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This paper investigates flow and transport in a slender wavy-walled vertical channel subject
to a prescribed oscillatory pressure difference between its ends. When the ratio of the
stroke length of the pulsatile flow to the channel wavelength is small, the resulting flow
velocity is known to include a slow steady-streaming component resulting from the effect
of the convective acceleration. Our study considers the additional effect of gravitational
forces in configurations with a non-uniform density distribution. Specific attention is given
to the slowly evolving buoyancy-modulated flow emerging after the deposition of a finite
amount of solute whose density is different from that of the fluid contained in the channel,
a relevant problem in connection with drug dispersion in intrathecal drug delivery (ITDD)
processes, involving the injection of the drug into the cerebrospinal fluid that fills the
spinal canal. It is shown that when the Richardson number is of order unity, the relevant
limit in ITDD applications, the resulting buoyancy-induced velocities are comparable to
those of steady streaming. As a consequence, the slow time-averaged Lagrangian motion
of the fluid, involving the sum of the Stokes drift and the time-averaged Eulerian velocity,
is intimately coupled with the transport of the solute, resulting in a slowly evolving
problem that can be treated with two-time-scale methods. The asymptotic development
leads to a time-averaged, nonlinear integro-differential transport equation that describes
the slow dispersion of the solute, thereby circumventing the need to describe the small
concentration fluctuations associated with the fast oscillatory motion. The ideas presented
here can find application in developing reduced models for future quantitative analyses of
drug dispersion in the spinal canal.
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1. Introduction

The steady Lagrangian drift generated in oscillatory viscous flows in pipes and channels
is known to play an important role in different heat and mass transport processes,
including those occurring in extracorporeal membrane oxygenators (Bellhouse et al. 1973),
pulmonary high-frequency ventilation devices (Grotberg 1994), compact heat exchangers
(Mackley & Stonestreet 1995) and drug dispersion in the spinal canal (Lawrence et al.
2019). For configurations with slowly varying cross-section, the lubrication approximation
can be used to derive insightful analytical results, with seminal analyses including
those of Hall (1974), who considered flow in a pipe subject to a harmonic pressure
difference, and Grotberg (1984), who investigated flow in a tapered channel subject
to a prescribed oscillating stroke volume. More recent analytical studies pertaining
to channels include those of Lo Jacono, Plouraboué & Bergeon (2005) and Guibert,
Plouraboué & Bergeon (2010), involving three-dimensional wavy-walled configurations,
and that of Larrieu, Hinch & Charru (2009), who considered an oscillating Couette
flow over a wavy bottom. All of these analytical investigations of oscillating slender
flows addressed configurations with weak inertia, corresponding to small values of the
ratio ε of the stroke length to the characteristic longitudinal length, with ε−1 � 1
representing the relevant Strouhal number. The asymptotic analysis for ε � 1 reveals
that the velocity, resulting from a balance between the local acceleration and the pressure
and viscous forces, is harmonic at leading order, with the small corrections arising from
the convective acceleration providing a small steady-streaming component of order ε
(Riley 2001). This steady streaming determines, together with the Stokes drift associated
with the leading-order harmonic flow, the Lagrangian drift experienced by the fluid
particles, with both contributions having in general comparable orders of magnitude
(Larrieu et al. 2009).

As discussed by Guibert et al. (2010), the fundamental pulsatile-flow investigations
mentioned previously are relevant in connection with the motion of cerebrospinal fluid
(CSF) along the spinal subarachnoid space, a slender annular canal surrounding the
spinal cord, depicted in figure 1. The flow features an oscillatory velocity driven by the
pressure pulsations induced by the cardiac and respiratory cycles (Linninger et al. 2016).
The dynamics of this flow and its associated Lagrangian transport are fundamental in
understanding the role of CSF as a vehicle for metabolic-waste clearance (Klarica, Radoš
& Orešković 2019) and also to quantify drug dispersion in intrathecal drug delivery
(ITDD) (Onofrio 1981; Lynch 2014; Fowler et al. 2020), a medical procedure used for
treatment of some cancers (Lee et al. 2017), infections (Remeš et al. 2013) and pain
(Bottros & Christo 2014). The standard ITDD protocol involves the placement of a small
catheter along the lumbar section of the spinal canal to continuously pump the drug or to
release a finite dose at selected times. The transport of the drug depends fundamentally on
its physical properties, including molecular diffusivities κ that are much smaller than the
kinematic viscosity ν of CSF.

The flow in the spinal canal has been investigated computationally in numerous
studies addressing different aspects of the problem, as summarised in a recent paper by
Khani et al. (2018), although corresponding theoretical analyses are more scarce. Exact
solutions for pulsatile viscous flow in a straight elliptic annulus have been proposed as a
representation for the oscillatory flow in the spinal canal (Gupta, Poulikakos & Kurtcuoglu
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Figure 1. A schematic view of the spinal canal, showing the location of (a) ITDD and (b,c) of the
two-dimensional channel flow investigated here.

2008). More recent studies, modelling the canal as a linearly elastic annular pipe of
slowly varying section, have employed the lubrication approximation in the asymptotic
limit ε � 1 to quantify steady streaming (Sánchez et al. 2018) and to investigate the
dispersion of a solute (Lawrence et al. 2019). For the large values of the Schmidt number
ν/κ ∼ 1000 corresponding to the molecular diffusivities of all ITDD drugs, the analysis
of Lawrence et al. (2019) showed that the Lagrangian mean flow is the key mechanism
responsible for the dispersion of the solute, whereas shear-enhanced Taylor dispersion
has a negligibly small effect. An important outcome of the asymptotic analysis is a
time-averaged transport equation that has been recently validated by means of comparisons
with results of direct numerical simulations (DNS) spanning hundreds of oscillation
cycles (Gutiérrez-Montes et al. 2021), as needed to generate significant dispersion of
the solute. The comparisons demonstrate the accuracy of the reduced description, which
is seen to provide excellent fidelity at a fraction of the computational cost involved in
the DNS.

Our previous analysis of solute dispersion (Lawrence et al. 2019) assumed the density
of the solute ρs and the density of the carrier fluid ρ to be identical, thereby neglecting
the small density differences ρ − ρs found in ITDD applications, for which the values
of ρ − ρs typically range from positive values of order (ρ − ρs) ∼ ρ/1000 for drugs
diluted with water to negative values of order (ρ − ρs)/ ∼ −ρ/100 for drugs diluted
with dextrose (Nicol & Holdcroft 1992; Lui, Polis & Cicutti 1998). These relative density
differences (ρ − ρs)/ρ � 1 between the drug and the CSF, although extremely small, are
known by clinicians to play an important role in the dispersion rate of ITDD drugs for
patients in a sitting position, when buoyancy forces are nearly aligned with the canal. It
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has been seen that for a hyperbaric (dense) solution, injection while the patient is seated
for some time before moving to a supine position leads to an initial restriction in the
transport of the anaesthesia (Mitchell et al. 1988; Povey, Jacobsen & Westergaard-Nielsen
1989; Veering et al. 2001). (In spinal anaesthesia, baricity is the term used to refer to
the density of the anaesthetic relative to that of the CSF. Thus, an anaesthetic is said to
be hyperbaric/hypobaric when its density is higher/lower than that of the CSF, whereas
the term isobaric describes anaesthetics whose density matches exactly that of the CSF.)
Conversely, for a hypobaric (light) solution, the sitting injection position leads to more
rapid cephalad spread of the anaesthesia as compared to a lateral injection position
(Richardson et al. 1996). As could be expected, the density of the drug is inconsequential
when injection occurs in the lateral position (Hallworth et al. 2005) and, similarly,
positioning has no effect on the spread rate when the solution density matches that of
CSF (Wildsmith et al. 1981). Given the abundance of clinical evidence on the importance
of buoyancy forces on the drug dispersion rate, there is interest in developing a quantitative
description; the present paper, focused on a simplified geometry, is a necessary first step
in that direction.

In looking for a simplified geometrical model, we follow Guibert et al. (2010) in noting
that the width ho ∼ 1–2 mm of the annular spinal canal is smaller than the spinal-cord
diameter ∼1 cm, with the consequence that a two-dimensional channel can be used
to describe many aspects of the flow. The channel is placed in a vertical position,
as is appropriate in describing buoyancy effects for a patient in a sitting position. As
indicated in figure 1, the quasi-periodic variation of the canal section, associated with
the presence of the vertebrae, will be modelled by including a wavy boundary whose
wavelength λ mimics the inter-vertebral distance. The channel will be assumed to be
slender in that λ� ho, a good approximation in the spinal canal, where λ ∼ 2–4 cm and
ho/λ � 0.05. For simplicity, the total channel length is taken to be an integer multiple
of the wavelength, so that the channel contains a finite number of identical cells. As
in the seminal analysis of Hall (1974), an oscillating pressure difference with angular
frequency ω will be imposed between the channel ends, resulting in a pulsating flow.
We investigate the buoyancy-modulated dispersion of a bolus of solute released inside
the channel when the buoyancy-induced acceleration is comparable to the convective
acceleration of the pressure-driven flow, those being the conditions of interest in ITDD
applications, as explained later below (2.6).

The rest of the paper is organised as follows. The problem is formulated in dimensionless
form in § 2, which includes the identification of the relevant non-dimensional parameters
and a discussion of the essential features of the subsequent asymptotic analysis, including
the existence of a long time scale ε−2ω−1 for solute dispersion, additional to the
much smaller oscillation time ω−1. The asymptotic description of the velocity field is
presented next in § 3, with the time-averaged Eulerian velocity including the familiar
steady-streaming contribution stemming from the convective acceleration along with an
additional buoyancy-induced component that depends on the distribution of solute. This
velocity field is used in § 4 to analyse solute dispersion with use of a two-time scale
asymptotic analysis, resulting in a time-averaged transport equation that describes the
evolution of the flow in the long-time scale ε−2ω−1. The reduced description stemming
from the asymptotic analysis is validated in § 5 through comparisons with DNS. In
addition, the model is used to quantify effects of buoyancy-induced motion on the solute
dispersion for different values of the controlling parameters. Finally, concluding remarks
are given in § 6.
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2. Problem formulation

2.1. Governing equations
Consider a vertical wavy channel of average gap size ho filled with a Newtonian fluid
of density ρ and kinematic viscosity ν (for CSF, ρ � 103 kg m−3 and ν � 0.7 ×
10−6 m2 s−1). The channel, open at both ends, is bounded by a flat surface and a wavy wall
of wave length λ� ho, so that the resulting channel width is h = ho[1 + β cos(2πx∗/λ)],
where x∗ is the longitudinal distance measured from the upper end and β < 1 is the relative
amplitude of the wall undulation. The total channel length is nλ, with n representing
a general integer number, so that the channel comprises n identical cells. The flow is
described using cartesian coordinates (x∗, y∗), with y∗ measured from the flat surface,
and corresponding velocity components v∗ = (u∗, v∗). The Navier–Stokes equations
describing the planar unsteady flow are written in the Boussinesq approximation

∇∗ · v∗ = 0, (2.1)

∂v∗

∂t∗
+ v∗ · ∇∗v∗ = − 1

ρ
∇∗p∗ + ν∇∗2v∗ − ρ − ρs

ρ
gcex, (2.2)

∂c
∂t∗

+ v∗ · ∇∗c = κ∇∗2c, (2.3)

where p∗ is the sum of the pressure difference from the upper end and the constant-density
hydrostatic component −ρgx∗, c is the solute volume concentration, κ is the solute
diffusivity, ∇∗ = (∂/∂x∗, ∂/∂y∗) and ex is the unit vector aligned with the gravitational
acceleration.

A pressure difference n	p cos(ωt∗) oscillating harmonically in time is prescribed
between the upper and lower ends of the canal, driving a periodic fluid motion with angular
frequency ω. The resulting slender flow is characterised by longitudinal velocities of order
uc = 	p/(ρωλ), as follows from a balance between the local acceleration ∂u∗/∂t∗ ∼ ucω
and the pressure gradient ρ−1∂p∗/∂x∗ ∼ 	p/(λρ), and much smaller transverse velocities
of order vc = (ho/λ)uc � uc, as follows from the continuity balance ∂u∗/∂x∗ ∼ ∂v∗/∂y∗.

2.2. Controlling parameters
The analysis assumes that the viscous time across the channel h2

o/ν is comparable to the
characteristic oscillation time ω−1, resulting in Womersley numbers

α =
(
ωh2

o

ν

)1/2

, (2.4)

of order unity. The limit α ∼ 1 is instrumental in analysing cardiac-driven CSF flow
(ω = 2π s−1) in the spinal canal, for which typical values of α are in the range 3 � α � 6,
as can be seen by evaluating the above expression with ho � 1–2 mm and ν = 0.7 ×
10−6 m2 s−1. In the lumbar region, the typical drug-delivery site in ITDD procedures,
the average CSF speeds are of order uc ∼ 1 cm s−1, so that the associated stroke
lengths uc/ω are much smaller than the characteristic longitudinal distance λ � 2–4 cm.
Their ratio

ε = uc/ω

λ
, (2.5)

of order ε � 0.05 for spinal CSF flow, defines the small parameter employed in the
following asymptotic description. As shown earlier (Hall 1974; Grotberg 1984), the
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solution at leading order is determined by a balance between the pressure gradient, the
local acceleration and the viscous forces, with the convective acceleration introducing
small corrections of relative magnitude ε. Although the leading-order motion is harmonic,
the velocity corrections include a non-zero steady-streaming component.

The familiar periodic channel flow described previously is altered by gravitational forces
when a solute of density ρs /= ρ is introduced in the channel. The extent of the resulting
buoyancy-induced motion can be measured by the associated Richardson number

Ri = ρ − ρs

ρ

gλ
u2

c
, (2.6)

which compares the order of magnitude of the effective gravitational acceleration g(ρ −
ρs)/ρ with that of the convective acceleration v∗ · ∇∗v∗ ∼ u2

c/λ. Our analysis addresses
the limit Ri ∼ 1, which is relevant for drug dispersion in ITDD procedures, as can be seen
by evaluating (2.6) with λ � 2 cm and uc ∼ 1 cm s−1 for density differences in the range
10−3 � |ρ − ρs|/ρ � 10−2.

Also motivated by ITDD applications, we consider solutes with diffusivities κ much
smaller than the kinematic viscosity, that always being the case of diffusion in liquid
phase. As ν/κ ∼ 1000 and ε � 0.05 in ITDD applications, the following analysis of solute
dispersion will specifically address the distinguished limit κ/ν ∼ ε2, with solute diffusion
correspondingly characterised by the reduced Schmidt number

σ = ε2 ν

κ
, (2.7)

assumed to be of order unity.

2.3. Non-dimensional formulation
We address the motion that follows from the deposition of the solute inside an intermediate
cell along the channel. The problem is non-dimensionalised using the scales identified
previously to give the dimensionless variables

t = ωt∗, x = x∗

λ
, y = y∗

ho
, u = u∗

uc
, v = v∗

vc
, p = p∗

	p
(2.8a–f )

and associated conservation equations

∂u
∂x

+ ∂v

∂y
= 0, (2.9)

∂u
∂t

+ εv · ∇u = −∂p
∂x

+ 1
α2
∂2u
∂y2 − ε Ri c, (2.10)

∂p
∂y

= 0, (2.11)

∂c
∂t

+ εv · ∇c = ε2

α2σ

∂2c
∂y2 , (2.12)

where v = (u, v) and ∇ = (∂/∂x, ∂/∂y). In writing (2.9)–(2.12) from (2.1)–(2.3) we have
used the slender-flow approximation resulting from the limit ho � λ. Thus, the terms
representing longitudinal diffusion of momentum and mass have been neglected in (2.10)
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and (2.12), because they are a factor (ho/λ)
2 smaller than those associated with transverse

diffusion. At the same level of approximation, the transverse component of the momentum
equation takes the reduced form (2.11). The velocity and concentration must satisfy the
boundary conditions

u = v = ∂c
∂y

= 0 at
{

y = 0
y = H = 1 + β cos(2πx) , (2.13)

corresponding to non-permeable no-slip surfaces, whereas the reduced pressure p(x, t),
independent of y, is identically zero at x = 0 and takes the value p = n cos t at the lower
end x = n.

In the absence of buoyancy (i.e. for Ri = 0), the solution for the velocity is periodic
in time, including a steady component of order ε, and also periodic in space, so that the
velocity distribution found in each cell is identical. On the other hand, for Ri /= 0 the
motion is coupled to the solute transport, albeit weakly, with the result that the velocity
necessarily evolves in time following the dispersion of the solute, which is driven partly by
the steady streaming motion, with characteristic velocities εuc. It can be anticipated that
the characteristic time for the slow evolution is that associated with the dispersion of the
solute inside the deposition cell λ/(εuc) = ε−2ω−1, much larger than the characteristic
oscillation time ω−1. These considerations suggest the introduction of a second time
variable τ = ε2t for describing the slow evolution, additional to the fast time-scale variable
t describing the oscillatory motion. In the two-time-scale formalism, the time derivatives
in (2.10) and (2.12) are replaced with ∂/∂t + ε2∂/∂τ and the different variables are
expressed in terms of the power expansions

u = u0(x, y, t, τ )+ εu1(x, y, t, τ )+ · · · , (2.14)

v = v0(x, y, t, τ )+ εv1(x, y, t, τ )+ · · · , (2.15)

p = p0(x, t, τ )+ εp1(x, t, τ )+ · · · , (2.16)

c = c0(x, y, t, τ )+ εc1(x, y, t, τ )+ · · · , (2.17)

with all functions assumed to be 2π periodic in the fast time scale t. The asymptotic
procedure leads to a hierarchy of problems that can be solved sequentially, as shown in the
following.

3. Velocity description

We begin by describing the velocity field in the asymptotic limit ε � 1, following the
procedure used in previous steady-streaming investigations of slender flows (Larrieu et al.
2009; Guibert et al. 2010; Sánchez et al. 2018). The solution at leading order and also
the first-order corrections associated with convective acceleration are similar to those
found earlier in three-dimensional wavy-walled channels (Guibert et al. 2010) and annular
canals (Sánchez et al. 2018). These previous analyses did not address, however, effects
of buoyancy forces, which are investigated here for order-unity values of the Richardson
number Ri, leading to a velocity correction that will be seen to be expressible in terms of
integrals of the solute concentration.

3.1. Leading-order oscillatory flow
Convective acceleration and buoyancy are negligible at leading order, so that the velocity
v0 = (u0, v0) satisfies a linear problem that can be solved in terms of the reduced variables

u0 = Re(ieitU), v0 = Re(ieitV), p0 = Re(eitP), (3.1a–c)
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where the complex functions U(x, y), V(x, y), and P(x) satisfy

∂U
∂x

+ ∂V
∂y

= 0 and − U = −dP
dx

+ i
α2
∂2U
∂y2 . (3.2a,b)

The second equation above can be integrated with boundary conditions U = 0 at y = 0,H
to give

U = dP
dx

G(x, y), (3.3)

where

G = 1 − cosh[Λ(2y/H − 1)]
coshΛ

and Λ = α

2
1 + i√

2
H(x). (3.4a,b)

The result can be used to integrate the first equation in (3.2a,b) subject to V = 0 at y = 0,
yielding

V = − ∂

∂x

(∫ y

0
U dŷ

)
= − ∂

∂x

(
dP
dx

∫ y

0
G dŷ

)
, (3.5)

where ∫ y

0
G dŷ = y − H

2Λ

{
sinh[Λ(2y/H − 1)] + sinhΛ

coshΛ

}
, (3.6)

with ŷ representing a dummy integration variable. Note that both velocity components
U and V are spatially periodic in x through the function H = 1 + β cos(2πx). The
determination of the longitudinal pressure gradient dP/dx that completes the solution
begins by using the condition V = 0 at y = H in the first equation of (3.5) to give

d
dx

(∫ H

0
U dy

)
= 0, (3.7)

indicating that the reduced flow rate

Q =
∫ H

0
U dy = dP

dx

∫ H

0
G dy (3.8)

is constant. Further progress requires use of the conditions P(0) = P(n)− n = 0,
consistent with the boundary values p(0, t) = 0 and p(n, t) = n cos t stated below (2.13).
Using (3.6) to evaluate the integral

∫ H
0 G dy leads to the equation

Q = dP
dx

H(1 −Λ−1 tanhΛ), (3.9)

which can be integrated subject to P(0) = 0 to yield the pressure distribution

P = Q
∫ x

0

dx̂
H(1 −Λ−1 tanhΛ)

. (3.10)

Using now the condition P(n) = n provides

Q = n
[∫ n

0

dx
H(1 −Λ−1 tanhΛ)

]−1

. (3.11)
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Owing to the spatial periodicity of H and Λ, it follows that∫ n

0

dx
H(1 −Λ−1 tanhΛ)

= n
∫ 1

0

dx
H(1 −Λ−1 tanhΛ)

, (3.12)

thereby finally yielding

Q =
[∫ 1

0

dx
H(1 −Λ−1 tanhΛ)

]−1

(3.13)

and, from (3.9),

dP
dx

=
[

H(1 −Λ−1 tanhΛ)
∫ 1

0

dx
H(1 −Λ−1 tanhΛ)

]−1

, (3.14)

independent of n. It is worth pointing out that, because at this order the velocity is
harmonic, the associated time-averaged values 〈u0〉 and 〈v0〉 with 〈·〉 = (1/2π)

∫ t+2π

t dt
are identically zero, so that the steady bulk motion of the fluid occurs through the velocity
corrections at the following order.

3.2. First-order corrections
Collecting terms of order ε in (2.9) and (2.10) yields

∂u1

∂x
+ ∂v1

∂y
= 0, (3.15)

∂u1

∂t
+ ∂

∂x
(u2

0)+ ∂

∂y
(u0v0) = −∂p1

∂x
+ 1
α2
∂2u1

∂y2 − Ri c0, (3.16)

to be integrated with boundary conditions u1 = v1 = 0 at y = 0,H and p1 = 0 at x =
0, n. There is interest in computing the corresponding time-averaged velocity correction
〈v1〉 = (〈u1〉, 〈v1〉). Taking the time average of (3.15) and (3.16) provides

∂〈u1〉
∂x

+ ∂〈v1〉
∂y

= 0 and F(x, y) = −∂〈p1〉
∂x

+ 1
α2
∂2〈u1〉
∂y2 − Ri c0, (3.17a,b)

where the known function F = ∂〈u2
0〉/∂x + ∂〈u0v0〉/∂y can be expressed in terms of the

complex velocities U and V defined above in the form

F = 1
2

Re
[
∂

∂x
(UŪ)+ ∂

∂y
(VŪ)

]
, (3.18)

a result following from the identity 〈Re(ieitf1)Re(ieitf2)〉 = Re( f1 f̄2)/2, which applies
to any generic time-independent complex functions f1 and f2, with the bar denoting
complex conjugates. In writing (3.17a,b), we have anticipated that, at leading order, the
solute concentration is independent of the fast time scale t, as follows from (2.12) when
ε � 1, so that its time-averaged value 〈c0〉 reduces simply to 〈c0〉 = c0. Also of interest
is that, because of the symmetry of H(x), the periodic function F defined in (3.18) is
antisymmetric with respect to x = 1/2, so that F(x, y) = −F(1 − x, y).

As can be concluded from (3.16), the velocity corrections arise partly owing to
the convective acceleration and partly owing to the buoyancy force. In computing the
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corresponding time average, it is convenient to compute both contributions separately
by introducing 〈v1〉 = vSS + vB and 〈p1〉 = pSS + pB, where vSS(x, y) = (uSS, vSS) and
pSS(x) describe the familiar steady-streaming associated with the nonlinear convective
terms, which is independent of time and periodic in x, and vB(x, y, τ ) = (uB, vB) and
pB(x, τ ) describe the buoyancy-induced corrections, which evolve in the long time scale τ
as the solute spreads in the channel.

3.3. Steady streaming
The solution procedure needed to compute the velocity corrections parallels that followed
earlier at leading order. Thus, the longitudinal component of the steady-streaming velocity

uSS

α2 = −dpSS

dx
1
2
(H − y)y + y

∫ y

0
F dŷ −

∫ y

0
Fŷ dŷ − y

∫ H

0
F
(

1 − y
H

)
dy (3.19)

is determined by integrating the momentum equation (3.16) written for Ri = 0 subject to
the boundary conditions uSS = 0 at y = 0,H. The result can be substituted into (3.15) to
give

vSS

α2 = ∂

∂x

[
dpSS

dx
y2

2

(
H
2

− y
3

)
+ y2

2

∫ H

y
F
(

1 − ŷ
H

)
dŷ

+ y
(

1 − y
2H

) ∫ y

0
Fŷ dŷ − 1

2

∫ y

0
Fŷ2 dŷ

]
(3.20)

upon integrating with vSS = 0 at y = 0. To determine the unknown pressure gradient
dpSS/dx we begin by using vSS = 0 at y = H in the above equation to give

d
dx

(∫ H

0

uSS

α2 dy
)

= d
dx

(
dpSS dx

H3

12
+ 1

2

∫ H

0
Fy(H − y) dy

)
= 0, (3.21)

which indicates that the flow rate

QSS =
∫ H

0
uSS dy = α2

[
dpSS

dx
H3

12
+ 1

2

∫ H

0
Fy(H − y) dy

]
(3.22)

is constant. Its value can be determined by integrating a second time (3.22) subject to
pSS(n) = pSS(0) = 0 to yield

QSS =
α2
∫ 1

0
H−3

[∫ H

0
Fy(H − y) dy

]
dx

2
∫ 1

0
H−3 dx

, (3.23)

when account is taken of the spatial periodicity of H and F. Since H(x) is symmetric about
x = 1/2 while F(x, y) is antisymmetric, the double integral in the numerator of the above
equation is identically zero, so that

QSS =
∫ H

0
uSS dy = 0, (3.24)

in agreement with previous findings regarding steady streaming in tubes (Hall 1974)
and channels (Lo Jacono et al. 2005; Guibert et al. 2010). Using the condition QSS = 0
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in (3.22) finally yields

dpSS

dx
= −6H−3

∫ H

0
Fy(H − y) dy, (3.25)

for the pressure gradient, thereby completing the solution.

3.4. Buoyancy-induced velocity
The corresponding solution for the buoyancy-induced velocity can be obtained by simply
replacing F(x, y) with Ri c0(x, y, τ ) in (3.19) and (3.20), yielding

uB

α2Ri
= − 1

Ri
∂pB

∂x
1
2
(H − y)y + y

∫ y

0
c0 dŷ −

∫ y

0
c0ŷ dŷ − y

∫ H

0
c0

(
1 − y

H

)
dy (3.26)

and

vB

α2Ri
= ∂

∂x

[
1
Ri
∂pB

∂x
y2

2

(
H
2

− y
3

)
+ y2

2

∫ H

y
c0

(
1 − ŷ

H

)
dŷ

+ y
(

1 − y
2H

) ∫ y

0
c0ŷ dŷ − 1

2

∫ y

0
c0ŷ2 dŷ

]
. (3.27)

Using the condition vB = 0 at y = H in the above equation and integrating once gives

QB

α2Ri
= 1

Ri
∂pB

∂x
H3

12
+ 1

2

∫ H

0
c0y(H − y) dy (3.28)

for the buoyancy-induced flow rate QB = ∫ H
0 uB dy. Integrating a second time with pB = 0

at x = 0, n to give

QB(τ ) =
α2Ri

∫ n

0
H−3

[∫ H

0
c0y(H − y) dy

]
dx

2n
∫ 1

0
H−3 dx

, (3.29)

finally determines the pressure gradient

1
Ri
∂pB

∂x
= 6

H3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ n

0
H−3

[∫ H

0
c0y(H − y) dy

]
dx

n
∫ 1

0
H−3 dx

−
∫ H

0
c0y(H − y) dy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (3.30)

which can be used in (3.26) and (3.27) to complete the determination of the
buoyancy-induced velocity. Note that, because c0 is not spatially periodic, the solution
carries a dependence on the channel length n through the pressure gradient ∂pB/∂x.

4. Solute dispersion

The flow velocity is coupled with the solute concentration c through the dependence on c0
present in vB = (uB, vB). The computation of c0 involves substitution of the expansion c =
c0 + εc1 + ε2c2 + · · · into (2.12) with the time derivative replaced by the two-time-scale
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expression ∂c/∂t + ε2∂c/∂τ . At leading order we find the result ∂c0/∂t = 0, anticipated
earlier when writing (3.17a,b). Collecting terms of order ε yields

∂c1

∂t
+ v0 · ∇c0 = 0, (4.1)

which can be integrated to provide the concentration correction

c1 = 〈c1〉(x, y, τ )−
∫

v0 dt · ∇c0, (4.2)

where
∫

v0 dt = Re[eit(U,V)], as follows from (3.1a–c). It is worth noting that, because
the solute diffusivity takes small values of order κ/ν ∼ ε2, effects of diffusion are absent
at the first two orders in the asymptotic analysis. These effects are present in the equation
that arises at the following order,

∂c2

∂t
+ ∂c0

∂τ
+ v0 · ∇c1 + v1 · ∇c0 = 1

α2σ

∂2c0

∂y2 , (4.3)

which can be time-averaged to give

∂c0

∂τ
+
(〈∫

v0 dt · ∇v0

〉
+ 〈v1〉

)
· ∇c0 = 1

α2σ

∂2c0

∂y2 . (4.4)

In deriving the second term in (4.4) from the third term in (4.3) use has been made of (4.2).
Since 〈c1〉 is independent of t and 〈v0〉 = 0, the contribution of the former to the resulting
time average 〈(v0 · ∇〈c1〉)〉 = 〈v0〉 · ∇〈c1〉 is identically zero. The leading-order solute
concentration c0 is also independent of t, so that the contribution arising from the second
term in (4.2) can be written in the form

−
〈
v0 · ∇

(∫
v0 dt · ∇c0

)〉
= −

〈
v0 ·

∫
∇u0 dt

〉
∂c
∂x

−
〈
v0 ·

∫
∇v0 dt

〉
∂c
∂y

−
〈
u0

∫
u0 dt

〉
∂2c
∂x2 −

〈
v0

∫
u0 dt + u0

∫
v0 dt

〉
∂2c
∂x∂y

−
〈
v0

∫
v0 dt

〉
∂2c
∂y2 . (4.5)

With the time averages of any two harmonic functions A and B satisfying 〈A(∫ B dt)〉 =
−〈(∫ A dt)B〉 and 〈A(∫ A dt)〉 = 〈B(∫ B dt)〉 = 0, it follows that the terms in the second
line of the above equation are identically zero, whereas the remaining two terms on the
right-hand side can be cast in the compact form shown in (4.4).

As seen in (4.4), convective transport in the long time scale relies on the time-averaged
Lagrangian velocity, given by the sum of the time-averaged Eulerian velocity 〈v1〉 =
vSS + vB and the Stokes drift vSD = (uSD, vSD) = 〈∫ v0 dt · ∇v0〉 (see, e.g., Larrieu et al.
2009 for a discussion on Lagrangian transport in a similar wall-bounded flow). The latter
contribution can be evaluated in terms of the complex functions U and V with use of the
expressions

uSD = 1
2

Im
[
∂

∂x
(UŪ)+ ∂

∂y
(VŪ)

]
and vSD = 1

2
Im
[
∂

∂x
(UV̄)+ ∂

∂y
(VV̄)

]
,

(4.6a,b)
which follow from the identity 〈Re(eitf1)Re(ieitf2)〉 = Im( f1 f̄2)/2. The function uSD,
which is related to the function F defined earlier in (3.18), is identically zero at
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x = 0, 1/2, 1, 3/2, . . . , so that the associated constant volumetric flow rate is simply

QSD =
∫ H

0
uSD dy = 0. (4.7)

As our asymptotic description is limited to the leading-order term in the asymptotic
expansion (2.17) for the solute concentration, to summarise the results of the asymptotic
analysis one may replace c0 with c when rewriting the final transport (4.4) in the form

∂c
∂τ

+ (uSD + uSS + uB)
∂c
∂x

+ (vSD + vSS + vB)
∂c
∂y

= 1
α2σ

∂2c
∂y2 . (4.8)

The description of the solute dispersion following its deposition in the channel reduces
to the integration of the above equation with initial condition c = ci(x, y) at τ = 0 and
boundary conditions ∂c/∂y = 0 at y = 0,H. In the integration, the time-independent
Stokes-drift and steady-streaming velocities are computed with use of (4.6a,b) and
of (3.19), (3.20) and (3.25), respectively, whereas the time-varying buoyancy-induced
velocity is evaluated in terms of the solute concentration through the integral expressions
(3.26), (3.27) and (3.30) with c0 = c. Observation of (4.8) reveals that gravitational forces
modify the character of the solution in a non-trivial way. Owing to the dependence
of uB and vB on the concentration distribution c, the time-averaged transport equation
that governs the dispersion of the solute, which for Ri = 0 reduces to a linear
partial-differential equation with time-independent coefficients, turns into a complicated
nonlinear integro-differential equation in the presence of buoyancy.

It is worth noting that, whereas the volumetric flow rates QSS = ∫ H
0 uSS dy and QSD =∫ H

0 uSD dy associated with steady streaming and Stokes drift are identically zero, as
discussed previously, that induced by buoyancy is in general non-zero, its value QB =∫ H

0 uB dy evolving in time according to (3.29). Note that writing (4.8) in conservative
form and integrating across the channel with use of ∂c/∂y = 0 and vSD = vSS = vB = 0
at y = 0,H yields the relation

∂C
∂τ

+ ∂φ

∂x
= 0 (4.9)

between the amount of solute per unit channel length C(x, τ ) = ∫ H
0 c dy and the solute flux

φ(x, τ ) = ∫ H
0 (uSD + uSS + uB)c dy, whereas a second integral between x = 0 and x = 1

gives

∂

∂τ

(∫ 1

0
C dx

)
+ φ(1, τ )− φ(0, τ ) = 0, (4.10)

which naturally reduces to the expected conservation law∫ 1

0

(∫ H

0
c dy

)
dx =

∫ 1

0

(∫ H

0
ci dy

)
dx, (4.11)

when the solute flux at the two ends is zero.
An important aspect of the reduced description developed above is that the nonlinear

integro-differential equation (4.8) targets directly the evolution of the flow in the long time
scale τ ∼ 1, relevant for solute dispersion over distances of order λ (i.e. dimensionless
distances x of order unity), thereby circumventing the need to describe the small
concentration fluctuations occurring in the short time scale t = ε−2τ . As a consequence,

949 A48-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

79
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.799


J. Alaminos-Quesada and others

the model predictions involve computational times that can be expected to be a factor ε2

smaller than those required in DNS, because to describe solute dispersion the DNS must
track the flow over a large number of cycles ∼ε−2, larger for smaller ε.

5. Selected numerical results

The reduced flow description is to be utilised to investigate the influence of buoyancy
on solute dispersion. To facilitate the computation, the conservation (4.8) was written in
terms of the normalised coordinate η = y/H(x), so that the integration domain becomes
0 < x < n and 0 < η < 1. The numerical scheme utilises a fourth-order compact centred
finite-difference approximation for the spatial discretisations of the viscous terms and a
second-order upwind scheme for the nonlinear terms. A third-order TVD Runge–Kutta
scheme is used for the time marching, whereas the integral expressions (3.26), (3.27)
and (3.30) are evaluated with a simple trapezoidal rule.

The accuracy of the model predictions, derived in the asymptotic limit ε � 1 for a
slender channel with ho/λ� 1, is tested through comparisons with two-dimensional,
unsteady simulations of the fluid motion and solute dispersion for small but finite values
of ho/λ and ε. The DNS, involving the complete (2.1)–(2.3) written in dimensionless
form, span thousands of oscillation cycles, as needed to generate significant dispersion
of the solute. The numerical integration was performed with the finite-volume solver
Ansys Fluent (release 20.2), assuring second-order accuracy in time and in space.
Computations employing upwind and central-differencing schemes for the convective
terms were found to yield virtually indistinguishable results, with the former discretisation
used in generating the figures shown in the following. A coupled algorithm was used for
the pressure–velocity coupling. In addition to the boundary conditions used in integrating
the slender flow (2.9)–(2.12), additional conditions of developed flow ∂u/∂x = ∂c/∂x = 0
at the upper and lower open boundaries are incorporated in integrating (2.1)–(2.3). The
computations presented in the following correspond to a canal of total length n = 3 and
aspect ratio ho/λ = 1/20 with the imposed pressure difference yielding a dimensionless
stroke length ε = 0.02. The time-periodic DNS results were averaged in time to determine
the mean Eulerian velocity 〈v〉 = (1/2π)

∫ t+2π

t v dt, of order ε, to be compared with the
steady-streaming velocity vSS, as explained later. In addition, tracer particles are used to
compute the Lagrangian velocity vL by following their displacement over a cycle, i.e. if the
particle located at (x, y) at time t moves to occupy the new location (x + δx, y + δy) at time
t + 2π, then the Lagrangian velocity at (x, y) and time t is defined as vL = (δx, δy)/(2π).

5.1. Buoyancy-free flow
As mentioned previously, in the absence of buoyancy, the flow induced by the imposed
pressure gradient is periodic in time and space. The steady Lagrangian motion for ε � 1
is given in this case by the sum of the steady-streaming velocity vSS and the Stokes-drift
velocity vSD. These two contributions as well as their sum are shown in figure 2 for
β = 0.4 and two different values of α. As the flow in each cell is identical, it suffices
to show the solution for 0 ≤ x ≤ 1, symmetric with respect to the centre line x = 0.5. For
each value of α, streamlines are plotted using a fixed increment δψ of the streamfunction
ψ , defined in the usual way (e.g. ∂ψ/∂y = uSS and ∂ψ/∂x = −vSS for steady streaming)
with ψ = 0 along the wall, so that the interline spacing provides a measure of the
local velocity. To further quantify the motion, colour contours are used to represent the
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DNS; 〈v〉/ε DNS; vL/εvSS vSS + vSDvSD(a)

(b)
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Figure 2. Streamlines and colour contours of vorticity corresponding to the steady-streaming velocity vSS,
Stokes-drift velocity vSD and steady mean Lagrangian velocity vSS + vSD in a canal with β = 0.4 for
(a) α = 4 and (b) α = 16. Results of DNS of a non-buoyant flow (i.e. Ri = 0) with ho/λ = 1/20 and
ε = 0.02 are also shown, including the rescaled time-averaged Eulerian velocity field 〈v〉/ε (first column)
and the rescaled Lagrangian velocity vL/ε (fifth column), the latter determined by following tracer particles,
as explained in the text. To facilitate the comparisons, fixed constant streamline spacings δψ = 0.003 and
δψ = 0.03 are used for the upper and lower plots, respectively.
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associated vorticity Ω = (ho/λ)
2∂v/∂x − ∂u/∂y, which reduces to Ω = −∂u/∂y in the

slender flow approximation.
The spatially periodic, time-independent, steady-streaming velocity computed

with (3.19) and (3.20) supplemented with (3.25) is shown in the second column of figure 2.
The results are qualitatively similar to those presented in Guibert et al. (2010). For α = 4,
the flow structure of each half cell exhibits two counter-rotating vortices, whereas for
α = 16 the flow develops an additional, much weaker vortex, located near the section
with largest width. As expected, the vorticity, having peak values of order unity for α = 4,
increases with increasing flow frequency as a result of augmented wall production to reach
peak values exceeding Ω = 40 for α = 16.

The steady-streaming results are compared with time-averaged velocity fields obtained
in DNS with ε = 0.02. In the comparison, the time-averaged DNS velocity is expressed
in the rescaled form 〈v〉/ε ∼ 1, consistent with the scaling employed in defining vSS. The
two functions vSS and 〈v〉/ε are seen to be almost identical, thereby giving additional
confidence in the mathematical development. For instance, the peak values of the
stream function and vorticity corresponding to the time-averaged DNS velocity 〈v〉/ε are
ψPEAK = ±(0.0115, 0.1680) and ΩPEAK = ±(1.4465, 40.786) for α = (4, 16), whereas
the corresponding values for the steady-streaming motion are ψPEAK = ±(0.0115, 0.1699)
and ΩPEAK = ±(1.4474, 40.787). The small relative differences remain below about 1 %,
as is consistent with the order of the asymptotic development.

The third column in figure 2 displays the Stokes-drift velocity field evaluated
with (4.6a,b). As it is clear from a quantitative comparison with the corresponding
steady-streaming results, both bulk-flow velocities have comparable magnitude for
α = 4, whereas for α = 16 the Stokes drift provides a much smaller relative contribution
to the Lagrangian drift. The dominant role of steady streaming in flows at high
Womersley numbers is found also away from the wall in oscillating flow over circular
cylinders (Holtsmark et al. 1954; Raney, Corelli & Westervelt 1954), for example.
The mean Lagrangian velocity vSS + vSD corresponding to the asymptotic limit ε � 1
compares favourably with the velocity vL/ε obtained numerically by following tracer
particles in the DNS computation for ε = 0.02, shown in the last column of figure 2,
although the relative errors are somewhat larger than those of the Eulerian velocity. For
instance, the peak values of the stream function and vorticity corresponding to vL/ε
areψPEAK = ±(0.0235, 0.1674) andΩPEAK = ±(2.0454, 45.9497) for α = (4, 16), while
the corresponding values for vSS + vSD are ψPEAK = ±(0.0235, 0.1491) and ΩPEAK =
±(1.9906, 40.787).

5.2. Buoyancy-free solute dispersion
The reduced transport (4.8) resulting from the two-time-scale asymptotic analysis indicates
that the solute relies on the Lagrangian drift for longitudinal dispersion. As a consequence,
the existence of the closed recirculating vortices displayed in figure 2 implies that in
oscillatory buoyancy-free channel flow a solute released in a given cell would be unable
to reach their neighbouring cells, thereby precluding its progression along the canal. To
illustrate this important feature of the flow, we show in figure 3 the temporal evolution of a
bolus of solute with reduced Schmidt number σ = 1 released at the initial instant of time
in the central cell of a three-cell canal. The initial concentration is given by the truncated
Gaussian distribution

ci = min

{
1,

3
2

exp

[
−16

(
x − x0

δ

)2
]}

, (5.1)
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Figure 3. Snapshots of solute concentration for Ri = 0, β = 0.2, α = 4 and σ = 1 as obtained at five different
instants of time from the reduced model and from DNS for ho/λ = 1/20 and ε = 0.02. In addition to colour
contours of local concentration, the figure shows distributions of solute per unit channel length

∫ H
0 c dy for

the model (solid curve) and for the DNS (dot-dashed curves), with the initial distribution
∫ H

0 ci dy shown as a
dotted curve. For reference, the figure shows streamlines with constant spacing δψ = 0.003 for the Lagrangian
mean drift, which is characterised using the asymptotic prediction vSS + vSD for the model results and the
value of vL/ε determined numerically for the DNS results.

which represents a band of solute with characteristic width δ centred at xo having a
saturated core flanked by thin layers across which the concentration decays to zero. Results
obtained by integration of (4.8) for x0 = 1.75 and δ = 0.2 are compared in figure 3 at
different instants of time in the interval 0 ≤ τ ≤ 8 with DNS computations. Note that,
with τ = ε2t, for the value ε = 0.02 used in the DNS, this interval of time corresponds to
0 ≤ t ≤ 20 000 (i.e. about 20 000/2π � 3200 oscillatory cycles).

As seen in figure 3 the model accurately reproduces the DNS results. To facilitate the
quantitative comparisons, in addition to colour contours showing the solute concentration,
the figure includes side plots for the amount of solute per unit channel length C = ∫ H

0 c dy
at different instants of time, with the initial distribution Ci = H(x)ci(x) included for
reference as a dotted curve. The model predictions lie very close to the DNS results, in
that the normalised value of the integrated departure (

∫ n
0 |CDN − CMODEL| dx)/(

∫ n
0 Ci dx),

which provides a metric for the accuracy of the model, remains below 0.003 over the entire
range of times considered in the figure.

For the buoyancy-free conditions considered in figure 3, the steady Lagrangian motion is
seen to stir the solute about the deposition location, uniformising its concentration within
the recirculating cell. The effect of longitudinal diffusion, present in the DNS results,
is found to be rather limited, in that, even at the latest instant of time considered, the
presence of the solute in the adjacent cells is negligibly small. This tendency of the solute
to remain trapped inside Lagrangian vortices has potential implications concerning the
drug-dispersion rate in ITDD procedures. Although the Lagrangian flow in the spinal canal
does not exhibit the spatial periodicity of the canonical configuration investigated here,
closed recirculating vortices, associated with the changes in the eccentricity of the spinal
cord along the canal, have been found to characterise the CSF bulk motion (Coenen et al.

949 A48-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

79
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.799


J. Alaminos-Quesada and others

1.0

0.8

0 2.0 4.0 6.0 8.0

1.2

1.4

1.6

1.8

2.0

Initial condition DNS Model

τ

1.0 1.0 1.0 1.00.5 0.5 0.5 0.5

y ∫0
H cdy DNS Model

x

0

1.00.50

1.00.501.00.50 1.0 1.00.5 0.50 0 1.00.50 1.00.50 1.00.50 1.00.501.00.501.00.500 0 0

Figure 4. Snapshots of solute concentration for Ri = 1, β = 0.2, α = 4 and σ = 1 as obtained at five different
instants of time from the reduced model and from DNS for ho/λ = 1/20 and ε = 0.02. In addition to colour
contours of local concentration, the figure shows distributions of solute per unit channel length

∫ H
0 c dy for

the model (solid curve) and for the DNS (dot-dashed curves), with the initial distribution
∫ H

0 ci dy shown as
a dotted curve. The plots include streamlines with constant spacing δψ = 0.003 for the varying Lagrangian
mean drift, which is evaluated with use of vSS + vSD + vB (model results) and from the displacement of the
tracer particles (DNS results).

2019). Typically, there are three main vortices, extending along the cervical, thoracic and
lumbar regions. As ITDD injection occurs in the lumbar region, the buoyancy-free results
in figure 3 seem to indicate that, when the density of the drug matches exactly the CSF
density, the drug is bound to linger in the lumbar vortex near the injection site without
reaching the thoracic region. This could be advantageous in applications involving pain
medication, which is meant to be delivered to the spinal cord, but not in applications
involving anticancer drugs targeting brain tumors, for example. As shown in the following,
buoyancy-induced motion has the potential to drastically change the associated transport
rate, in accordance with clinical observations (Mitchell et al. 1988; Povey et al. 1989;
Richardson et al. 1996; Veering et al. 2001).

5.3. Slowly varying buoyancy-induced motion
As reasoned previously, buoyancy forces, acting on solutes with density ρs /= ρ, alter the
steady Lagrangian drift by adding an additional component that varies slowly in the long
time scale τ following the solute dispersion, so that the flow and the solute transport are
intimately coupled, as described by (4.8) supplemented with (3.26), (3.27) and (3.30).
The corresponding behaviour is characterised in figure 4 for a light solute with Ri = 1
spreading upwards. Note that, because of the problem symmetry, results corresponding
to a heavy solute with Ri = −1 can be generated by simply reversing the direction of the
gravity vector, i.e. by rotating the figure 180◦.

As in the buoyancy-free flow depicted in figure 3, the solution in figure 4
includes Lagrangian streamlines, colour contours of solute concentration, and streamwise
distributions of integrated solute concentration C = ∫ H

0 c dy along the canal. Buoyancy has
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Figure 5. Influence of (a) the contraction ratio β, (b) reduced Schmidt number σ , (c) Richardson number Ri
and (d) Womersley number α on the temporal evolution of the buoyancy-induced flow rate QB. The values of
the parameters in each case are: (a) α = 4, σ = Ri = 1; (b) α = 4, Ri = 1 and β = 0.2; (c) α = 4, σ = 1 and
β = 0.2; (d) σ = Ri = 1 and β = 0.2.

a dramatic effect on the dispersion of the solute, as is apparent by comparing the results
in both figures. Gravitational forces acting on the light solute induce a longitudinal
pressure gradient that modifies drastically the resulting Lagrangian drift, as can be seen
by comparing the streamlines in figure 3 with those in figure 4. The pattern of symmetric
recirculating cells with unconnected streamlines existing for Ri = 0 is replaced for Ri = 1
by a more complicated streamline pattern featuring a net upward flow rate QB(τ ) (see the
solid curves in figure 5, to be discussed later). As can be seen, although the flow rate and
the associated streamline pattern vary slowly in time, the observed changes are not very
pronounced. Also of interest is that the quantitative agreement between the streamlines
predicted by the model and the DNS results is again remarkable, thereby giving additional
confidence in our development.

The changes in the Lagrangian motion have a dramatic reflection in the solute
dispersion. As shown in figure 4, the solute is transported upwards following the
Lagrangian streamlines connecting the cells, enabling its upward progression. The
bolus of solute is distorted by the recirculating flow as it travels upwards, driven by
the buoyancy-induced draft. The variation with time of the concentration distribution
predicted with the model is in excellent agreement with the DNS results. The model is
shown to predict not only the mean location of the bolus but also its shape and elongation.
The relative departures, measured by (

∫ n
0 |CDNS − CMODEL| dx)/(

∫ n
0 Ci dx), remain below

0.009 over the entire range of times shown in the figure. In assessing the potential
benefits of the time-averaged formulation, it is important to emphasise that, although the
integration of the integro-differential equation (4.8) over times τ ∼ 1 can be completed
in a few hours using a laptop computer, generating the DNS results shown in figure 4,
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Figure 6. Influence of (a) the contraction ratio β, (b) reduced Schmidt number σ , (c) Richardson number Ri
and (d) Womersley number α on the solute-concentration distribution and associated Lagrangian streamlines.
The snapshots are taken at τ = 6 for (a–c) and at τ = 2 for (d). The values of the parameters in each case are:
(a) α = 4, σ = Ri = 1; (b) α = 4, Ri = 1 and β = 0.2; (c) α = 4, σ = 1 and β = 0.2; (d) σ = Ri = 1 and
β = 0.2. The streamline spacing for the mean Lagrangian velocity is δψ = 0.003 for (a–c) and δψ = 0.005
for (d).

spanning over 3000 cardiac cycles, required 10 days in a computational cluster using a
total of 72 cores.

5.4. Parametric dependence of the results
The case shown in figure 4, corresponding to β = 0.2, α = 4, σ = Ri = 1 is used
in figures 5 and 6 as a basis to investigate the influence of the different parameters
on the dispersion of a buoyant solute. To that end, results are generated with use
of (4.8) by modifying one of the four controlling parameters at a time, while keeping
the other three fixed at the values selected earlier. Figure 5 shows the variation with
time of the buoyancy-induced flow rate QB, whereas figure 6 shows instantaneous
solute-concentration distribution and associated Lagrangian streamlines at a fixed time,
namely, τ = (6, 6, 6, 2) for figures 6(a)–6(d), with corresponding results for the base case
at these times shown in two of the subpanels of figure 4.
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We begin by discussing the effect of the channel geometry. As shown in figure 6(a),
increasing the undulation of the channel from β = 0.1 to β = 0.4 tends to increase
the magnitude of the buoyancy-induced longitudinal velocity in the region of minimum
cross-sectional area, where streamlines are closely spaced together for larger β, but these
changes result in only moderately small variations of the flow rate QB, as shown in
figure 5(a). As a result, the bolus of solute becomes more elongated as β increases,
but advances upward at approximately the same rate, so that the maximum concentration
occupies approximately the same location at τ = 6, as shown in figure 6(a).

The effect of the Schmidt number σ , entering in the formulation only through the factor
affecting the transverse diffusion rate on the right-hand side of (4.8), is investigated in
figures 5(b) and 6(b). The changes observed in streamline pattern and flow rate when
changing the Schmidt number from σ = 0.25 to σ = 8 are not very significant, so that
the differences in solute evolution in figure 6(b) are attributable to the direct effect of
transverse diffusion (or lack thereof). The snapshot corresponding to σ = 8 displays the
behaviour expected at large Schmidt numbers, for which fluid particles maintain a nearly
constant concentration in their slow Lagrangian evolution, as described by the limiting
form of (4.8) for σ � 1. In the opposite limit σ � 1, solute diffusion leads to a rapid
uniformisation of the concentration, as can be seen by integrating ∂2c/∂y2 = 0 (i.e. the
reduced form of (4.8) when σ � 1) subject to the non-permeability condition ∂c/∂y = 0
at y = 0,H to give c = c(x, τ ). As a result, the bolus remains relatively compact as it
moves along the channel with a velocity determined by the flow rate. The reduced transport
equation governing the transport of solutes with σ � 1 can be derived from (4.9) by
noting that in this limit the integrated solute concentration C = ∫ H

0 c dy becomes C =
H(x)c(x, τ ) while the solute flux φ(x, τ ) = ∫ H

0 (uSD + uSS + uB)c dy reduces to φ = QBc.
Substituting these simplified expressions into (4.9) and using (3.29) to evaluate QB finally
yields

∂c
∂τ

+
α2Ri

∫ n

0
c dx

12nH
∫ 1

0
H−3 dx

∂c
∂x

= 0 (5.2)

as the limiting form of (4.8) for σ � 1.
As is to be expected from the velocity expressions derived in § 3.4, the Richardson

number and the Womersley number have a pronounced effect on the mean Lagrangian
motion. As shown in figures 5(c) and 5(d), the flow rate exhibits dependences on Ri
and α that are approximately linear and approximately quadratic, respectively, consistent
with (3.29). These dependences have a reflection on the evolution of the solute bolus
shown in figures 6(c) and 6(d). With limited updraft for Ri = 0.25, the bolus is seen to
spread about the injection location, without significant upward progression at the instant
of time τ = 6 considered in the figure. An increase in Ri promotes the displacement of
the bolus, but its longitudinal extent remains approximately equal in all three cases. By
way of contrast, an increase in α increases the upward displacement and also enhances
bolus distortion. The reason for the latter is that larger values of α hinder transverse
diffusion, as can be inferred from (4.8), with the result that fluid particles travel following
the Lagrangian recirculating paths with a nearly constant concentration, rapidly deforming
the compact concentration distribution of the initial bolus.
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6. Conclusions

Solute dispersion in a wavy-walled vertical channel subject to an oscillating pressure
gradient has been used as a canonical model to investigate the effect of buoyancy on
the transport of ITDD drugs, characterised by large values of the Schmidt number and
order-unity values of the Richardson number. The mean Lagrangian velocity determined
in the asymptotic limit of small stroke lengths, responsible for the convective transport
of the solute, displays a buoyancy component whose local value depends on the solute
concentration through integral expressions, resulting in a nonlinear integro-differential
transport equation. The predictive capabilities of the reduced description are tested
through comparisons with DNS computations involving thousands of oscillating cycles.
The validation exercise reveals that the model provides accurate predictions of solute
dispersion at a fraction of the computational cost involved in the DNS. In contrast to the
motion observed in the buoyancy-free case investigated in figures 2 and 3, characterised
by the existence of a series of closed Lagrangian vortices distributed periodically along
the channel, the buoyancy-modulated mean Lagrangian flow shown in figure 4 includes a
streamwise draft connecting neighbouring cells that promotes the longitudinal dispersion
of the solute. The buoyancy-enhanced transport rate revealed in our channel computations
is consistent with previous clinical observations pertaining to dispersion of light drugs for
patients in a sitting injection position (Richardson et al. 1996).

The simple canonical flow considered here has served to unveil some of the key aspects
of the solute-dispersion problem, including the enhanced transport associated with the
buoyancy-modulated mean Lagrangian velocity. Future work should consider application
of the two-time-scale asymptotic analysis delineated previously to the description of ITDD
processes, with account taken of the three-dimensional morphology of the spinal canal,
possibly including the effect of microanatomical features such as arachnoid trabeculae,
which are thin strands of connective tissue that form a web-like structure stretching across
the spinal canal. The presence of these fine anatomical structures, which has been shown
to have an important effect on pressure loss (Tangen et al. 2015), can be accounted for by
treating the spinal subarachnoid space as a Brinkman porous medium, as done in previous
investigations (Gupta et al. 2009; Kurtcuoglu, Jain & Martin 2019; Salerno, Cardillo &
Camporeale 2020; Sincomb et al. 2022).

The future developments envisioned here can potentially provide a reduced transport
equation, possibly similar to (4.8), to be used in combination with magnetic resonance
imaging characterisations of the canal anatomy (Coenen et al. 2019) to describe the
transport of the drug in the relevant dispersion time scale. The ultimate goal of such
efforts is the development of computationally effective subject-specific predictive tools
for drug delivery to a target site from injection by a lumbar puncture with account taken of
the specific anatomy and physiological conditions of the individual patient as well as for
the molecular characteristics and injection rate of the drug, as needed in guiding clinical
treatments.
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