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TOPOLOGICAL DIMENSIONS OF GLOBAL ATTRACTORS
FOR SEMILINEAR PDE'S WITH DELAYS

JOSEPH W.-H. SO AND JIANHONG WU

An estimate is obtained on the Hausdorff and fractal dimensions of global at tractors
of semilinear partial differential equations with delay: x(t) = Ax{t) + f(xt)- The
method employed is to associate such an equation with a nonlinear semigroup on
a product space and then appeal to the upper estimate due to Constantin, Foias
and Teman on topological dimensions of global attractors for general nonlinear
dynamical systems.

1. INTRODUCTION.

Recent studies of nonlinear dynamical systems show that many infinite-dimensional
evolution equations have global attractors with finite Hausdorff and fractal dimensions.
In particular, this fact has been demonstrated by Babin and Vishik [1, 2] and Con-
stantin, Foias and Teman [3] for Navier-Stokes equations, Koppel and Ruelle [8], Marion
[11,12] for reaction diffusion equations and Mallet-Paret [10] for (ordinary) functional
differential equations.

The purpose of this paper is to extend these results to a class of semilinear partial
differential equations with delay of the form:

* ' /r»\ I _ TT I — T-2

= Ax{t) + f(xt) ,

= h£H, xo = (j>eL2{[-r,O};H)

where H is a Hilbert space, r > 0 is a given constant, A : D(A) —* H generates a
strongly continuous semigroup on H and / : L2([—r,0]; H) —» H is everywhere defined
and Lipschitz continuous. As is well known, a major difficulty in obtaining such an
extension is caused by the fact that the variational equation

(VE) u(t) = Au{t) + D f ( x t ) u t , t > 0
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of (FDE) about a given solution z(.) is not formulated on the state space X —

L2([—r,0];H) x H so that the upper estimate due to Constantin, Foias and Teman

[3] cannot be applied to our case directly.

Our approach is to extend the generator A (in H ) to A on the state space X in a

natural way (Proposition 3.2) so that the variational equation (VE) can be reformulated

as an evolution system on X of the form

(EVE) U(t) = AU(t) + {0,Df(xt)PiU(t)}

where Pj denotes the projection of X onto L2{[—r, 0]; H). This is motivated by the

papers by Travis and Webb [15,16] and Webb [17, 18] where they constructed a gen-

erator for a nonlinear semigroup and associated such a semigroup with the solutions of

(FDE) by using results from the general nonlinear semigroup theory.

The rest of the paper is organised as follows. In Section 2, we collect some general

results from the theory of nonlinear semigroups, dissipative dynamical systems and

topological dimensions of global attractors. In Section 3, we apply the general results of

Webb [17, 18] to (FDE) and obtain a strongly continuous semigroup {T(t)}t^o ° n the

product space X (Theorem 3.1). Then from the generation formula of semigroups due

to Crandall and Liggett [4], we establish a variation-of-constants formula for variational

equations of (FDE) (Proposition 3.4) which is then applied to yield the relation between

(EVE) and (VE) (Proposition 3.6). Finally, we show that the semigroup {T(t)}t>0 is

uniformly differentiable with respect to the global attractor and that, because D(~A)

is dense in X, the upper estimate due to Constantin, Foias and Teman [3] can then

be applied to obtain our main result (Theorem 3.10) on the topological dimensions of

global attractors for (FDE).

The verification of the hypotheses in Theorem 3.10 for reaction-diffusion systems
with delays is a non-trivial task and will be reported in a future paper.

2. SEMIGROUPS, EVOLUTION EQUATIONS AND GLOBAL ATTRACTORS.

In this section, we set forth some necessary preliminaries from the theory of non-

linear semigroups, dissipative dynamical systems and topological dimensions of global

attractors.

Throughout this section, X is a Hilbert space with inner product (., .)x and norm

\-\x-

A (nonlinear) strongly continuous semigroup {T(t)}t^o on A" is a family of (ev-

erywhere defined) continuous mappings T(t) : X —> X, t ^ 0, satisfying the following

properties:

(i) T(0) = / (identity),
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[3] Semilinear PDE's with delay 409

(ii) T(t + a)= T(t)T(s) for all t, s ^ 0, and
(iii) for each x £ X, T(.)x : [0,oo)-> X

is continuous.
A strongly continuous semigroup has a densely defined generator. The following

"generation" theorem is due to CrandaU and Liggett [4]. (See also Kato [7].)

THEOREM 2 . 1 . Suppose that

(i) A : D(A) C X -> X, where D(A) is a dense subset ot X,
(ii) for some 7 £ R, 7 / — A : D(A) —> X is monotone (accretive), and

(iii) R(I -\A)=X for all \>0 sufficiently small.

Then T(t)x = lim [/ - tin A]~nx exists for every x £ X and t > 0. Moreover,

o is a strongly continuous semigroup on X and

(2.1) | T ( 0 z - T ( t ) 2 / U < e 7 ' | z - j / | x , for all x,y £ X, t > 0.

A is called a generator for the semigroup {T(t)}t^o •

For the rest of this section, we let {T(ty\t^o be a (fixed) strongly continuous
semigroup on X. The following notions leading to the concept of a global attractor
and its existence can be found in Hale [6]. We include them here for the sake of
convenience.

A subset Y C X is said to be positively invariant (respectively invariant) if
T(t)Y C Y (respectively T(t)Y = Y) for all t ^ 0. A compact invariant set is
said to be a maximal compact invariant set if it contains all compact invariant sets. A
global attractor fi is a maximal compact invariant set such that S(T(t)B, fi) —» 0 as
t —» co, for every bounded set B C X. Here, 8{BQ,BI) denotes semi-distance of two
sets B0,Bi CX, that is 6{B0,B1) :— sup inf \x — y\x •

Obviously, f2 is unique and the dynamics on a global attractor include all the
possible asymptotic behaviour (that is, as ( - t o o ) of the given semigroup {T(t)}t^o-
To guarantee the existence of such an attractor, we introduce the following concepts.
The semigroup {T(t)}f^o is said to be bounded dissipative if, there is a bounded set
BQ C X such that for every bounded set B C X there exists t(Bo) > 0 such that
T{t)B C Bo for all t ^ t{Bo). The semigroup {T(t)}t^o is asymptotically smooth if for
any non-empty positively invariant set B C X there exists a compact set J C B such
that 6(T(t)B, J) —> 0 as t —• 00. An example of an asymptotically smooth semigroup
is one which is uniformly compact, that is, for every bounded set B, there exists <o ^ 0
such that U T(t)B has compact closure.

The following existence result for global attractor can be found in Hale [6].
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THEOREM 2 . 2 . If a strongly continuous semigroup {T(t)}f^o on X is asymp-

totically smooth and bounded dissipative, then {T(t)}t^o possesses a global attractor

SI.

Next, we will recall the concept of Hausdorff and fractal dimensions of a compact

set SI C X. More details can be found in Teman [14], Federler [5] and Mandelbrot [9].

For any d > 0, let fiu(Sl,d) = lim fiH{Q,d,e) denote the d-dimensional Hausdroff

measure of the set SI C X, where /ifj(Sl,d,e) = ini^2irf and the infimum is taken

over all coverings of SI by balls of radius r{ ̂  e. It can be shown that there exists

6 [0,+oo] such that ^H(Sl,d) - 0 for d > dH(Sl) and = oo for d < dH(Sl).

is called the Hausdroff dimension of SI.

The fractal dimension (or capacity) of SI is defined as

dF(Sl) = inf{d > 0 : fiF{n,d) = 0},

where ^j?(f2,d) = lim sup £ np{£l,£) and np[n,e) is the minimum number of balls of
e—o

radius ^ e which is necessary to cover f2.

In order to use linearisation to estimate the Hausdorff and fractal dimension of the

global attractor Q of a strongly continuous semigroup {T(t)}t^o later on, we need the

following notions. {T(t)}t^o is said to be uniformly differentiable in SI if, for every

x G fi and t > 0 there exists a bounded linear operator L(t,x) : X —• X such that

(2.2) sup \T(t)y-T(t)rL(t,x)(y-X)\x^0 ^ _ Q>

<|i-»|<e \y-x\x

and

(2.3) sup \L(t, x)\BL{x,x) < +oo,

where BL(X, X) is the Banach space of bounded linear operators on X with the usual

operator norm \-\BL(X,X)-

Let {T(t)}t^o be uniformly differentiable in n , x 6 SI and let N be a given

positive integer. We denote by u>p{(L(t,x)) the norm of the exterior product ANL(t,x) :

ANX -> A"X, tha t is,

(2.4) wN(L(t,x))= sup
l "

Set

(2.5) wN(t) = supwN(L(t,x)),
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and

(2.6) nN = lim WA^i)17*.
t—*oo

The uniform Lyapunov numbers are defined as follows:

(2.7) m = lnTi-j

and
(2.8) my = In7r/v — In7rjv-i, for N > 2.

The following upper estimate on the HausdorfF and fractal dimensions of a global
attractor was proved in Constantin, Foias and Teman [3].

THEOREM 2 . 3 . Assume that the hypotheses in Theorem 2.2 hold and the

strongly continuous semigroup {T(t)}t^o JS uniformly differentiable in the global at-

tractor Q C X. If there exists an integer N ^ 1 such that

(2.9) lM1+...fiN<0,

then dH(n) < N

and dF(n)^N max

In order to investigate the uniform differentiability of a semigroup, we need to
consider the following semilinear initial value problem:

[du{t)ldt =Au(t) + f(t,u(t)), t>0

\ M(0) = uo 6 X,

where A : D(A) C X —> X generates a strongly continuous semigroup of bounded
linear operators T(t) : X —» X , t ^ 0 and the mapping / : [0, oo) x X —•> X satisfies
the following properties: f(.,x) : [0,oo) —> X is continuous for each fixed x £ X, and
for any constant to > 0, f(t,x) is uniformly Lipschitz continuous in x £ X for all

te [(Mo].
A strong solution of (2.10) is a continuous function u : [0,oo) —> X which is (i)

continuously differentiable on (0,oo), (ii) u{t) 6 D(A) for t > 0 and (iii) (2.10) is
satisfied on (0, oo). A mild solution is a continuous function u : [0, oo) —> X satisfying
the integral equation

(2.11) u(t) = T{t)u0 + [ T{t- s)f(sM*))ds, t > 0.
Jo

The following existence and regularity result can be found in Pazy [13].

THEOREM 2 . 4 . For every «o£ -^ i the initial value problem (2.10) has a unique
mild solution u : [0, oo) —> X and the mapping uj w « is Lipschitz continuous from

X to C([0,to);X) for each to > 0. Moreover, if f : [0,oo) x X —> X is continuously

differentiable, then the mild solution of (2.10) with UQ G D{A) is a strong solution.
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3 . DIMENSIONS O F G L O B A L ATTRACTORS FOR ABSTRACT F D E S .

We now consider the following initial value problem of abstract semilinear func-

tional differential equations (FDEs)

(FDE) i v '

where H is a Hilbert space with an inner product (.,.)# a n d norm \.\H, r > 0 is
fixed, xt is the standard notation meaning that if x : [—r,oo) —> H and t ^ 0,
then xt : [-r,0] -» H is defined as a;t(fl) = x{t + 6) for almost all 6 G [-r,0]. / :
L2([—r,0];H) —• H is everywhere defined and Lipschitz continuous with Lipschitz
constant ft. A : D{A) C H —* H is BL densely defined linear operator such that
ctl — A is monotone in H for some a 6 R and that R(I — XA) = A for sufficiently
small A > 0.

Under the above assumptions on A, by Theorem 2.1 due to Crandall and Liggett
[4], A generates a strongly continuous semigroup {S(t)}t^o of bounded linear operators
defined by

(3.1) S(t)h = lim [/ - -A]~nh, t>0, heH.
n—»oo n

Moreover, \S(t)\BL(H.)H) < eat, t > 0.

Following Webb [17, 18], we will treat the initial value problem (FDE) in the Hilbert
space X — L2([—r,0];H) x H with inner product

= f
J—

}.W,»x f W\W))HM + (WH for {*,*},{*,*} 6 X
J—r

and norm

IW, * } | * = (W, ft}, { .̂ fc})^/2 for { ,̂ ft} e x.

Define £ : I>(B) C X -* X by

= {{^»fc} € X : <̂  : [-r,0] -> J is absolutely continuous,

^ € L'd-r.O]; JT) and fc = ^(0) €

} = {4>, Ah + / (^)>, for {*, ft} €

The following result was proved in Webb [17].
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THEOREM 3 . 1 . Under the above hypotheses, we have

(i) B is densely defined, 7 / — B is monotone in X with 7 = max
{0,1/2 + a} + P, and R(I - XB) = X for sufficiently small A > 0.

(ii) B generates a strongly continuous semigroup {T(t)}«>o on X defined by

(3.2) T{t){<f>, h} = Urn [/ - -B]-n{<f>, h}, {4,, h} G X, t > 0.
n—»oo n

(iii) \Ut){4>,h] -T(t){V>,k}\x < ei*\{<t>,h} - {4,k}\x, for {<{>,h},{rj,,k} G X
and 0 0.

(iv) Let P\ and P2 denote the projections of X onto L2([—r,0];H) and H
respectively and for every {<j>, h} G X, define x^'h : [—r, 00) —» H by

\ P2T(t){<i>,h} t>0.

Then x*'k = A T ^ ^ A } fort^O.
(v) If {<j>,h} £ D(B), then

x<t>'h(t) = Az*'ft(t) + / (xt'h), for almost everywhere t ^ 0.

REMARK: AS a consequence of (iv), we have

= <l>(t + 6) fort ^ 0,t + 0<0.

To reformulate (FDE) as an abstract ordinary differential equation we introduce

the following operator A defined in X:

D(A) = {{tf>, h} G X : (f> is absolutely continuous on [-r,0],

4> G L2{[-r,0};H) and h = <l>(0) G D(A)}

>,h} = {j>,Ah}, {<f>,h}eD(X).

By Theorem 3.1, it follows immediately that A generates a strongly continuous semi-

group {5(t)}t^o of bounded linear operators on X by the formula:

(3.3) S(t){4>,h} = lim [/ - -A}-n{</,,h}, {t,h}eX,
n—»oo n

Moreover, we have

(3.4) \S{t)\Bux,x) ^ e-"*

The following result shows that {S(t)}t^o is exactly the projection onto H of the

semigroup {S(t)}t>o •
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P R O P O S I T I O N 3 . 2 . S(t)h = P2S(t){<t>,h} for all {4>,h} G X.

PROOF: It is easily seen that P2[I-t/n ~A]n{<j>, h} = [I-t/n A]~nh for all {4>,h} G
X, t > 0 and positive integer n. Therefore by (3.1) and (3.3), we get P25(i){<£,h}
= P2 lim [I - t/n 1]-n{<f>,h} = lim P2[I - t/n ~A]-n{<f>,h} = lim [/ - t/n A\~nh

n—>oo n—»oo n—•oo

= s(t)h. U
Throughout the remainder of this section, we assume that {T(t)}t^o satisfies the

following conditions.

(HI) {T(t)}t^o is bounded dissipative,

(H2) {T(t)}t^o is uniformly compact, and

(H3) T(t)XcD(B) for all Q 2 r .

PROPOSITION 3 . 3 . The semigroup {T(t)}t^0 Aas a global attractor Cl and

PROOF: The existence of Cl is an immediate consequence of Theorem 2.2. The
conclusion that fl C D(B) follows from (H3) and the invariance of fi. D

To study the differentiability of {T(t)}t^o with respect to initial data, we consider
the variational equation:

(dU(t)/dt =AU(t) + {O,Df(xph)p1U(t)}, O O

\u(o) ={t,k}ex

where {<f>, h} G f2 is given.

PROPOSITION 3 . 4 . If f : L2([-r,0];H) is twice continuously differentiable

(C2), then for each {<f>, h} G fi and {V"> }̂ £ X, there exists a continuous function

(3.6) U(t) = S(t){rJ>,k}+ [ S(t-s){O,Df(xt'K)PiU(s)}ds,
Jo

Moreover, if {i>,k} G D(A) , then U(t) is a strong solution of (3.5).

PROOF: Let Lx — sup | D / ( $ ) | , where

sup \Df($)*\H.

Since / is C 1 and PiCl is compact, L\ < oo. Given any {(f>,h} G £1, define
[0, oo) x X -> X by

{pK) t>0, {il>,k} £ X.
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Since {<f>,h} e SI C D{B), x*<k : [0,oo) -> L2{[-r,0};H) is C1. Therefore, by the

assumption that / : L2([-r,0];H) -> H is C2, it follows that F^,h is C1. Moreover,

the invariance of n for the semigroup {r(t)}t>o guarantees that xf' 6 Pi ft and

thus \Df(xflh}\ ^ Li < oo, for all t > 0. This implies that i^i fc(i,.) is Lipschitz

continuous on X, uniformly for all t € [0, oo). Therefore the conclusion follows from

Theorem 2.4. D

From now on, we assume that / is C2. The following result shows that

PxU*'k>+>k(t) is the segment of P2tf*'h '^fc(t) on [t-r,t].

P R O P O S I T I O N 3 . 5 . Let u*'k>+tk(t) = P2U*>k'+'k{t), where {<i>,h} e ft and
{i/>,k} e X. Then uf'h'i>'k = P1U+'k'+-k{t).

PROOF: TO simplify notation, we set U(t) = U(>''h^k(t) and u(t) = u*'h'+>k(t).
Applying (iv) of Theorem 3.1 to the semigroup {S(t)}t>0, we get P1'S(t){ip,k}(e) =
P2SH + 0){V>,fc}, for t ^ 0, 0 e [-r,0] and t + 6 ^ 0. Applying P2 on both sides of
(3,6) at t + 6, we get

/

t+0 _
S(t + 8- a){0, Df(x^h)P1U(s)}d3

_ ft+O _
= P1S{t){il>,k}(6)+ / PiSit - a){0,Df(xt'h)P1U(s)}(e)ds

Jo

= P1S(t){rl>,k}{0) + P1 f S(t-s){O,Df(xt'h)PiU(s)}(e)da
Jo

= PiU(t){8),

where the equality

/

t+8 rt

P1S(t-a){O,Df(x*>h)P1U(s)}(0)ds=P1 / S(< - 3){O,Df(x*'h)P1U(s)}(0)d3
Jo

holds because by the Remark following Theorem 3.1, Pi~S(t - s){0, Df(xpk)PiU(a)}(0)

= 0, whenever t + 0 — a ^ 0. The conclusion then follows from the definition of P2 and

««. D
PROPOSITION 3 . 6 . If {<j>, h} e SI and {rp, k} e D(A) then «*•*•*•* : [0, oo) -»

H is differentiable and

(3.7) «*.*•*•*(<) = J4u*.k.*.fc + !?/(«*•*)«*•*•••*, t ^ 0.

PROOF: Since {^,/i} € n and {if)yk} £ X>(A), by Proposition 3.4, U*'k'+'k is a
strong solution of (3.5). Therefore u<t>'h^lk = P2U

<t>'h'rt'lk : (0,oo) -» H is differentiable.
Applying P2 on both sides of (3.5) and using Proposition 3.5, we obtain (3.7). u
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PROPOSITION 3 . 7 . For any constant t0 > 0, there exists a constant L > 0
such that

\*i-h-xt'h\x<L\{tth}-{i,,k}\x, /or ail {*,*},{*.*} 6 fi, t G [0,i0].

PROOF: TO simplify notation, we set x(t) = z*'h(<) and y(t) = a^'*(*). Since

{<l>,h},{il>,k} G £>(£), by Proposition 3.1, we have

x(t) = Ax{t) + f(zt), <€[O,<o] and

from which it follows that

(3.8) x(t) = S(t)h + f S(t- s)f(x.)ds, t G [0, tQ]
Jo

(3.9) y(t) = S(t)k + I S(t- s)f(y.)ds, t G [0,t0].
Jo

c(t)-y(t) = S(t)(h-k)+ f S(t - s)[f(x.) - f(y.)]ds, t G [0,*0].
J 0

Therefore

Since | 5 ( t ) | B L ( H ; H ) ^ eat for < 6 [0,*0], we have

(310) r t 1

^ max{ealo,l} \\h - k\H + 0 I \x. - y.\L,ds\

where for any p G L2([-r,0];H), \p\L2 - (£r \p{6)\2
Hd0\ . Thus by using the
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inequality (a + b)2 < 2(o2 + b2) (a,b E R), we obtain

f" \x(t + B)-y{t + e)\2
Hd0

J—T

= I l*(0 - ytf)\Hd< + I |«(0 - ytf)\Hdt
J[t-r,t}n[-r,0) J\t-rit)\l-T,O]

J[t-r,t]n[-r,0]

2(max{eQ*o,l})2 /
[t-T,t)\[-T,0)

\h-k\2
H+fi'U \x.-V.\ifids

< f_ 10(0 - Hi)\2
Hdi + 2(max{eat",l})2 £ \\h - k\2

H +/32 Q f \x. - y.

< max{l, 2r(max{eQ\ 1})2}|{0, h} - {j>, k}\2
x

+ 2(max{eQto,l})Vr (J*\x.-y.\L,<U\ .

From the inequality y/a2 + b2 < \a\ + |6| ( o , i g R ) , it follows that

rt

/ I * . - y #
Jo

Vmax{l,Mo}|{0,/i} - {V»,J

where MQ — 2(max{ea*°,l}) r. By the well-known Gronwall inequality, we obtain

(3.11) |x« — yt\L2 < \/max{l

Substituting (3.11) into (3.10), we get
(3.12)

\h-k\H

Therefore the conclusion follows from (3.11) and (3.12). D

PROPOSITION 3 . 8 . For any t0 > 0, there exists M > 0 such that if

tk} - {*,h}\2
x

for all t G [0,t0]-

PROOF: Let

(3.13) i 2 := sup
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Since / is C2 and co(.Pif2) is compact, L2 < oo. To simplify the presentation, we set
x{t) = x**(t), y(t) = x^k(t), u{t) = u+<h<i-'l'<k-h{t), and w{t) = y(t) - x{t) - u{t)
for t ^ — r . Applying P2 on both sides of (3.6) and using Proposition 3.2 and 3.5, we
obtain

u(t) = S(t)u(Q) + I S(t- a)Df(x.)u.ds, t ^ 0.
Jo

Therefore from (3.8) and (3.9), it follows that

w(t) = / S(t- s) [/(y.) - /(*,) - Df(x.)u.] ds
Jo

= f S{t- s) \J Df (ry. + (1 - T)X.) {y. - x.)dr - Df(x.)UA ds

= j S[t- s) \j Df {ry. + (1 - r)x.) dr - Df(x.)] (y. - x.)da

+ [ S{t- s)Df{x.)w.ds
Jo

= 1*8(1-3)1 f I D2f(e(ry. + (l-r)x.)
Jo Uo Jo

+ (1 - 9)x.)d6T(y. - x.)dT]{y. - x.)ds + f T(t - a)Df(x.)w.ds.
Jo

Since x.,y. G PXQ for all a ^ 0, 0(ry, + (1 - T)X,) + (1 - 0)x, G co^Q), the closed

convex hull of P i (n) , for all 6,T G [0,1]. Therefore by (3.13) we get

\w(t)\H^ fte^t-^L2\y.-x.\l3ds+ f e^-H^w.^da
Jo Jo

<fomax{eato
}l}Z2 max \y. - x.\2

Li + f Lunaxie0* ,l}\w.\Lida.
•e[o.*o] Jo

By Proposition 3.7, we have

(3.14) H O I H ^ M J W , k y _ {^h)\2x + M2 f \w.\Lids,
Jo

where Mi = tomaLx{eat<> ,l}L2Ll and M2 = Xi max{ea t° , l}. Therefore,

\vt\h= J_ Wt + 0)\2
Hd8

^ 2M1
2r|{^fc} - { ,̂ft}|*. + 2M|r
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from which it follows that

\wt\L> < V2^M1\{i(,,k} - {<j>,h}\x + M2sfc I \w.\L2ds.
Jo

This implies, by the Gronwall inequality, that

(3.15) |ti,t|L,

Substituting (3.15) into (3.14), we get

(3.16) \w[t)\H < Mrli^k} - {<j>,h}\2
x

for all t G [0,<o]- The conclusion then follows from (3.15) and (3.16). D

THEOREM 3 . 9 . Assume that f is C2. The semigroup {T(t)}t>0 is uniformly
differentiable in Cl.

PROOF: For any given {<f>,h} G fl and t ^ 0, define the linear operator

L(t,{<t>,h}) : X-, X by:

L{t, {<(>, h})W, k} = U*<h^k(t), for {^, fc} G X

By Proposition 3.8, we have

\T(t){ip,k} - T(t){<t>, h\ - L(t, U, h})({if>, k\ - U, h\)\x
SUP \Ub~k\—(A h\\r

-> 0 as e - » 0.

Therefore, it suffices to show the linear operator L(t, {<f>, h}) is bounded.

Let

\ V>(t) for - r < t < 0.

If {il>,k} G -D(A) , by Proposition 3.6, we have

u(f) = Au(t) + Df(xt)ut for t ^ 0,

where x = x*<h. Thus

u[fy = 5(<)u(0) + / S{t- 3)Df(x.)u.da.
Jo

From this, it follows that
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Using a similar argument as in the proof of Propositions 3.7 and 3.8, we see that for
any to > 0, there exists a constant V > 0 such that

(3.17) \vt\x<V\uo\x = V\{1>,k}\x for all te[O,to].

Since the mild solution of the initial value problem (3.5) depends continuously on initial
data and D(I) is dense in X, (3.17) holds for all {ij),k} G X. Therefore L(t,{<f>,h})
is a bounded and

sup \L(t, {<t>, h})\BHX,x) < V, for all t G [0, *„]•

D
We are now in a position to estimate the Lyapunov numbers and topological di-

mensions of the global attractor fl.
Let {<f>,h} e n , {r/>i,ki} G D(X) and U{ = £#•*•*• •*•', i = l , . . . , m . By Proposi-

tion 3.4, we have

^ ^ = AUi(t) + {0, !>/(**•*)}A^(0, t > 0.

Therefore, by employing an argument similar to that for (2.40) in Teman [14, Chap-
ter V], we obtain

(3-18) ~ | f f i ( 0 A • • • A M O I A - A - = l^i(0 A • • • A Um{t)\\mx Tr(G(t) o Qm(t)),

where

(3.19) Qm(t) = Qm(t,4>,h,^uh,...,rl>m,km)

is the orthogonal projection of X onto the space spanned by Ui(t),... ,Um(t) and
= G(t,<j>,h) : X -> X is defined by

(3-20)

Therefore

A • • • A Um(0)\^x exp (J TT{G{T) O ( ^ (

i} A • • • A {V-m,A!m}|Amx exp (J TT{G{T)
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Let

(3.21) qm(t) = sup - f Tr(G(T)oQm(T))dr
{*,h}6n, {^,fc,}eD(A), |{^,*i}|xO,<=l m J0

and

(3.22) g m = limsupgm(i).

Then we have

(3.23) |tfi(<) A • • • A Um(t)\*mX ^ |{V>i,fci} A • • • A {1>m,km}\Amx exp{tqm(t)}.

Since the mild solution of the initial value problem (3.5) depends continuously on initial
data and D(A) is dense in X, (3.23) holds for all {ipi,ki} € X, i = l,...,m. Therefore
using the notations in (2.4)-(2.8), we have the following estimation:

(3.24) um(t) < exp{tqm(t)},

and

(3.25) 7rm < e"».

Therefore

(3.26) fii + • • + fim = lmrm ^ qm.

By Theorem 2.3, we obtain our main result:

THEOREM 3 . 1 0 . Suppose that

(i) (H1)-(H3) are satisfied, and
(ii) / : L2([—r,0];H) —+ H is twice continuously differentiate.

If 9m < 0 for some m, then the Hausdorff dimension of fi is less than or equal to m

and the fractal dimension of Q is less than or equal to m maxi^7-^m_i (l + (qj)+/\qm\) •

REMARK: Some smoothness condition on / (for example, (ii) in Theorem 3.10)
seems to be necessary in order for fl to be of finite dimension (see Yorke [19]).
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