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Let n be a positive integer and D a division algebra of finite dimension m over its centre. We describe in detail
the structure of a soluble subgroup G of GL(n,D). (More generally we consider subgroups of GL{n,D) with no
free subgroup of rank 2.) Of course G is isomorphic to a linear group of degree mn and hence linear theory
describes G, but the object here is to reduce as far as possible the dependence of the description on m. The
results are particularly sharp if n=l. They will be used in later papers to study matrix groups over certain
types of infinite-dimensional division algebra. This present paper was very much inspired by A. I. Lichtman's
work: Free subgroups in linear groups over some skew fields, J. Algebra 105 (1987), 1-28.

1980 Mathematics subject classification (1985 Revision): 2OH25 (cross ref. 16A39).

Let n be a positive integer, D a division ring of finite dimension d2 over its centre F
and suppose that

(a) G is a subgroup of GL(n, D) containing no non-cyclic free subgroups.

Then Theorem B of Lichtman's paper [3] describes in some detail the structure of G
under the further assumptions that

(b) d = qm for some prime q,
(c) n < q — 1 and
(d) charF#0.

We give here a quite short derivation of this, indeed of a slightly stronger structure, and
without hypotheses (b), (c) and (d). We make use of our results here in [7] and [8] to
study matrix groups over more general division rings. We isolate the basic results
concerning finite-dimensional division algebras in this paper in case they have a wider
appeal.

Below q is always a prime and m is always a positive integer. The maximal unipotent
normal subgroup of G we denote by u(G). Our main result is the following:

Theorem 1. Let G satisfy (a). Then G has normal subgroups

such that U = u(G) is unipotent, A/U is central in H, H/A is locally finite, K/H is a
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subdirect product of n groups of orders at most nd and dividing n\d and G/K is isomorphic
to a subgroup of the symmetric group Sym (n) of degree n. Moreover if (b) also holds then
we can choose K so that K/H is a subdirect product of n groups of orders dividing d.

Let d = qm. The object of the exercise is to derive conclusions independent of q, for
then certain information about skew linear groups of characteristic zero can be
obtained, see [3]. With d — qm the group K/H of Theorem 1 is a finite q-group of order
dividing qm" and exponent dividing qm but nilpotency class less than max{2,m}. The
latter bound is independent of q. By Schur's theorem the derived group P/U of H/U is
locally finite. Thus the following is an immediate consequence of the theorem.

Corollary 1. Assume (a) and (b). Then G has normal subgroups

such that U = u(G) is unipotent, P/U is locally finite, H/P is abelian, K/H is finite
nilpotent of class less than max{2,m} and the index (G:K) divides nl. If also (d) holds then
P itself is locally finite.

Lichtman [3, Theorem B] is essentially Corollary 1 assuming also (c) and (d) and
with (G:K)^(n!)2 instead of (G:K)\nl

In Theorem 1 again let P/U be the derived group of H/U and suppose G is soluble.
The derived length of U is at most — [ — log2n], of H/P is at most 1, of K/H is at most
the number of prime divisors of n\d (at most max {1, — [ — log2m]} if d = qm) and of G/K
is less than n. If charF^O then Zalesskii's theorem (see [4, 2.3.1]) yields that P/U is
isomorphic to a linear group of degree n. If charF=0 by another theorem of Zalesskii
(see [4, 2.4.4]) there is a metabelian normal subgroup of P/U of index bounded by a
function of n only. Thus the following is also a consequence of Theorem 1.

Corollary 2. Let G satisfy (a) with G soluble. Then G has derived length bounded by a
function of n and the number of prime divisors {with multiplicities) of d only.

Suppose d = qm in Corollary 2. Again the bound depends on m and n but not on q.
Explicit bounds for the derived length of G in this case are given by

- [ - l o g 2 n ] + 3n + max{l, - [ - log 2 m]}

and

- [ - l o g 2 n ] + /s(n) + 2 + max{l, - [ - log 2 m]} + n if charF = 0,

where fs(ri) is the function of [4, 2.4.4].
In Corollary 1 one cannot (as claimed in [3]) choose K/H to have nilpotency class

less than m. For example suppose F — U and D is the real quaterion algebra. Set
G = (j,C*>^D* = GL(l,D). Here q = 2, wi=l and n= 1. Necessarily [/ = <!> and K = G.
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If H = G then G' = U>0 is periodic, which it is not. Consequently / / # G and K/H has
nilpotency class 1 = m.

We can copy this construction in any characteristic. (Thus [3, Theorem B] needs a
slight modification, namely ym,2(^) to be replaced by yki2(U) for fc = max{2,m}.) For let
R = GF(p") [x] be the skew polynomial ring for any primes p and q, where x acts on the
coefficient field as the Frobenius automorphism. Then R has a division ring D of
quotients. If F is the centre of D then (D:F) = q2. Let ( be a primitive {pq — l)th root of
unity in GF(pq) and set £ = F(() and G = <x, £*>. In the notation of Theorem 1, we have
d = q, m = n=\ and necessarily U = < 1 > and X = G. Now G' is not periodic, for

and so G' contains the element (C + x*)~1(Cp+x*) of infinite order. Thus H # G and again
K/H has nilpotency class m = \. It is not difficult to produce examples of characteristic
zero for odd, q, cf. Point 4 below.

After the proof of Theorem 1 we construct further examples. In particular we show
that the structure given in Theorem 1 for d = qm is essentially the best possible. If in
Theorem 1 the degree n = 1 then much more can be said. Certainly we must have

and K = G.

Theorem 2. Assume (a) and (b) and let n = 1. Then G has normal subgroups

such that A is abelian, H = CG(A) and either (1) (G:H) divides qm and A = H, or (2)
char£ = 0, q = 2, (G:H) divides 2m'x and El A is isomorphic to Alt (4), Sym(4), or Alt (5),
or (3) charF = 0, q = 2, (G:H) divides 2m~2 and H/A is isomorphic to Sym(5).

In proving Theorem 2 we describe the groups involved more explicitly. We also give
examples to show that all the above cases do in fact arise. Note that Theorem 2 gives
an excellent bound for the derived length of G for G soluble, n = 1 and d = qm.

Suppose in Theorem 1 that either charF = 0 or G is soluble. It is an easy consequence
of our proof below of Therorem 1, that A can be chosen so that (G:A) is finite and
bounded by a function of nd only. Theorems 1 and 2 suggest that if d = qm then
(G:A)q~mn should be boundable by a function of n only (we abbreviate this phrase to
"M-bounded"). The best we have obtained is the following.

Theorem 3. Assume (a) and (b) and suppose that either charF = 0 or G is soluble.
Then subgroups U, A, H and K can be chosen as in Theorem 1 along with a normal
subgroup Q of G with A^Q^H such that Q/A is an elementary abelian q-group of rank
at most 2mn such that (Q:A)(K:H) divides q2mn and (H:Q) is n-bounded. Further there is
an abelian normal subgroup AJU containing A/U of Q/U such tht (Q:Ai)(K:H) divides
qm".

Thus in Theorem 3 both (G:A)q~2mn and (G.AJq'"1" are n-bounded.
As a final comment before the proofs we remark that division rings D of prime power
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dimension over their centre do arise naturally in some contexts. For example if L is a
Lie algebra of characteristic p>0 and finite dimension / then the division ring of
quotients of the universal enveloping algebra of L has finite dimension p2m over its
centre for some m with 2m g/2, see [1, pages 204 and 189]. This fact is used crucially in
[3, 7, 8].

The proof of Theorem 1

We deal first with the case d= 1, so G is now a subgroup of GL(n,F).
1. If d=\ then G has normal subgroups < 1 > ^ [ / ^ A ^ H ^ G with U = u(G) unipotent,

A/U central in H, H/A locally finite and G/H isomorphic to a subgroup o/Sym(n).

Proof. We may assume that F is algebraically closed. Passing to G/u(G), we may
also assume that G is completely reducible. By Tits' theorem (see [5] or [6, 10.17]) there
is a soluble normal subgroup A of G with G/A locally finite. Replacing A by its
connected component of the identity we may assume that A is Zariski connected. By the
Lie-Kolchin theorem (see [6, 5.8]) the group A is triangularizable. Since
M(/1)^U(G) = <1> the group A is abelian. Set H = CG(A). By a result of Blichtfeldt (see [6,
1.12]) the group G/H is isomorphic to a subgroup of Sym(n) via its permutational
representation on the set of homogeneous components of A. The proof is complete.

Schur's theorem and 1 yield the following.

2. Let G be as in 1. Then G has normal subgroups <l>g[/<;/>^//<;G with U
unipotent, P/U locally finite, H/P abelian and G/H isomorphic to a subgroup o/Sym(n).

Suppose G is as in Theorem 1 and let £ be a maximal subfield of D. Then G can be
regarded as a subgroup of GL(nd,E) in an obvious way. Thus by 1 there are normal
subgroups U, A and H of G with U, A/U and H/A as in Theorem 1 and with G/H
isomorphic to a subgroup of Sym(nd). It is difficult to see how to reduce the
dependence here of G/H on d. We need to make a more subtle use of 1. Set U = u(G). By
[4, 1.1.2] we may pass to G/U and assume that G is a completely reducible subgroup of
GL{n,D).

3. With G as in Theorem 1 and with G a completely reducible subgroup of GL(n, D),
let A be any maximal abelian normal subgroup of G and set H = CG{A).

(a) There exists a normal subgroup L 2 f f of G such that L/H is a subdirect product of
s^n groups of orders dividing ntd, i=l,2,...,s, where nt+ ••• +ns^n, and G/L is
isomorphic to a subgroup of Sym (s).

(b) Suppose d = qm. Then there is a normal subgroup K^H of G such that K/H is a
subdirect product of n groups of orders dividing qm and G/K is isomorphic to a
subgroup of Sym (ri).

Suppose for the moment that we have proved 3. By 1 there is a maximal abelian
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normal subgroup A of G such that G/A is locally finite and in fact any such A has G/A
locally finite. Then Theorem 1 is now an immediate consequence of 3.

Proof of 3. Let V = D" be row n-space over D, regarded as a D-G bimodule in the
standard way. Let Vu...,Vr be the homogeneous components of V as D — A module. By
Clifford's theorem V=@Vh so if ni=dimDVi then r^n and n1+ •• •+nr = n. Let R
denote the F-subalgebra of £>""" generated by A. Then R is commutative and
semisimple Artinian (e.g. [4, 1.1.12a]). Thus /? = F 1 © - © F , where each F t is an
extension field of F.

On each D — A irreducible submodule of V the F-algebra R acts as a simple ring (see
[4, 1.1.12b]). Hence for each i there is a unique j such that Fj acts non-trivially on V^
Thus s^r^n and we can number the components such that F, acts non-trivially on Vt

for l rg i^s . In particular there is an F-algebra embedding of F, into EndD Vt s D"'*"'.
Hence by Theorem 4.11 on p. 244 of [2] dimFF, divides (dimFEndD Vi)

1/2 = nid. Let G,
denote the Galois group of F, over F. Then the order of G, divides n(d too. Clearly G
permutes the summands F, of R under conjugation. Set L = f]'i=i NG(F,). Then G/L is
isomorphic to a subgroup of Sym(5) and L/H is isomorphic to a subgroup of
GixG2x ••• xG,. This proves (a).

Write i~j if Fi^FFj and «, = «,•. Let S be the normalizer in Sym(s) of the ~
equivalence classes in {1,2,...,s}. Then part of the automorphism group of R as F-
algebra can be identified with the split extension W = S[GX x • •• x Gs, with Gt x • • • x C ,
acting componentwise and S naturally permuting the components. Assume now that
d = qm. It follows from Sylow's theorem that G, contains a subgroup Qt of order dividing
qm and index dividing n,. (If q\nt then Q, may not be a Sylow subgroup of Gt.) Now
right multiplication by G, on the right cosets of Qt determines a homomorphism of G,
into Sym(n,) with kernel say K,-gQ(. With a coherent choice of the Q,- the group
Ktx ••• x Ks is normal in W. Clearly Kt has order dividing qm. Also W/K^ x • • • x JCS is
isomorphic to a subgroup of the split extension

T = S[Sym(n1)x ••• xSym(ns).

Note that this uses that n; = n, if i~j. Since n , + ••• +ns^n the group T is isomorphic
to a subgroup of Sym («).

The natural conjugation action of G on R determines an embedding of G/H into W.
Let K be the inverse image of ^ x ••• x X , in G under this map. Then K^H is a
normal subgroup of G, K/H is a subdirect product of s groups of orders dividing qm and
G/K is isomorphic to a subgroup of Sym (ri). Part b is proved.

If in 3(b) one replaces G/K^ Sym(n) by the weaker condition that (G:K)\n\ then the
above proof can be considerably shortened, since early on one can reduce to the case

4. Some examples

Let Q be a prime field of characteristic p^O. If p>0 set E = GF(pqn')sQ, pick ( so
that £ = Q(Q and let £, be the Frobenius automorphism of E of order qm. If p = 0 there
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exists by Dirichlet's theorem on primes in arithmetic progressions a prime / with 1=1
modulo qm. Let E = Q(Q where ( is a primitive /th root of unity in C. Then E has an
automorphism £ of order qm.

The skew polynomial ring £[x], with x acting on £ as <!;, is a Noetherian domain; let
D be its division ring of quotients. Set F = CE(x)(x'm); then F is a central subfield of D
with (D:F) = q2m. If Z is the centre of D then x normalizes ZE and acts on it as an
automorphism of order qm. Thus (ZE:Z) = qm. But ZE is a subfield of D, so (D:Z)^q2m

and therefore F=Z.
Set Gt = </4j,x>^D* where /4j is the multiplication group of the field FE. Then At is

an abelian normal subgroup of Gu CGl(A1) = A1 and (G1:Al) = qm. Suppose A is an
abelian normal subgroup of Gt with G/A periodic. Let K be the fixed field of xqm ' in
FE. Then /^/K is not periodic; for example (£ + x*m)r is not in K for every positive
integer r. (For if otherwise

which is not the case since £[x*m] is a unique factorization domain.) It follows that
H = CGl(An Al) = Al, so {Gl:Ft)^.qm for all possible choices of A. Thus the structure of
G/H given in Theorem 1 is the best possible for n = l and d = qm.

We now extend this construction to arbitrary n. Let S be the set of permutation
matrices in GL{n,D), identity Gt with

{diag(g,/,...,/)eGL(n,Z>):geG,}

and set Gn = <S,G1> = G1 }Sym(n) (permutational wreath product). If An = (A9
l:geGn},

then An is an abelian normal subgroup of Gn and An = CGn(An). Also GJAn = C pym(n),
where C is cyclic of order qm. Since Gn is irreducible its unipotent radical is trivial. Let A
be an abelian normal subgroup Gn with GJA periodic. Then by the above
CGl(AriAl) = Al and so with the notation as in Theorem 1,

Thus we must have H = An and K/H = Oq{GJH), as then (K:H) = qmn and GJK^
Sym(n), and this is for all possible choices of A. Thus the structure given in Theorem 1
for G/H is the best possible if d = qm, for all n, q, m and characteristics p^O.

The theory of linear groups shows that even if d = 1 there exists G such that
necessarily t /#<l>, A/U is infinite and H/A is non-trivial and, in positive characteristic,
infinite. Such examples can be combined with the above to produce examples exhibiting
simultaneously and non-trivially all the facets of Theorem 1.

The proof of Theorem 2

Here we have d = qm and n= 1. Let A be any maximal abelian normal subgroup of G
and set H = CG(A). By 3 we have that (G:H) divides qm. Let S be the maximal soluble
normal subgroup of H, which exists, note, since G is isomorphic to a linear group (of
degree qm over a maximal subfield of D for example). Let B/A be an abelian normal
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subgroup of G/A in S/A, and maximal among such. Then B n CG(B) = A by the maximal
choice of A and so C^B) = A by the maximal choice of B. By the theory of linear
groups (e.g. the Lie-Kolchin theorem) S has an abelian subgroup of finite index that is
normal in G. Hence (S:A), and in particular (B:A), are finite.

Clearly B is nilpotent of class at most 2 with centre A. If At is a maximal abelian
subgroup of B then Ax is normal in B and Al = CB(A1). Thus (B:At) divides qm by 3. If
P/A is the Sylow p-group of B/A for p^q then P^Alt P is abelian and so P = A.
Therefore B/A is a finite q-group, say of exponent qe. Since B is nilpotent of class at
most 2, so B' has eponent dividing qe. Thus if e> 1 then AB"'~' is abelian and hence is
A. Consequently B/A is an elementary abelian q-group. Let T denote the torsion
subgroup of B. Since H' is periodic we have [B,H

5. / / G is soluble and T is abelian then A = H.
For here T lies in A and / / centralizes A and B/T By stability theory H/CH(B) is

isomorphic to a subgroup of Horn (B//4, T). The latter is a finite ^-group since B/A is a
finite q-group and T is abelian of rank at most 1. As G is soluble, S = H and CH(B) = A.
Therefore G/A is a finite g-group.

Suppose A^H. Then there exists heH/A such that /L4 is central in G/A. But then
</i,/4> is an abelian normal subgroup of G greater than A. This contradiction shows
thatA = tf.

Assume from now on that 5 does not apply.

6. Then charF=0 and either (1) G is insoluble or (2) G is soluble, q = 2 and
T = Q(AnT) where Q is (locally) quaternion of order 2" and 3^a^oo .

For suppose charF#0. By [4, 2.3.1] the group H' is abelian, so G is soluble. By the
same result T is abelian. Thus charF = 0. Suppose G is soluble. Then as 5 does not
apply T is non-abelian. Then T = QxQt where Q is a 2-group and Qt is a 2'-group, and
necessarily Qt is abelian (see [4, 2.5.3]) and Q is (locally) quaternion (see [4, 2.1.2]). In
particular Q^A, so T = Q(AnT). Finally B/A is a q-group and T/(AnT) is a
non-trivial 2-group, so q = 2.

7. / /G is so/uh/e and (T:AnT) = 2 then A = H.

Here / / stabilizes the series < l > ^ / 4 n T ^ T ^ B . Stability theory produces embeddings
of H/CH(B/AnT) into the finite 2-group Horn(B/AT, T/An T) and of
CH(B/AnT)/CH(B) into the finite 2-group Horn (B/A, A n T). Thus G/A = G/CH(B) is a
finite 2-group and we obtain A = H exactly as in the second paragraph of the proof of 5.

8. Assume G is soluble and 5 and 7 do not apply. Then a = 3, there is an element g of
G of odd order modulo A not centralizing Q, B = QA, (G:H) divides 2m~l and H/A is
isomorphic to Alt (4) or Sym (4).

Note that 7 and 8 settle completely Case (2) of 6. Suppose a>3 . Then Q has a
characteristic abelian subgroup Al of index 2. Then A^A. Consequently (T:AnT) = 2
and 7 applies. Hence a = 3. Now suppose no such element g exists. The outer
automorphism group of Q is Sym (3). Thus there is a (cyclic) subgroup of Q of order 4
and normal G. Again this implies that (T:AnT) = 2 so such an element g does exist.
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Suppose QA^B. Now G/H is a finite 2-group and H centralizes the finite 2-group
B/QA. Hence there exists beB\QA such that [b,G] = ^QA. If b centralizes Q then the
centre of QA(b} is normal in G and contains A(b). This contradicts the maximality of
A and so b induces an automorphism of Q of order 2. If b induces an inner
automorphism of Q there is some fcj in QAb centralizing Q. Replacing b by bt produces
a contradiction. Thus b induces a non-trivial outer automorphism of Q. Therefore

<b,g>Q/C<b.t>Q(Q)Q £ Sym (3) £ Out (Q).

But the image of Bn<b,g>(? in Sym (3) is then a non-trivial normal 2-subgroup of
Sym (3). This contradiction shows that B = QA.

Thus A = CH(B) = CH(Q) and H//4 embeds into the automorphism group of Q, which
is isomorphic to Sym (4). Moreover H/A contains the non-trivial element gA of odd
order and the normal Klein 4-subgroup QA/A. Thus H/A is isomorphic to Alt (4) or
Sym (4).

It remains only to prove that (G:H) divides 2"1"1 and we know already that it divides
2m. Let y be an element of Q of order 4. Then A(y} is abelian and (G:NG(A(y})) divides
3. By 3 again (NG(A{yy): CG(A<y») divides 2m. Also (Q:CQ(y)) = (Q:(yy) = 2, so 2 divides
(ff:CG(yi<3>»). Hence 2(G:H) divides (G:CG(A(y})), which divides 2m3. Since (G:H) is a
power of 2, it follows that (G:H) divides 21""1.

Assume from now on that Case (1) of 6 holds. Let L = H' and C = CG(L). Then L is
locally finite and insoluble, so by Amitsur's theorem (see [4, 2.1.4 or 2.1.11]) we have L
isomorphic to SU2,5). In particular CnL = < —1>.

Let E be the Q-subalgebra of D generated by L. Then £ is a quaternion algebra over
Q(V5), see the proof of [4, 2.1.11]. In particular (£:Q) = 8. Thus F£ = F[L]gD is a
non-communative division F-algebra of dimension over F at most 8. Since FE has
dimension a square over its centre, this degree must be 4 and

4|(F£:F)|(D:F).

Therefore:

9. we have q = 2.

The automorphism group of SL(2,5) is PGL(2,5) S Sym (5). Thus either G = CL and
G/CsAlt(5), or(G:CL) = 2 and G/CsSym(5).

10. Suppose G = CL. Then A = CnH, H = AL, H/A^A\t(5), (G:H) divides 2m~l and
G/A = C/A x H/A.

For clearly the 2-group G/H is soluble, so C is soluble. Also G/C is simple, so every
abelian normal subgroup of G lies in C. Further [C, L] = < 1 > and CL = G, so the abelian
normal subgroups of C are exactly the abelian normal subgroups of G. In particular A
is a maximal abelian normal subgroup of C. Let Q be a Sylow 2-subgroup of L, so Q is
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quaternion of order 8, and let y be an element of Q or order 4. Then A(y} is a maximal
abelian normal subgroup of CQ, for if A^A^y) is abelian and normal in CQ, then
Alr\C = A and CA^CQ as y is central in CAV But (CQ:C) = 4 and (C<>>>:C) = 2.
Therefore C<y> = C/l1 and A(Ky} = A1 as claimed.

By 8 we have -4<j>> = CCQ(/Kj>» and (C6:/4<}'» divides 2m. Hence
Cn-4<3»> = A Also -leAn<y\ CQ/<-l> = C/<- l> x Q / < - l > and
Consequently (C:A) divides 21""1. Clearly H=(CnH)L = AL and G = CH. Hence
G/A = C/AxH/A, H/A^G/C^A\t(5) and (G://) = (C:/4) divides 21"-1.

Assume now that G/CL. Pick geG\CL with g2eC. Since G/CsSym(5) has no
non-trivial abelian normal subgroups, again the abelian normal subgroups of G lie in C.
In particular A^C and AL^H.

11. Wehavem^2.

For suppose otherwise; that is assume (D:F) = 4. Now £ = Q[L]^£> has degree 4 over
Q(V5) and FE = F(J5)®QUS)E, for example by [2, p.218, Theorem 4.7]. Hence

Therefore F£ = £>, F(V5) = F and Q(V5) is central in D. Thus g induces a Q(V5)
automorphism of £ by conjugation.

By the Skolem-Noether theorem (see [2, p. 222]) there exists e e £ inducing by
conjugation the same automorphism of £ as g. Now £ naturally sits inside the real
quaternion algebra U(E). Then R(e) ^ UE, as a non-trivial finite extension of R, is a copy
of C. Since g 2 eCwe have e2eR, e4 R- Hence e = <xf for some non-zero real a and some
feU(e) with / 2 = — 1. Clearly / induces by conjugation the same automorphism on L
as e and g. Therefore </>L is a finite insoluble subgroup of the division algebra UE not
isomorphic to SIJ2,5). This contradiction of Amitsur's theorem proves that m ̂  2.

We make one further subdivision, according to whether or not H ^ CL.

12. Suppose H^CL. Then A = CnH, H = AL, H/A^A\t(5), {G:H) divides 2""1,
CL/A = CM x HI A and G/C s Sym (5).

Notice here that H/A is not a direct factor of G/A, for if it were we would have
G = H.CG(H/A) and Sym(5) = Alt(5).CSym(5)(Alt(5)). This is really the distinguishing
feature between Cases 10 and 12.

A is actually a maximal abelian normal subgroup of <g>C for if Av ^.A is abelian and
normal in <g>C, then Al^H^CL, so /lj g<g>CnCL = C Thus At is normalized by
<g>C and centralized by L and therefore At is normal in (gyCL = G. Consequently
At=A. Again G/H and C are soluble. There is a Sylow 2-subgroup Q of L normalized
by g with a subgroup <>>> of order 4 inverted by g. Suppose A2^A(y) is an abelian
normal subgroup of <g>Cg. Then A2n(g)C = A, (CQ:C) = 4, (C<y>:C) = 2 and y is
central in CA2 but is not central in CQ. But
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Therefore C/l2 = C<y>, A2 = A(y} and A(y} is a maximal abelian normal subgroup of
<g>CQ.

By 8 we have that -4<y> = C<g>CQ(/4<y» and (<£>C<2:/i<y» divides 2m. In particular

Also L^H^CL, so H = {CnH)L = AL, CL = CH and CL/A = C/AxH/A. Further
and(G://) = 2(C:/l). But

divides 2m. Therefore (C:A) divides 2"1"2 and (G:H) divides 21""1. Finally that
G/C = Aut(L) = Sym(5) we have already recorded.

13. Suppose H£CL. Then A = CnH, H/A^Sym(5), (G:H) divides 2m'2 and G/A =
C/A x HI A.

Here G = CH. Again C is soluble. Let Ai^A be a maximal abelian normal subgroup
of C. By 8 we have A1 = CC(A1) and (C:<4,) divides 2m. Clearly CL normalizes Ax and
A^r\A\ is normal in G. The maximality of A yields that A = A1nAg

1 and C/.4 is a finite
2-group. Hence (g}C/A is also a finite 2-group.

Suppose A^CnH. Then there exists bsCr\H\A such that (b}A is normal in <g>C.
Then (b}A is abelian and normal in (g}CL = G. This contradiction of the maximality of
A proves that A = CnH. In particular G/A = C/AxH/A and H//4sG/C^Sym(5). We
can choose geH and then H = <g>/4L and g2 e C n / / = /4 in this case.

Sym(5) contains a 5-cycle acted on faithfully by a 4-cycle, e.g. (12345) and (2354).
Thus L contains e of order 5 and an element k such that gk normalizes <e> and acts on
it as a 4-cycle, and (gk)2=g2l where / has order 4. We claim that /4<e> is a maximal
abelian normal subgroup of C<e,gfc>. It certainly is abelian and normal. Suppose
/42^/4<e> is abelian and normal in C(e,gk}. Now C<e,g/c>/C is the holomorph of a
cyclic group of order 5. Thus i42^C<e>. But CnA2^CnH = A and so A1 = A(es) as
claimed. From 8 it follows that (C{e,gk}:A(e}) divides 2m. Now (C(e,gk):C(e,g2l)) =
2,C(e,g2iy = C(e,l>, CL/<-l> = C/<-l> xL/<- l> and / 2 = - l . Thus

Consequently (G:H) = (C:A) divides 2m~2.

14. Some further examples

We have seen in 4 that Case (1) of Theorem 2 does arise for all q, m and charF. We
concentrate here on Cases (2) and (3) and consider first the types where Sym(5) is not
involved.
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Let L be the binary tetrahedral group SL(2,3), the binary octahedral group or the
binary icosahedral group SL(2,5). We can regard L as a subgroup of the real quaternion
algebra R. Let yi,...,ym-i be commuting indeterminates over R. For each i let £,• be the
K-automorphism of the function field E = R(yl ym-i) defined by

(Kronecker d). The skew polynomial ring £[x l J . . . ,x m _ 1 ] , where each xf acts on E as £,-,
is a Noetherian domain, and therefore has a division ring D of quotients. Let F =
R (xf,yf: l^i<m). Then F is a central subfield of D with (D:F) = 22m. If Q is a Sylow
2-subgroup of L then Q is quaternion of order 8. Let yeQ have order 4. Then
(x?,yhy:l^i<my is a maximal abelian subgroup of index 2m of the nilpotent group
(Q,xhy,: 1 gi<m> of class 2. Hence by 3 the degree of D over its centre is at least 22m

and therefore F is the centre of D.
Let C = <xi,j'1:l^i<m>, G = CL and i4 = <-l ,Xi, . . . ,x^_1,y1, . . . ,ym_1>. Then G is

the central product of C and L, C n L = < —1>, /4 = CC(/1) is a maximal abelian normal
subgroup of G, / / = CG(/4) = /4L and (G:/J)=(C:/l) = 2m-1. Further H / 4 s L / < - l ) s
Alt (4), Sym(4) or Alt (5).

The question arises as to whether there is any better choice of A. Let Ax be any
maximal abelian normal subgroup of G. If LsSL(2,5) then G/C is simple and At^C.
Thus At is also a maximal abelian subgroup of C. Hence with Hl = CG(A1) we have
H^AiL, HJA^AhiS) and {G:Hl)=(C:Al) = 2m~1.

Suppose now that L is soluble. Then 2/< — 1 > is the unique non-trivial abelian
normal subgroup of L/< —1>, so AX^CQ. Suppose Ai £C. Since CAt is normal in G we
have CAi = CQ. Let a = cx where aeAu ceC and xeQ, with x of order 4. There exists
/eL of order 3 with g = <x,x'>. Then A^ contains a = cx and [a,/] = x"1xl. The latter is
either x'2 of x"'2. Thus Ax contains x,x' and hence Q. This contradiction shows that
A^C. Then with / / 1 = CG(/41) we obtain A1 = C(j(tA1), f/1=/41L, W1/X1sAlt(4) or
Sym(4) and (G:H1) = 2m~l. We have thus constructed examples as in 8 and 10.

It is possible to produce a number of variations of the above construction. Suppose L
is soluble. Then either L = </>Q where |/| = 3 or L = </><fe>6 where |*| = 3 and / 2 = - l .
With the division ring D constructed above now set

G = CQ<2/> and /1 = < - I , x f , . . . , x 2 _ 1 ^i, • • • ,ym-1,8 = <2/>3>

in the first case and

G = CQ(k,2l> and A = < - l , x? , . . . , x i_ 1 , y1,...,ym-l, - 4 = (2/)2>

in the second. Then these are examples that in the first case does not contain a binary
tetrahedral subgroup and in the second does not contain a binary octahedral subgroup.
Of course if G is not soluble G must contain a binary icosahedral subgroup.

In Theorem 2, if H/A s Sym (4) then necessarily G = HCG(Q). If H/A s Alt (4) then one
can have (G:HCG(Q)) = 2, at least if m^.2. Briefly one can construct a division ring
D = R(xhyhe,f: 1 ^i<m— 1) of degree 22m over its centre, where /? and the x, and y{ are
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as above, e and / centralize R{xi,y(. l^i<m— 1) and efe = f. Suppose L = </)<fc>Q is
binary octahedral, where we have chosen / and k so that kl=lk2. Now set

G = {ek,fl,xi,yi,Q:l^i<m-l)

and

Then with H = CG(A) we have H//ls<fe>e/<-l>sAlt(4) and (G:HCG(Q)) = 2.
We now consider types that do involve Sym(5). In the quaternion algebra Dt =

F, ® Fli@FJ@F1ij over F ^ Q U / 5 ) let x = - i - ^ l + J5)j-&l->J5)ij and y = x2./.
Then (multiplicatively) x has order 3, y has order 5 and (xy)2 = — 1 is central of order 2.
Thus <x,y> is an image of SL{2,5), cf. the proof of [4, 2.1.11], with non-trivial centre.
Consequently <x,_y> is a copy of SL{2,5).

Define the automorphism y of Dj of order 2 by

Then xy = x and yy = x2ij= —yi. But

so y7e<x,_y> and y normalizes <x,y>. It also normalizes the Sylow 2-subgroup <i,./> of
(x,y}, but does not normalize <_/>. It follows that y induces an outer automorphism of
<x,y>. The automorphism group of <x,_y) is Sym(5) with Alt (5) corresponding to the
inner automorphism group.

The skew polynomial ring R2 = Dl[g^\, with g acting on Dt as y, is a Noetherian
domain. Let D2 be its division ring of quotients and denote the centre of D2 by F2.
Then F2 = Q(g2) and (D2:F2) = 2\ Let G2 = <g,x,y\ A2 = <g2,-l) and H2 = CGl(A2).
Then A2 is the unique maximal abelian normal subgroup of G2, H2 = G2, H2/A2^
Sym(5)and(G2:tf2) = 2°.

Let m > 2. Exactly as in the previous class of examples we can construct an extension
division ring D of D2 with dimension 22m over its centre F and a subgroup G = CG2 of
D* where [CG^] =<1>, CnG2 = <-1> and C has the presentation

C = <x;, yhz,i=l,2,...,m-2: [x,-, ̂ ] = [xf, Xj] = [>-,•, y,-] = [xi;z] = [^, 2] = 1,

l>,-, J'i] = z, z2 = 1 for all i, j , i # ;>.

If A is any maximal abelian normal subgroup of G then A = ACA2, for Ac some
maximal abelian normal subgroup of C. Then J/ = CG(/l) = /icG2, H/A^Sym(5) and
(G:H) = 2m-2. Also L = //' = <x,y> and CG(L) = C42) so G = CG(L)L. This is an example
of a group as in 13.

Suppose m>2. Set
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and Ho = CGo(Ao). Then Ao is a maximal abelian normal subgroup of Go, H0 = A0(x,yy,
HoA4o = Alt(5) and (G0:H0) = 2n>-1. If we set LO = H'O and C0 = CGo(L0) then L0 = <x,y>,
C0 = <x2,...,xm_1>/40 and C0L0^G0. Thus this is an example as in 12.

For this final example we needed m>2. If m = 2 we can construct an example as
follows. Let El = D1(h) be the (ordinary) ring of rational functions in the one variable ft.
Define the automorphism 5 of Et of order 2 by <5|Ol = y and h' = h~1. Form the skew
polynomial ring S2 = El[g] with g acting on Et as S. Then S2 has a division ring E2 of
quotients that has degree 4 over its centre. Set G = <g, /i, x, y>. Then A = <g2, ft, — 1 > is
the unique maximal abelian normal subgroup of G, H = CG(A) = A(x,yy, H/A^Alt(5)
and (G:H) = 2. Again L = H' = (x,y\ CG(L) = A and CG(L)L = <g2, ft, x, >>> # G. Thus this
gives an example as in 12 with m = 2.

The proof of Theorem 3

As in the proof of Theorem 1 we may assume that G is completely reducible. Let A
be a maximal abelian normal subgroup of G, set H = CG(A) and assume H/A is periodic.
Let S denote the maximal soluble subgroup of H. By the Hartley-Shahabi theorem (see
[4, 2.5.14]) there is a soluble characteristic subgroup M of H' with (H':M) n-bounded
(take M = H' if charF#0). Then CH(H'/M) is a soluble normal subgroup of H with
n-bounded index. Therefore (H:S) is n-bounded.

Let N denote the Fitting subgroup of S'. By either 2.3.1 or 2.5.2 of [4] there is an
abelian characteristic subgroup of N with n-bounded index. Thus (N:AnN) is n-
bounded. Consequently so is (S:Cs(N/Ar\N)). By stability theory Cs(N/AnN)/Cs(N) is
isomorphic of a subgroup of

Hom(N/AnN,AnN).

Now (N:AnN) is n-bounded and AnN has rank at most n by [4, 2.3.1 or 2.5.1].
Therefore the order of

Hom(N/AnN,AnN)

is n-bounded and consequently so is the index of C = CS{N) in H. Further C'^S'n
Cs(N)-gNnCs(N), since N is the Fitting subgroup of the soluble (linear) group S'. Thus
C ^ A and C is nilpotent of class 2.

By the theory of linear groups (especially the Lie-Kolchin theorem) S has an abelian
subgroup of finite index that is normal in G. Therefore (S:A) is finite. Standard
arguments and the maximality of A (cf. the proof of Theorem 2) show that each Sylow
subgroup of C/A is elementary abelian. Suppose we can prove that (C:A) divides acf,
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where a is n-bounded. Let QJA be the Sylow <?-subgroup of C/A. Then (H:6i) is
n-bounded and hence so is (G:CK(/J/6i), where K is as in 3, that is K/H is a finite
q-group (its order dividing qmn) and (G:K) is n-bounded. Now CgiH/Q^/Q^ is nilpotent.
Let T/Ql=0q(G/Ql). Then the above shows that (G:T) is n-bounded. Also T/A is a
finite q-group so there exists Q2 normal in T with /4r^Q2 = 6i> (62:/*) dividing g* and
(61 = 62) dividing a. Set 6 = n 9 e c 6 i Then Q is a normal subgroup of G with A^Q^H,
Q/A is an elementary abelian 4-group of rank at most b and (H:Q) is n-bounded since
(61, 6) divides a(G:T).

Thus we have to produce a bound for (C:A). Consider the notation of the proof 3.
For i>s let F, denote the unique F,, j^s acting faithfully on V{, this agrees with the
definition for i^s. Let Cj = C/Cc(Vj) and let At denote the centre of Ct. Now C'^Fi, so
C; has rank at most 1. If P/As is a Sylow subgroup of CJAt then P/Ai is a
non-degenerate alternating space where the form is the commutator operation and
maximal totally isotropic subspaces of PjAt correspond to maximum abelian subgroups
of P. The different P commute elementwise. Thus Ct has a maximal abelian subgroup
An ~2.A, such that

Now C, lies in the centralizer S, of F, in EndD V,^Dl"Xl". Also dimFF, = d,g"" for some
dj\ni and m^m. Then Sf has dimension nfq2m/diqmi over F and hence dimension sf, for
Sj = ni^m~m'/di, over F, by [2, Theorem 4.11, p. 224]. By the same result S, is a matrix
ring of degree, say th over a division ring D,. Since S, is a subring of EndD V{ we have
that tj divides n,. Also if ef is the dimension of D, over its centre (F, in fact) then e.t,-
divides (actually equals) s,. Now the unipotent radical of C, in EndD Vh and hence in S;

is trivial. Thus by 3 applied to C{ as a subgroup of S,- we obtain that (C^An) divides
(t,!e,)"(t,!). Thus (CM) divides (ni=i("jO" + 1(»»i«"""lM)"1)2- Consequently (C:A) divides
aq6 where a = (M!)6n say is n-bounded and b = 2mr — T?£umi. Certainly, therefore, Q/A has
rank at most 2mn. Further C has an abelian subgroup AX~^.A such that (C-.A^ divides
(aqb)112, so Qr\Ax is an abelian subgroup of Q with (Q-.QnAJ dividing qmr-Zm>, In the
proof of 3, the order of G,, in the above notation, divides d^"". Thus K/H is a subdirect
product of s groups, the ith of which has order dividing qm'. Hence

i = l

and

log,(e:/l)(K:H)^2mr- £ m;g

The proof is complete.
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