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In dairy cattle, resistance, tolerance and resilience refer to the adaptation ability to a broad range of environmental conditions,
implying stable performances (e.g. production level, fertility status) independent from disease or infection pressure. All three
mechanisms resistance, tolerance and resilience contribute to overall robustness, implying the evaluation of phenotyping and
breeding strategies for improved robustness in dairy cattle populations. Classically, breeding approaches on improved robustness
rely on simple production traits, in combination with detailed environmental descriptors and enhanced statistical modelling to infer
possible genotype by environment interactions. In this regard, innovative environmental descriptors were heat stress indicators,
and statistical modelling focussed on random regression or reaction norm methodology. A robust animal has high breeding values
over a broad spectra of environmental levels. During the last years, direct health traits were included into selection indices,
implying advances in genetic evaluations for traits being linked to resistance or tolerance against infectious and non-infectious
diseases. Up to now, genetic evaluation for health traits is primarily based on subjectively measured producer-recorded data, with
disease trait heritabilities in a low-to-moderate range. Thus, it is imperative to identify objectively measurable phenotypes as
suitable biomarkers. New technologies (e.g. mid-infrared spectrometry) offer possibilities to determine potential biomarkers via
laboratory analyses. Novel biomarkers include measurable physiological traits (e.g. serum metabolites, hormone levels) as
indicators for a current infection, or the host’s reaction to environmental stressors. The rumen microbiome composition is proposed
as a biomarker to detect interactions between host genotype and environmental effects. The understanding of host genetic
variation in disease resistance and individual expression of robustness encourages analyses on the underlying immune response
(IR) system. Recent advances have been made in order to infer the genetic background of IR traits and cows immunological
competence in relation to functional and production traits. Thus, a last aspect of this review addresses the genetic background and
current state of genetic control for resistance to economically relevant infectious and non-infectious dairy cattle diseases by
considering immune-related factors.
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Implications

Resistance, tolerance and resilience are components of
overall robustness, reflecting the host’s adaptation to envir-
onmental stressors and its interaction with disease mediated
factors. Increasing environmental challenges, for example,
due to global climate change, lead to a higher infection
pressure by various pathogens. Metabolic stress, especially in
high yielding cows, is a major reason for increased incidence
rates for non-infectious diseases. Environmental alterations
can impair the bovine immune system, having a direct or

indirect effect on disease susceptibility. There is an urgent
need to identify suitable phenotypes and novel markers
related to immunological mechanisms, to improve overall
immune response (IR) via optimized breeding strategies.

Introduction

Breeding on robustness via selection for enhanced disease
resistance is of increasing importance in the dairy livestock
industry worldwide (Calus et al., 2013). Classical breeding
goals focussed on improving milk or protein yield, but
simultaneously neglected functional traits or health† E-mail: sven.koenig@agrar.uni-giessen.de
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(Egger-Danner et al., 2015). As an antagonistic effect, long-
term selection on increased productivity was associated with
physiological and immunological imbalances, especially in
the early lactation period. Immunological imbalances might
stimulate the susceptibility to environmental influences, thus
causing a decline in robustness (Rauw and Gomez-Raya,
2015).
Negative side effects due to intensive selection on milk

yield, the increasing value of animal welfare, ethical aspects
and profit maximization via reduced medical treatments (e.g.
antibiotics, anthelmintics) are the main arguments support-
ing breeding strategies on improved disease resistance.
Moreover, environmental challenges, especially the hetero-
geneity of climatic impact, are major driven forces towards
breeding of robust dairy cows. Breeding on robustness
implies the identification of animals with a quite high and
constant production level for a wide range of climatic con-
ditions and production systems, accompanied with a high
level of animal welfare (Rauw and Gomez-Raja, 2015). The
inclusion of functional traits into overall dairy cattle breeding
goals was a first step towards breeding on robustness
(Martin et al., 2018), implying rapid advances in genetic
evaluations for traits being linked to disease resistance or
tolerance.
The first section of this review addresses classical breeding

approaches in dairy cattle in order to improve robustness via
modelling reactions to environmental alterations. Relevant
genotype by environment (G × E) interactions in dairy cattle
(e.g. environmental sensitivity, reaction norms, phenotypic
plasticity) will be discussed, considering new characteristics
of disease associated factors (e.g. herd prevalence, pathogen
load) as environmental descriptors. The inclusion of binary
subjectively recorded producer health traits into overall
breeding goals is a next step to improve disease resistance.
Third, suitable novel biomarkers for resistance, tolerance and
resilience-associated traits from laboratory analyses (e.g.
enzymes, milk fatty acids (MFA)), will be reviewed (e.g. Pryce
et al., 2016; Pieper et al., 2016). Advances in laboratory
analysis also allow deeper insights into immune genetics,
aiming on the identification of suitable and practicable IR
traits (e.g. Thompson-Crispi et al., 2012). In this context, we
will infer associations between IR traits and relevant pro-
duction and health traits, in order to bridging the gap
between immunity and selection for robustness.

Breeding approaches to improve robustness in dairy
cows

On a genetic basis, robustness in dairy cows refers to the
adaptation ability to a wide range of environmental condi-
tions, that is, implying selection of genotypes with quite
stable genetic values in different environments. Hence, those
animals are robust against the impact of possible G × E
interactions (Rauw and Gomez-Raja, 2015). The concept of
G × E interactions applied to production traits in terms of
reduced environmental sensitivity contributed to robustness

in dairy cows, without extending recording schemes for novel
functional traits. Environmental sensitivity is associated with
disease susceptibility, and changes of IR mechanisms. In
order to improve disease resistance via direct breeding stra-
tegies, health traits on the basis of producer-recorded data
were included gradually into overall dairy cattle breeding
goals over a period of ~ 20 years.

The classical approach: detection and use of genotype by
environment interactions for conventional traits
Gause et al. (1947) introduced the term environmental sen-
sitivity or phenotypic plasticity, which describes the rate of
phenotypic alterations in response to changes in the envir-
onment. As outlined by de Jong and Bijma (2002), robust
genotypes express quite constant phenotypes across envir-
onments. Oppositely, genotypes with high variable pheno-
types are more sensitive to environmental impact. Plasticity
in protein turnover, antibody production, immune cell
response or in stress-response neuroendocrine axis function
is related to robustness, due to the strong effects on a wide
range of physiological processes (e.g. reproduction, meta-
bolism, IR, combating infections) (Mormède et al., 2011;
Magombedze et al., 2013).
Phenotypic plasticity also explains G × E interactions.

Differences in trait reactions between genotypes in different
environments indicate possible G × E interactions. Metho-
dological concepts for the detection of G × E interactions
based on reactions of ‘simple’ production or fertility traits in
dependency of an environmental descriptor (e.g. tempera-
ture, disease exposure, feeding regime). As a simple
approach, multiple trait animal or sire models were applied,
implying the definition of discrete environmental classes (e.g.
Nauta et al., 2006; Haile-Mariam et al., 2008). In multiple
trait models, the trait of interest was defined as a separate
trait in different environments. The proof for possible G × E
interactions bases on genetic correlations lower than 0.80
between same traits from different environments (Robertson,
1959).
G × E interactions for production and fertility traits were

detected when stratifying data according to geographic dif-
ferences within countries (e.g. König et al., 2005; Haile-
Mariam et al., 2008), but also across country borders (e.g.
Montaldo et al., 2017). König et al. (2005) only identified
indications for G × E interactions when considering several
environmental descriptors simultaneously, for example, herd
location and herd size. Such findings were motivation for a
‘borderless clustering’ approach in international genetic
evaluations (Weigel and Rekaya, 2000). Furthermore, genetic
correlations were generally smaller for low heritability func-
tional traits compared to production traits. For example,
Boettcher et al. (2003) created the discrete production
environments ‘grazing’ and ‘conventional’. The genetic cor-
relation for calving interval was 0.64, but close to 1 for milk
yield. One explanation for obvious G × E of fertility traits
addresses pronounced environmental sensitivity in physio-
logical hormone levels and immune functions, compared to
the stable hormonal impact on milk production traits
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(Chagas et al., 2007). Nauta et al. (2006) reported genetic
correlations slightly below or larger than 0.80 between
organic and conventional protein yield. On the other hand,
for different production systems in Australia, the genetic
correlation for low heritability pregnancy rates was only 0.37
(Haile-Mariam et al., 2008). For low genetic correlations
across environments, an appropriate breeding objective for a
given environment should contain the trait-associated
environment with appropriate index weights. This is
already current practice in many other species’ breeding
where selection focusses on field traits, but many data,
however, coming from station data (Cardoso and Tempel-
mann, 2012).
An alternative way to detect and to use G × E is the

application of random regression or reaction norm models to
longitudinal data, which enables estimations of genetic (co)
variance components and estimated breeding values (EBV)
for a broad grid of continuous environmental variables (e.g.
Calus and Veerkamp, 2003). Utilized continuous environ-
mental descriptors reflected the herd management (e.g.
average herd milk production, body condition score (BCS),
persistency), or climate characteristics (e.g. temperature–
humidity index (THI)) (Calus and Veerkamp, 2003; Fikse
et al., 2003; Haile-Mariam et al., 2008). Body condition score
as a continuous herd descriptor reflects the dairy cow energy
balance, being strongly related to disease resistance and
tolerance (Calus and Veerkamp, 2003; Fikse et al., 2003). For
example, a cow with constantly low BCS scores has no
defense mechanisms against invading pathogens. In this
regard, Calus and Veerkamp (2003) estimated sire breeding
values for milk production traits of Dutch dairy cows in
dependency of continuous herd BCS. Moreover, lactation
persistency was defined as an environmental descriptor
reflecting herd management (Calus and Veerkmap, 2003;
Fikse et al., 2003), and refers to the rate of decline in the
lactation curve after the cows lactation peak. Positive genetic
correlations in the range from 0.15 to 0.84 between persis-
tency and relative peak milk yield were estimated, suggest-
ing a higher relative peak milk yield in high persistency herds
(e.g. Fikse et al., 2003). Low persistency was strongly asso-
ciated with increased susceptibility to stress, explaining
improved host defense against infectious diseases in persis-
tent herds (Calus et al., 2013). Twomey et al. (2018a) iden-
tified re-rankings of sires for fertility traits across
environments differing in endoparasite load, that is, using
herd prevalences for the liver fluke Fasciola hepatica to
measure genetic variability in resilience. In this regard and
from a breeding perspective, resilience is defined as the
ability of an animal to maintain performance during any
environmental perturbation, including high pathogen loads
(Bishop, 2012; Colditz and Hine, 2016). No G × E interaction
was detected for milk production traits, reflecting that ferti-
lity is more influenced by F. hepatica infections compared to
production traits (Twomey et al., 2018a). This was also
shown in own studies for different Black and White dairy
cattle selection lines being infected with F. hepatica (May
et al., 2018).

Tolerance to heat stress is a major component of robust-
ness, reflecting the cow’s ability to maintain performance
during challenging climatic conditions. Possible G × E
interactions were evaluated across levels of THI (e.g. Brüge-
mann et al., 2013). As reviewed by Carabaño et al. (2017),
genetic correlations between productivity of Holstein cattle
kept in cold climatic conditions and productivity under heat
stress ranged from 0.40 to 0.98. However, for the functional
traits conception rate and somatic cell score (SCS), a sub-
stantial decline of genetic correlations was observed, espe-
cially when correlating measurements from THI in great
distance (Brügemann et al., 2013). On a genetic basis, var-
iations of additive-genetic (co)variance components by THI
might indicate that different genes are ‘switched on or off’
under certain environmental conditions. Reaction norm
models are suitable to analyse G × E, because of the mod-
elling of phenotypic variation as a function of an environ-
mental descriptor. In such perspective, environmental
sensitivity describes the first derivative (i.e. the slope) of the
defined reaction norm function. A steep slope indicates high
environmental sensitivity (e.g. Streit et al., 2012). In a ran-
dom regression approach, breeding values for the regression
coefficient depend on the value of the regression variables.
Therefore, breeding objectives, but alo index traits, could be
defined by simply fixing the desired target regression value.
Another advantage of this type of models is their capacity to
accommodate and to use all response data along the tra-
jectory of the regression variables.

The next step: inclusion of producer health data in breeding
objectives
Genetic evaluations for health traits are mostly based on
producer-recorded data. Most commonly, diagnosis keys or
recording guidelines depict hierarchical entry systems for the
overall disease categories claw disorders, mastitis, fertility
disorders and metabolic disorders, with possibilities for
single-disease trait specifications. In most studies, herit-
abilities for binary-defined producer-recorded disease traits
were quite low. Zwald et al. (2004) estimated heritabilities
for producer-recorded binary health data (presence or
absence of the respective disease) in the range from 0.07 and
0.18 for the economic relevant disorders mastitis, lameness,
ketosis and cystic ovaries. Heritabilities are in line with esti-
mates by Neuenschwander et al. (2012), reporting herit-
abilities from 0.02 to 0.21 for producer health data from
Canada. Low disease incidences and poor data quality,
because of subjective trait recording, makes genetic evalua-
tions for health traits to a challenge (Neuenschwander et al.,
2012). Advances for developing a routine genetic evaluation
for metabolic disease traits were made in Canada by com-
bining producer health data with disease indicator
measurements from the laboratory, for example,
β-hydroxybutyrate (BHB) (Pryce et al., 2016). Heritabilities for
objective laboratory measurements were larger compared to
subjective binary producer scores, suggesting additional
selection response when including BHB into overall breeding
indices.
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Recently, Martin et al. (2018) reviewed breeding strategies
to improve mastitis resistance. In Scandinavia, resistance to
mastitis (based on a veterinarian recording scheme for
unspecific clinical mastitis (CM)) was included into overall
breeding goals since the 1960s. In Canada, a national
genetic evaluation for producer-recorded CM was imple-
mented in 2014. Heritability estimates for producer-recorded
CMwere quite small, in the range from 0.01 and 0.10 (Carlén
et al., 2004; Zwald et al., 2004). Simple recording of CM
(presence/absence) does not cover intensities of infection
and udder pathogen burden. Thus, the estimation of genetic
parameters for major specific pathogens was proposed as a
pre-requisite for the development of udder health indices
with different economic weights for different pathogens.
However, also heritabilities for different major pathogens
causing CM were quite small, and the specification of
pathogens via bacteriological analyses is currently too
expensive for commercial breeding applications (Sorensen
et al., 2009).
Resistance to claw disorders considers the simple trait

lameness (presence/absence), or individual claw disorders
with high incidences (e.g. dermatitis digitalis (DD)). Again,
also for producer-recorded claw disorders, heritabilities were
small, in a narrow range from 0.03 to 0.08 (Zwald et al.,
2004; Neuenschwander et al., 2012). For claw disorders, the
application of detailed scoring systems improved phenotype
quality, being a better data basis to infer the genetic back-
ground of the respective disease. As elaborated by Schöpke
et al. (2015), heritabilities for DD increased when applying a
more precise scoring system, considering the variety of dis-
ease stages.

Potential of (novel) biomarkers to improve robustness
to environmental stressors and disease

Biomarkers are objectively measurable indicators to infer
biological processes, physiological conditions (e.g. reaction
to environmental stressors) or giving a prognostic or diag-
nostic information value in the face of infectious or non-
infectious diseases (for definition, see Biomarkers Definitions
Working Group, 2001). Potential biomarkers include
enzymes, serum metabolites, hormone levels or character-
istics of body fluids. New technologies such as mid-infrared
spectrometry (MIR) in milk can be used to monitor cow
health. Mid-infrared spectrometry is a ‘by-product’ from
routine milk analysis and provides suitable biomarkers (e.g.
MFA) for monitoring diseases (e.g. mastitis, ketosis) (Bastin
et al., 2013; Pryce et al., 2016). Novel biomarkers as actually
used in quantitative-genetic studies are listed in Table 1, all
offering potential for the identification of genetically robust
dairy cattle.

Biomarkers for udder health
Regarding resistance to udder infections, test-day SCS and
lactation mean SCS are reliable biomarkers, with herit-
abilities in a range from 0.05 to 0.19 (Martin et al., 2018).

Large positive genetic correlations between SCS and CM
were motivation for the inclusion of SCS as an indicator trait
into selection indexes, allowing the consideration of mastitis
resistance into breeding goals (Martin et al., 2018). Further
alternative SCS trait definitions, for example, SCS only from
early lactation, or SD of SCS, explained a larger proportion of
breeding value variations for mastitis resistance, compared
to lactation SCS (Martin et al., 2018).
Minerals (e.g. Ca, K, Mg, Zn, Se, P) or mineral content

measured via MIR in bovine milk can be used as potential
biomarkers to improve mastitis resistance (Egger-Danner
et al., 2015). As shown in Table 1, heritabilities for minerals
in milk ranged from 0.20 for selenium to 0.62 for phos-
phorus. Moreover, milk glycoprotein lactoferrin (LTF) was
proposed as a reliable biomarker for mastitis. Lactoferrin as
an antibacterial and antifungal molecule plays a crucial role
in host defense mechanisms, and reacted better for some
type of mastitis pathogens compared to SCS (Farnaud and
Evans, 2003). Regarding studies from the past 20 years,
heritabilities for LTF measured via MIR ranged from 0.20 to
0.22 (Table 1). Lactic acid was suggested as a potential
biomarker for clinical mastitits in early lactation, but herit-
ability estimates were close to 0 in Danish Holstein cows
(Table 1).
During the past years, electrical conductivity (EC) in milk

was considered as a novel biomarker in selection indices for
improved udder health. Heritabilities for test-day EC records
ranged between 0.22 and 0.39 (Table 1). Large genetic cor-
relations (0.75) between test-day EC records and mastitis
indicate genetic improvements for mastitis resistance
through selection on reduced EC (Norberg et al., 2006). For
EC generated from automatic milking systems, larger herit-
ability estimates between 0.37 and 0.51 were reported
(Table 1). Generally, automatic milking systems are a new
technical opportunity to generate a longitudinal data struc-
ture for objectively recorded health indicator traits (Santos
et al., 2018).

Biomarkers for metabolic health disorders
Biomarkers to measure energy balances and metabolic dis-
eases include fat–protein ratio (FPR), ketone bodies (e.g.
BHB, acetone), non-esterified free fatty acids (NEFA) or
phospholipids, glucose and insulin growth factor 1 (IGF-1),
which can be measured in blood, urine and in milk. Currently,
the FPR generated from routine milk recording data, is a
selection criterion to improve metabolic stability (Koeck
et al., 2014). A FPR above 1.5 indicates abnormally high
lipolysis, resulting in energy deficiency and metabolic stress
in early lactation. Positive genetic correlations from 0.30 to
0.63 between FPR and metabolic diseases (e.g. ketosis,
acidosis) were reported (Pryce et al., 2016), suggesting uti-
lization of FPR as a ‘low-cost indicator’ for the metabolic
disease status. However, FPR is highly affected by feeding
regime and BCS. Hence, from a genetic perspective, BHB
might be a better biomarker to predict ketosis. Ketosis is
associated with an increase of the metabolite BHB in blood
(gold standard for diagnosis) or in milk. Heritabilities for BHB
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Table 1 Heritability estimates in HF dairy cows for novel biomarkers (somatic cell count and fat-to-protein ratio not included) as indicators of
resistance-, tolerance- and resilience-associated traits in studies as from 2000 (ordered chronologically for each biomarker)1

Biomarkers No. of cows Heritability Comment References

Udder health
Mineral content 1860 0.20 to 0.62 L1 van Hulzen et al. (2009)

44 000 0.34 to 0.55 L1, MIR Soyeurt et al. (2012)
Lactoferrin 1773 0.20 All lactations, MIR Soyeurt et al. (2007a)

6256 0.22 All lactations, MIR Arnould et al. (2009)
Lactic acid 371 0.00 L1 to L3 Buitenhuis et al. (2013)
Electrical conductivity 3500 0.27 to 0.39 L1 Goodling et al. (2000)

0.21 to 0.23 L2
2102 0.28 L1 Norberg et al. (2004)

0.26 to 0.36 L1, RRM
421 0.51 All lactations, AMS Juozaitiené et al. (2015)
922 0.37 to 0.46 L1 to L5, AMS Santos et al. (2018)

Metabolic disease/rumen microbiome
β-hydroxybutyrate (BHB) 175 0.25 Heifers before calving Oikonomou et al. (2008)

0.08 to 0.40 L1, RRM
1615 0.17 All lactations, plasma BHB Van der Drift et al. (2012)
1565 0.16 All lactations, milk BHB

61 331 0.12 L1, 1st test day (5 to 40 DIM) Koeck et al. (2014)
3732 0.13 L1 Jamrozik et al. (2016)

35 575 0.08 > L1
7895 0.04 to 0.17 L1 to L3, RRM Lee et al. (2016)

14 397 0.06 to 0.15 L1, different lactation stages Lee et al. (2017)
826 0.25 to 0.37 All lactations, MIR Belay et al. (2017)

~18 000 0.09 to 0.14 L1 to 4 milk Ranaraja et al. (2018)
Acetone 10 375 0.01 All lactations Wood et al. (2004)

7895 0.29 L1 Lee et al. (2016)
7895 0.29 L2
7895 0.22 L3
1565 0.10 Milk acetone, all lactations Van der Drift et al. (2012)

14 397 0.06 to 0.15 L1, different lactation stages Lee et al. (2017)
~18 000 0.23 to 0.31 L1 to L4 Ranaraja et al. (2018)

Non-esterified free fatty acids 142 0.29 Heifers before calving Oikonomou et al. (2008)
6015 0.08 to 0.35 L1, RRM

Milk fatty acids 26 166 0.18 to 0.44 L1, MIR Bastin et al. (2011)
7700 0.05 to 0.38 All lactations, MIR Soyeurt et al. (2007b)

11 626 0.14 to 0.42 L1, RRM, MIR Soyeurt et al. (2008)
1918 0.09 to 0.54 L1 Stoop et al. (2008)
990 0.03 to 0.19 L1 to L7 Mele et al. (2009)

44 000 0.26 to 0.59 L1, MIR Soyeurt et al. (2012)
37 768 0.22 to 0.46 L1, MIR Bastin et al. (2013)
22 566 0.21 to 0.42 L2
8221 0.18 to 0.39 L3

Phospholipids (glycerophosphocholine) 371 0.48 L1 to L3 Buitenhuis et al. (2013)
Glucose 192 0.21 L1 to L3 Ahn et al. (2006)

174 0.37 Heifers before calving Oikonomou et al. (2008)
6015 0.12 to 0.39 L1

Insulin growth factor 1 75 0.35 L1 Grochowska et al. (2001)
Heat stress
Rectal temperature 1695 0.17 All lactations Dikmen et al. (2012)

238 0.07 All lactations Al-Kanaan et al. (2016)
Vaginal temperature 238 0.04 All lactations Al-Kanaan et al. (2016)
Skin temperature 238 0.02 to 0.04 All lactations Al-Kanaan et al. (2016)
Respiration rate 238 0.05 All lactations Al-Kanaan et al. (2016)
Pulse rate 238 0.07 All lactations Al-Kanaan et al. (2016)

Endoparasite infections
Gastrointestinal nematodes
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were in a range from 0.04 to 0.40 (Table 1), depending on
lactation stage. Thus, BHB was used as a biomarker in
genetic or genomic approaches to breed cows with
decreased susceptibility to ketosis (Pryce et al., 2016).
Genetic correlations between BHB with FPR ranged from
0.12 to 0.49, and between BHB with clinical ketosis from
0.37 to 0.75 (Koeck et al., 2014; Pryce et al., 2016).
Heritabilities for acetone concentration ranged from 0.01 to
0.29 in early lactation (Table 1). Moreover, NEFA in plasma
as a product of body fat mobilization might be suitable
indicators for the overall metabolic health status. Heritabil-
ities for NEFA from random regression model were in the
range from 0.08 to 0.35. Non-esterified free fatty acids
peaked in week 1 of lactation and provides a substrate for
BHB, resulting in the highest levels of BHB in the 2nd week of
lactation (Klein et al., 2018). In this regard, a higher accuracy
of predicting ketosis can be achieved when considering more
than one biomarker (BHB together with NEFA or FPR) from
MIR (Grelet et al., 2016).
The consideration of MFA as biomarkers to detect hyper-

ketonaemia and periods of negative energy balance is of
growing interest. Van Haelst et al. (2008) observed a sig-
nificant higher secretion of long-chain fatty acid C18:1 cis-9
in milk in subclinical ketosis diagnosed cows. Moreover, an
increase in C18:1 cis-9 was identified as a biomarker for a
decrease in energy balance due to reduced feed intake and
nutrient absorption, especially under hot conditions
(Hammami et al., 2015). Bastin et al. (2013) estimated her-
itabilities for a broad range of longitudinal MFA (e.g. buta-
noic acid (C4:0), caprylic acid (C8:0)). As shown in Table 1,
heritabilities for short- and medium-chain MFA ranged from
0.35 to 0.59, depending on the lactation stage. Heritabilities
for long-chain fatty acids were generally lower (0.18).
Tetens et al. (2015) showed that phospholipids as fatty

acids in milk (e.g. phosphatidylcholine (PC), glyceropho-
sphocholine (GPC) and the ratio of both metabolites) are
suitable prognostic biomarker for ketosis. A heritability of
0.48 for the metabolite GPC was estimated in a population of
Danish Holstein cows (Table 1). Hence, selection of cows
with a high GPC level or a high GPC/PC ratio is associated
with improved ketosis resistance in early lactation. Currently,
intensive recording of phospholipids is very expensive and
logistics are difficult to implement in practice, thus, also

hampering breeding efforts (Tetens et al., 2015). Further
approaches suggested consideration of parameters from
intravenious glucose tolerance test for breeding aspects
(Pieper et al., 2016). Heritabilities in Holstein Friesian (HF)
bulls ranged from 0.12 to 0.43 for different blood glucose
parameters (e.g. fasting glucose concentration, glucose half-
life period) (Pieper et al., 2016).
A negative energy balance during the early lactation per-

iod is associated with major alterations in the growth hor-
mone IGF-1. Piechotta et al. (2012) showed that prepartum
plasma IGF-1 concentrations were lower in cows with post-
partum diseases, revealing the potential of IGF-1 in genetic
and genomic approaches. Genetic variation for IGF-1 was
detected in dairy cows in Poland (Table 1), with a moderate
heritability of 0.35.

Rumen microbiome composition as a biomarker
Recently, biomarkers from the rumen microbiome were
suggested to study metabolic performances and disease
susceptibilities in dairy cattle (Jewell et al., 2015). There is
evidence for the existence of inter-individual differences in
microbiome compositions (Lin et al., 1997), hypothesizing
that the host genome has substantial influence on the rumen
microbiome composition. In addition, variations in feed
efficiency were associated with differences in rumen micro-
bial community compositions, microbiome–host interactions
or both (Jewell et al., 2015). Hernandez-Sanabria et al.
(2013) showed that variations in particular microbial phylo-
types due to host sire effects influenced rumen microbial
metabolic processes, and ultimately determined residual feed
intake (RFI). Thus, interactions between host genotypes and
environmental factors (e.g. diet) regulate presence or
absence of particular microbes, as well as RFI. In addition,
interactions between an animal’s genome and rumen
microbiome composition have impact on the occurrence and
resistance to a number of infectious and non-infectious dis-
eases. In consequence, cows with a specific ruminal com-
position might be more resistant against specific infectious
and non-infectious diseases. Variability and specificity of
MFA was associated with the cow energy status and rumen
health, indicating cow robustness (Bastin et al., 2013). Her-
itabilities for MFA ranged between 0.03 and 0.59 (Table 1).
However, because of the novelty of this approach, genetic

Table 1 (Continued )

Biomarkers No. of cows Heritability Comment References

Faecal egg counts (FEC) 1419 0.21 L2 to L4 Coppieters et al. (2009)
4053 0.07 L1 to L4
1166 0.05 to 0.06 All lactations May et al. (2017)

Antibody levels 10 879 0.07 All lactations Twomey et al. (2018)
Liver flukes (F. hepatica)

FEC 1166 0.33 All lactations May et al. (2017)
Antibody level 10 879 0.13 All lactations Twomey et al. (2018)

MIR= assessed by mid-infrared spectrometry; RRM= random regression model; AMS= automatic milking system; DIM=Days in milk; HF=Holstein Friesian;
L= lactation.
1The list of references for Table 1 is given in Supplementary Material S1.
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parameters for direct rumen health or microbial composition
traits are lacking. Only Sasson et al. (2017) analysed
relationships between host genetic architectures with
phylogenetic and functional compositions of the rumen
microbiome. They identified several microbial groups being
heritable and linked to rumen metabolic parameters and
productivity in dairy cows. Hence, there is evidence that host
genetic variation is associated with specific microbes, and
that the bovine rumen microbiome includes heritable
components, encouraging further studies on a molecular
genetics scale. So far, molecular host response mechanisms
determining variation in the microbial populations, are
unknown.

Biomarkers for heat stress
Hot temperatures and humidity directly affect physiology
(e.g. increase in respiration or heart rate), feed intake,
endocrine mechanisms and the effective IR in dairy cattle,
leading to enhanced disease susceptibility (Das et al., 2016).
Sanders et al. (2009) observed increased incidence rates for
claw disorders with increased air temperature. Increasing THI
often causes high reproduction rates for a broad range of
pathogens (e.g. bacterials, parasites). Thus, the risk for
mastitis and endoparasite infections increases, leading to
measurable changes in disease-related biomarkers (e.g.
SCS). Heat stress response is regulated via endocrine, meta-
bolic, physiological and cellular mechanisms, resulting in up-
and downregulations for a number of metabolites (Ham-
mami et al., 2015; Al-Kanaan et al., 2016). Under heat stress,
plasma levels of urea and insulin increases, while plasma
glucose decreases (Wheelock et al., 2010). Alterations in
these biomarkers are directly linked to cows energy balance
and might increase susceptibility to metabolic disorders (e.g.
ketosis) (West, 2003). In consequence, biomarkers respond-
ing in the course of a metabolic disease (e.g. creatine, acet-
oacetate, arachidonic acid, BHB), are very sensitive in heat
stressed lactating dairy cows (Carabaño et al., 2017).
Hammami et al. (2015) measured fatty acids in milk via MIR,
and identified C18:1 cis-9 as the most sensitive biomarker for
heat stress in HF cows. A possible explanation might be that
composition of rumen microbiome was significant different
in various temperatures (20°C v. 28°C v. 33°C) (Tajima et al.,
2007), implying a change of nutrient composition in the
rumen and fatty acids in milk. In addition, milk protein
fractions such as caseins were utilized as suitable biomarkers
for heat stress (Carabaño et al., 2017). In recent years, heat
shock proteins (HSP) as an expression of cellular stress during
heat stress impact have been carefully evaluated. Heat shock
protein 70 (HSP70) concentration in plasma and plasma
HSP72 were suggested as biomarkers for chronic heat stress,
environmental stress and for disease resistance in HF dairy
cattle (Carabaño et al., 2017).
Al-Kanaan (2016) analysed different bull semen char-

acteristics and body fluids on a quantitative-genetic scale in
dependency of THI. They identified a strong detrimental
temperature × humidity – effect on bull semen parameters,
and alterations of bull semen breeding values, beyond

THI 60. Thus, selection of sires according to THI-specific
breeding values for specific semen traits and body fluids
might be a further strategy to identify sires with improved
resistance to hot climatic conditions. Further physiological
traits as indicators for resilience to heat stress include mea-
surements of body temperature (rectal, vaginal, skin), pulse
and respiration rate (Table 1). Reported heritabilities for body
temperature traits ranged from 0.02 to 0.17, while herit-
abilities for pulse and respiration rate were in a range from
0.05 to 0.07 (Table 1).

Biomarker for endoparasite infections
In pasture-based production systems, endoparasite infec-
tions caused by gastrointestinal nematodes (GIN) and liver
flukes (F. hepatica) are of increasing economic importance,
because of strong associations with impaired dairy cow
health. Biomarkers for host resistance (i.e. ability to control
pathogen burden) or tolerance (i.e. ability to limit the impact
of a given pathogen burden on performance) to parasitic
infections include biochemical (e.g. serum pepsinogen or
albumin level), immunological (serum or milk antibodies)
and parasitological (e.g. faecal egg count, worm parameters,
helminth-specific antigen, DNA) markers. Serum or milk
antibodies (different isotypes of immunoglobulins) and FEC
are the most common used indicators to measure resis-
tance. For GIN infections in dairy cattle, heritabilities ran-
ged from 0.05 to 0.21 for FEC, but the heritability for
antibody levels measured via ELISA was only 0.07 (Table 1).
In literature, negative genetic correlations were reported
between FEC and antibody levels (IgG1, IgG2, IgA, IgM) for
GIN infections in cattle and small ruminants. Thus, breeding
for enhanced resistance to endoparasite infections is possible
via selection for lower FEC, or via higher antibody titres. May
et al. (2017) estimated negative genetic correlations up to
− 0.40 between GIN infections detected by FEC with fat
percentage and with protein percentage throughout lacta-
tion. In their study, genetic correlations between FEC and
milk yield were close to 0. Accordingly, genetic correlations
for the antibody response to the GIN Ostertagia ostertagi
with milk production traits were close to 0 (Twomey et al.,
2018b).
For liver fluke infections, Twomey et al. (2018b) used the

biomarker ‘IgG antibody titres against F. hepatica’ in Irish
dairy cows, and estimated a heritability of 0.13 (Table 1). A
heritability of 0.33 was estimated for the biomarker ‘FEC of F.
hepatica’ in German Holstein dairy cows (May et al., 2017;
see Table 1). Twomey et al. (2018b) estimated negative
genetic correlations in a low range (−0.04 to −0.14)
between IgG antibody titres against F. hepatica and milk
production traits. May et al. (2017) found negative
correlations up to −0.50 between FEC of F. hepatica and
protein %. Currently, utilization of FEC or antibody levels to
predict resistance or tolerance to endoparasite infections in
dairy cows is not feasible, due to the costs and difficulties of
measuring phenotypes in a commercial production environ-
ment. However, the application of suitable traits measuring
overall IR to pathogenic agents will play a greater role in
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future selection strategies, instead a selection focus on
specific infectious diseases.

Inclusion of immunity traits into breeding objectives

The immune system includes two components: The innate
(non-specific) and the adaptive (specific) immune system.
During the last years, breed-dependent differences and sui-
table IR traits were investigated for both host defense
mechanisms (i.e. the innate and the adaptive immune sys-
tem), suggesting the potential of IR traits as useful selection
markers, in order to achieve enhanced disease resistance.
Immune response mechanisms are primarily linked to resis-
tance against infectious diseases. Nevertheless, also the
interplay between the immune status and non-infectious
diseases (e.g. metabolic health) was investigated in dairy
cattle (e.g. Thompson-Crispi et al., 2013). An increase in
incidences of various diseases (e.g. mastitis, ketosis) around
calving and during the postpartum period was explained
trough alterations in response of important IR mediators.

Immune response traits
The genetic background of IR traits has been studied during
the past 30 years in dairy cows. In Norwegian Red dairy
cattle, heritabilities for serum proteins (complement, con-
glutinin, lysozyme) and immunoglobulins (Ig) were larger
than 0.50 (Lie, 1979). Detilleux et al. (1994) investigated
the genetic variation of serum Ig concentrations and neu-
trophil functions in HF cows for different immunosuppres-
sion stages (day 35 prepartum to day 35 postpartum).
Moderate-to-large heritabilities up to 0.84 were estimated
for different Ig isotypes (IgG1, IgG2, IgM), depending on
the immunosuppression stage. The lactation stage had
significant impact on Ig levels, and heritabilities were larger
in the periparturient period (Mazengera et al., 1985; Detil-
leux et al., 1994; Wagter et al., 2000). In dairy cattle, the
neutrophil function plays a decisive role as the first defense
against udder infections. Heritabilities for specified IR traits
being related to mastitis (e.g. neutrophil functions) differed
from 0.20 to 0.70 in periparturient Holstein cows (Detilleux
et al., 1994).
Abdel-Azim et al. (2005) used a combination of immuno-

logically controlled infectious diseases induced by pathogens
(e.g. uterine infections, respiratory diseases) to introduce the
overall immune trait ‘generalized immunity (GI)’ in US HF
cows. The heritability in this study for GI was 0.20. Further
advances have been made in exploring humoral or antibody-
mediated immune response (AMIR), and cellular-mediated
immune response (CMIR) of the bovine immune system.
Immunoglobulins (antibodies) are the mediators of AMIR,
produced from B cells as a reaction in the presence of
extracellular pathogens. Antigen-presenting cells and cyto-
toxic T cells stimulate CMIR, being responsible for the pro-
tection against intracellular pathogens. A Canadian research
group demonstrated selective breeding possibilities for high
responders (HR), average responders (AR) or low responders

(LR), based on AMIR and on CMIR (Guelph’s patented High
Immune Response technology, patent number:
CA2255423A1). In this regard, a standardized immunization
or IR-testing protocol is used to capture CMIR and AMIR (e.g.
Thompson-Crispi et al., 2012 and 2013). In this protocol,
hen-egg white lysosyme or ovalbumin are the antigens to
measure induced antibody (mostly IgG1 and IgG2) response
for AMIR at different days after immunization. Delayed-type
hypersensitivity to the yeast fungi Candida albicans, or to the
intracellular bacterium Mycobacterium avium subsp. para-
tuberculosis, induced CMIR.
Heritabilities for CMIR ranged from 0.19 to 0.54 (Thompson-

Crispi et al., 2012; Heriazon et al., 2013). Heritabilities for AMIR
were in a broader range from 0.13 to 0.88, depending on the
antigen isotype (Wagter et al., 2000; Thompson-Crispi et al.,
2012; Heriazon et al., 2013). In most cases, genetic correlations
between CMIR and AMIR were negative (e.g. Hernandez 2006;
Thompson-Crispi et al., 2012; Heriazon et al., 2013), indicating
that selection of cows with increased resistance to extracellular
pathogens (e.g. helminths) might be associated with increasing
susceptibility to intracellular pathogens (e.g. bacteria, viruses,
protozoa), and vice versa. For example, Twomey et al. (2018b)
identified antagonistic genetic relationships between antibody
response to the protozoan parasite Neospora caninum with the
antibody response to the helminths F. hepatica (−0.29) and
O. ostertagi (−0.67) in Irish dairy cattle.

Relationships between immune response traits with
production and reproduction traits
A more balanced and robust immune system may be asso-
ciated with decreased productivity, because a cow allocates
more resources (e.g. nutrients) to the immune system.
However, Thompson-Crispi et al. (2012) showed that selec-
tion on high IR improved milk yield in dairy cattle. Herizazon
et al. (2013) reported only low phenotypic correlations from
0.01 to 0.18 between CMIR or AMIR with milk production
traits. On a genetic scale, the correlation was 0.05 between
AMIR and protein percentage, and 0.18 between AMIR and
fat percentage (Heriazon et al., 2013). Interestingly, the same
study identified negative genetic correlations between CMIR
and fat or protein percentage (−0.11 to −0.15). Samoré
et al. (2010) estimated positive genetic correlations between
fat percentage and functional longevity. Hence, continuous
breeding on effective and high AMIR reflecting best adap-
tation to a wide range of extracellular pathogens, positively
influences longevity. Thompson-Crispi et al. (2012) reported
a positive genetic correlation of 0.16 between CMIR and milk
yield in first parity cows. Mazengera et al. (1985) estimated
positive genetic correlations in the range from 0.13 to 0.63
between specific IR traits (IgG2 and IgA) with 305-day milk
and fat percentage, but genetic correlations between IgM
with 305-day milk and fat percentage were negative (−0.83
and −0.34, respectively). A negative genetic correlation of
−0.18 between IgG isotype and daily milk yield was esti-
mated (Table 2). A complete overview including genetic
correlations between IR traits and production and fertility
traits is given in Table 2.
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Improved IR had beneficial effects on reproductive traits
(Thompson-Crispi et al., 2012). Phenotypically, correlations
between IR traits AMIR and CMIR with days to first service
were lower than −0.11 (Heriazon et al., 2013). Low, but
positive genetic correlations in the range from 0.16 to 0.20
between non-return rates and IR traits (AMIR, CMIR) were
estimated in Canadian heifers (Thompson-Crispi et al., 2012).
The genetic correlation between gestation length and AMIR
was favourable (−0.17) (Thompson-Crispi et al., 2012).

Relationships between immune response traits and health
traits
Sires with high IR improved colostrum quality and enhanced
resistance to non-infectious and infectious diseases in their
daughters (e.g. Wagter et al., 2000). Abdel-Azim et al. (2005)
estimated correlations among predicted sire transmitting
abilities for clinical disease traits and IR traits. Correlations
between GI (simply defined as a combination of infectious
diseases) and non-infectious diseases were lower (0.01 to
0.20) compared with correlations between GI and infectious
diseases (0.56 to 0.79).

A low genetic correlation (0.03) between IgG and blood
glucose was reported in Korean Holstein cows (Table 2).
Blood glucose is a biomarker for non-infectious diseases or
metabolic health. In contrast, the genetic correlation
between IgG and SCS (biomarker for mastitis) induced by
pathogens was 0.68 (Table 2). Such results indicate that
resistance to infectious diseases is primarily regulated by IR
genotypes, while resistance to non-infectious diseases
strongly depends on environmental factors. Thompson-
Crispi et al. (2013) compared the CM incidence rates
between HR-, AR- and LR-cows for AMIR and CMIR. In this
study, a significant higher incidence rate for CM induced by
Staphylococcus aureus, Escherichia coli, Streptococcus spp.
and further bacterial pathogens was identified in LR-AMIR
cows compared to HR-AMIR cows. Kelm et al. (1997)
estimated negative correlations between EBV for specific IR
traits (e.g. Ig isotypes, neutrophil function) with EBV for SCS.
Negative correlations indicate that cows with low EBV for
SCS tend to have neutrophils with a greater functional ability
at maximal immunosuppression. Moreover, regarding neu-
trophil functions, significant progeny group differences were

Table 2 Literature overview for genetic correlations between objectively measurable immune response traits and production traits in dairy cattle1

Immune response traits

Traits AMIR CMIR IgA IgG IgM Comment References

Production trait
Milk yield 0.37 0.36 − 0.83 Cows Mazengera et al. (1985)

− 0.18 Cows Ahn et al. (2006)
0.16 Cows Thompson-Crispi et al. (2012)

− 0.06 0.09 Cows Heriazon et al. (2013)
Milk fat 0.10 0.00 Cows Heriazon et al. (2013)
Fat-% 0.18 − 0.11 Cows Heriazon et al. (2013)

0.63 0.13 − 0.34 Cows Mazengera et al. (1985)
Milk protein − 0.04 0.04 Cows Heriazon et al. (2013)
Protein-% 0.05 − 0.15 Cows Heriazon et al. (2013)
SCS 0.68 Cows Ahn et al. (2006)

0.05 − 0.09 Cows Heriazon et al. (2013)
56-day non-return rate 0.16 Heifers Thompson-Crispi et al. (2012)
Non-return rate 0.21 − 0.22 Heifers Heriazon et al. (2013)

0.15 − 0.22 Cows Heriazon et al. (2013)
No. of services 0.20 Heifers Thompson-Crispi et al. (2012)
Age at first service 0.05 0.00 Cows Heriazon et al. (2013)
First service to conception 0.18 Heifers Thompson-Crispi et al. (2012)
Calving to first service 0.03 − 0.01 Cows Heriazon et al. (2013)
Daughter calving ease − 0.19 Heifer Thompson-Crispi et al. (2012)
Calving ease − 0.23 0.11 Cow Heriazon et al. (2013)
Maternal calving ease − 0.12 0.13 Cow Heriazon et al. (2013)
Daughter fertility 0.13 − 0.22 Cow Heriazon et al. (2013)
Gestation length 0.17 Heifer Thompson-Crispi et al. (2012)

− 0.17 Cows Thompson-Crispi et al. (2012)
Functional trait
Blood glucose 0.03 Ahn et al. (2006)
Somatic cell score 0.68 Ahn et al. (2006)

AMIR= antibody-mediated immune response; CMIR= cellular-mediated immune response; IgA= Immunoglobulin A; IgG; Immunoglobulin G; IgM= Immunoglobulin
M; SCS= somatic cell score.
1The list of references for Table 2 is given in Supplementary Material S1.
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detected (Kelm et al., 1997). Bannerman et al. (2008)
identified breed-dependent differences for IR traits (e.g.
neutrophil cell count, T lymphocytes), which are involved in
host immune mechanisms against mastitis, induced by
S. aureus. In this study, HF cows showed stronger neutrophil
response to udder infections than Jersey cows. Banos et al.
(2013) identified significant variations for cellular immune
traits (e.g. percentage of neutrophils or T lymphocytes in
blood) in different genetic lines of Scottish HF dairy cows.
Next to breed-specific variations in IR, higher variations in
immunoglobulin combinatorial diversity were detected in
Aubrac compared with HF or German Black Pied cattle
(Walther et al., 2016). Immunoglobulin diversity reflects the
cow’s adaptation to antigens under certain environmental
conditions. Thus, phenotypic differences for same genotypes
in different environments regarding antibody diversity can be
expected.

Conclusions

From a conventional and novel breeding perspective,
improving robustness implies (i) to select animals with high
and stable breeding values for production or fertility traits
in the course of environmental alterations (concept of G × E
interactions), (ii) to include producer-recorded health data
in future breeding objectives, (iii) to focus on objectively
measurable indicator traits from routine milk recording
schemes and/or on novel biomarkers. Generally, as outlined
in the present review, more accurate and objective pheno-
typing strategies allow more accurate genetic parameter
estimations, and larger heritabilities. In such perspective, it
is imperative to evaluate a broad pattern of biomarkers
being linked to environmental response and disease resis-
tance. A quite large number of biomarkers being linked to
environmental sensitivity and disease resistance have been
detected (e.g. C18:1 cis-9 MFA, BHB). Rapid progress in
breeding advances for overall robustness (i.e. those animals
being best adapted to environmental stressors and less
susceptible to disease) suggest the inclusion of biomarkers
being sensitive for more than one trait into selection indi-
ces. In dairy cattle, an obvious interaction between adap-
tation to changes in environment, composition of rumen
microbiome, metabolism and IR mechanisms exist, affect-
ing individual’s resistance to disease. In consequence, new
approaches aiming on enhanced disease resistance focus
on IR breeding strategies. Generally, genetic correlations
between IR traits and performance and health traits were
low to moderate, but breed-specific differences in IR reflect
variability for IR traits under identical environmental
conditions. Nevertheless, the optimal breeding strategy
remains unclear, that is, utilization of adaptive IR, or using
specific disease traits or appropriate biomarkers. Hence, it
is imperative in ongoing studies to develop correct
weightings and appropriate methods to accommodate all
phenotypic sources simultaneously via selection index
methodology.
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