, once

weakly differentiable function x: T •* X satisfying (*) on T , with

x(' ) denoting the weak derivative. In this case x(-) is almost

everywhere strongly differentiable and satisfies (*)

with x(-) being the strong derivative.

Our existence result has as follows:
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THEOREM 3 . 1 . If f:T*X+X is a vector field such that

1) f(' .') is continuous from T x x into X (that is f(",•)

w w

is weakly continuous),

2) for all (t,x), \\f(t,x}\\ < N ,

3) for all A c_ X nonempty and bounded we have
lim QCfCT, x A)) <w(t,£(A))

r \ 0 t j r

where w(-,•) is a Kamke function,

then (*) admits a solution.

Proof. Consider the nonlinear integral operator $:Lip (7) -

where Lip^t?) = (x(-) e CX(T)-. x(-) ie N-Lipschitz}) , defined by

t
($x)(t) = xQ + / f(s,x(s))ds .

We claim that it is weakly-weakly sequentially continuous. So

W-Cx
assume that x (•) > x(-) . From Dinculeanu [&, p. 380] we know that

* *
[Cy(T)l = M A(T) = bounded, regular, vector measures from T into X ,

which are of bounded variation. Thus for all m(-) e M A(T) we have

(m,x (•) - x(')) -*• 0 as n -*•<*>.

Let m = x 6 , where x e X , t e T and 6, is the Dirac

measure concentrated on t . Then we get that

(x ,x (t) - x(t)) -*• 0 as n -*• •» ,

and so
w

x (t) •*• x(t) as n -»• «>

for all t e T . Then using the weak continuity of the vector field

/("• j • ) and the Lebesgue dominated convergence theorem we get that

/ f(s,x Cs))ds " / f(s,x(s))ds
0 n 0

for all t e T . Now for every m(-) e M A(T) we have that
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(m,(S>x - *x) = / [ / (f(e,x (a)) - f(six(s)))deldm(t).
M TO

t w t
Using the fact that for a l l t e. T, j f(s3x (s))ds ->• / f(e,x(s))de

0 0
as n -> °° , and by approximating m(-) , uniformly on Lip^(T) , by l inear

combinations of Dirac measures, we f ina l ly get tha t

/m. $x - $x\ -*• 0\ ' n i

as n -*• °° . Hence $(•) is weakly-weakly sequentially continuous.

Consider the classical Caratheodory approximations

xn for 0 < t < —
0 n

x (t) =\ t--
n n j

x + I f(s,x (s))ds for — < t < T

It is easy to see that for all n ̂  1, x (•) e. CV(T) . Note that:

Yl X
t

\\xn(t) - *xn(t)\\ = \\xQ - xQ - I f(s,xn(s))ds\\
,,*, M 1

^ 1 1 / f(a,x (s))ds\ I <, Nt for 0 < t < -
0 n n

and

* " t
\\xn(t) - ta:n(t)\\ = \\x0 + } f(s,xn(s))d8- xQ- / f(s,xn(s))ds\\

t
< | | / f(s,x (s))ds\ | <• N -

t - n n

for — <. t < T .
n

Thus we see that ||x - $ x | | -*• 0 as n -*• °° .

Set K = {x (•)} and L = <t(K) = {$x (')} > . . We have just

seen that

Observe that for a l l t e T
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Kit) ^K(t) - Lit) + Lit) = (I - 9) (K(t)) + Lit) ,

and so &(K(t)) < &((I - 9)(Kit))) + &(L(t)) .

Using the fact that $((I - $J (K)) = 0 and Lemma 2.2, we see that

H) (Kit))) = 0 . Hence

&(K(t)) < Q(Lit)) . (1)

On the other hand for all t e T , we have

Lit) ̂ L(t) - Kit) + Kit) = Kit) - (I - <t)(K.(t)) ,

and so &(L(t)) < &(K(t)) + 6((I - 9)(K(t))) .

For the same reason as before, &i(I - $J(Kit))) = 0 . Hence

&(L(t)) < B(Kit)) . C2)
From (1) and (2) above we get that

&(K(t)) = &(L(t)) = pit)

Now we claim that L = $(K) is an equicontinuous set. So let

t,t' e T , and then

t' t

\\txit') - 9xit)\\ = \\x + f f(s,x(s))ds - xQ - / f(s,x(s))ds\ \

t'
s | | / f(s,x(s))ds\ | < N\t' - t\

t

and this shows that L is equicontinuous.

Then employing Lemma 13.2.1 of Banas-Goebel [2] we have that

\p(t') - p(t)\ < &(B )mL( t< - t )

where m (•) is the modulus of equicontinuity of the family L , that is
L

mL(r) = sup{||2/f*';-2/r*;| |: *,*' £ T, \t' - t\ <r,y(<) c L) .

Also recall (see [6]) that BfB^ ^ 1 . Thus

\p(t') - p(t)\ < mL(\t' - t\) S N\t' - t\

which shows that p(') is absolutely continuous, hence differentiable

at all t e T\N, \(N) = 0 .

Next fix t e T\N and let t > 0 be given. We can find 6 > 0

such that

\z - p(t)\ < & implies \w(t,z) - w(t,pit))\ < e .
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This is possible since wit,') is continuous, being a Kamke function.

Also le t r > 0 be such, that

Nr < 6 and t + r < T .

Because of hypothesis 3) we can find q such that 0 < q < r and

w h e r e T = [t,t+q] a n d K = {x(s): x(-) e K, t < s S t+r] .

From Lemma 2 .2 we know t h a t

B(K ) = sup &(K(s)) = p(i)
V s e [

for some t e {.t,t+v1 . Then

0 < &(kr) - p(t) < mL(\i - t\) < N\i - t\ < Nr < 8 .

But then from the choice of 6 > 0 we get that

\w(t,b(Kv)) -w(t,p(t))\ < e .

Next since f(',') is weakly continuous and Pettis integrable, for

all x(') e K and for V < q we have that

t+V
$x(t+v) = §x(t) + j f(s,x(s))ds £ $x(t) + V conv u f(s.x(s)).

t s eTv

Thus L(t+V) c_L(t) + U.conv f(T x K ) ,

and so $(l(t+v)) < Q(L(t)) + BO conv f(Ty x K^) 1 .

Using the p r o p e r t i e s of $(•) l i s t e d i n Lemma 2 . 1 , we have :

Bfwconv f(Tv x K^)) = u-Brconv f(Tv * Kp)) = v£(f(Tv x Kp))

(K )) + V't < v-w(t,p(t)) + 2v-e .

Therefore we can write that

p(t+V) < p(t) + V'W(t3p(t)) + ZV'Z ,

and so ?(t+V) I P(t) < W(t,p(t)) + 2c .

Passing to the limits as V -»• 0 and since t e T\N we get that

p(t) < w(t,p(t)) + 2e .
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Let e + 0 . We finally have that

pit) < w(t,p(t))

t
and so pit) < j w(s3p(s)ds

0

while p(0) = &(K(0)) = &(L(0)) = &({x }) = 0 . Since w(-,-) is by

hypothesis a Kamke function we get that for all t e T

pit) = 0

and so B(K(t)) = 0 .

Employing Lemma 2.2 we deduce that

= 0

which by Lemma 2.1 implies that W-al K is W-compact in CV(T) .
A

Invoking the Eberlein-Smulian theorem and by passing to a subsequence

if necessary, we may assume that

W-C
x (•) -> x(-) e CY(T) .

We have already seen in the beginning of the proof that $(') is

w~cx
u-sequentially continuous. Thus $a; > fcc . So we have that

W~CX
x - <S>x > x - <J>x a s n -*• °> .n n

Recalling that the norm is U-lower semicontinuous we get that

ii2. \\x - to || > ||x - «z|| .
n ->• oo I I n n> loo II I loo

But we have already seen earlier in the proof that

| | x - & c | | •*• 0 a s n -*•<*>.

Therefore we conclude that

||x - tel^ = 0 ,
t

and so x(t) = x + j f(s,x(s))ds .

Because f(',') is weakly continous, x(%) is weakly

differentiable and the weak derivative x(-) satisfies (*)

conclude that x(-) is the desired weak solution of ( ).
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Suppose that w(t,x) = w(x) and that for all A £ X bounded we

have that &(f(T x A)) £ w(&(A)) . Then for every t £ T and for every

r > 0 such that t+r < 7 , we have

x /U £ fCT x A) ,

and lim $(f(T x 4;; < w(&(A)) .

So hypothesis ("ffĵ  of Cramer-Lakshmikantham-Mitchell [5] implies

our compactness hypothesis. Thus we can recover from our result, as a

corollary, theorem 3.1 of [5].

COROLLARY 3.1. [5]. If f:T*X + X is a vector Held such that

1) f('3') is weakly continuous,

2) for all (t,x) e T x X, \\f(t,v) \ \ < M 3

3) for all A c_ x bounded, &(f(T*A)) <w(Q(A)) where w(-)

is a time independent Kamke function,

then (*) admits a solution.

If X is a reflexive Banach space every bounded set is relatively

weakly compact. So for a weakly continuous vector field f(-,-) our

compactness hypothesis is trivially satisfied. Hence the results of

Chow-Shur Wand Szep [1?] are special cases of Theorem 3.1. Thus we

have for X reflexive:

COROLLARY 3.2. [7 7]. If f:T x x •* X is a vector field such that

1) f(',') is weakly continuous,

2) for all (t,x) e T x X, | \ f ( t , x ) \ \ < M ,

then (*) admits a solution.

For X any Banach space:

COROLLARY 3 .3 . [9 ] . if f:T x x -»• X is a vector field such that

1) f(-,-) is weakly continuous,

2) f(-,-) is compact (for example w-cl f(T x x) e Pwk<X)) ,

then (*) admits a solution.

Remark, if the domain of f(-,') is the set T x B^(x ) , where

B (XJ= (x £ X: I \x-x-1 I < r}, then the local version of Theorem 3.1 is

valid.
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