
J. Austral. Math. Soc. (Series A) 46 (1989), 308-312

ON THE PROJECTIVE COVER OF AN ORBIT SPACE

K. K. AZAD and GUNJAN AGRAWAL

(Received 13 April 1987)

Communicated by J. H. Rubinstein

Abstract

In this paper, we obtain the projective cover of the orbit space X/G in terms of the orbit space
of the projective space of X, when X is a Tychonoff G-space and G is a finite discrete group.
An example shows that flniteness of G is needed.
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1. Introduction

An action of a topological group G on a topological space X is a continuous map
0 from G x X to X satisfying 6(e,x) — x and 0(gi,0(g-2,x)) = 0(gig2,x), where
ffii 32 6 G and e is the identity of G: a topological space together with a given
action is called a G-space. A subspace Y of X is called invariant if 0(G xY) CY,
that is, Y becomes a G-space with the action induced by 9. Denote 6(g, x) by
gx. For x € X, the set Gx — {gx\g G G} is called the orbit ofx. The collection
of orbits is denoted by X/G and the topology on it is coinduced by the map p
from X to X/G taking x to its orbit Gx. The space X/G is called the orbit space
of X (with respect to G). The map p will be called the orbit map. It is open
and if G is compact, it is closed as well.

The complete Boolean algebra of regular closed sets of a space X is denoted
by R(X) and its Stone space by S(R(X)). Denoting the closure and the interior
of a set A in X by C\A and Int.4, respectively, we recall that a set F in X is

© 1989 Australian Mathematical Society 0263-6115/89 SA2.00 + 0.00

308

https://doi.org/10.1017/S1446788700030780 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030780


[2] On the protective cover of an orbit space 309

regular closed if F = C l i n t F , t he complement Fc of F in R(X) is C1(X - F)
and the meet F i A F% of regular closed sets F i and F2 of X is Cl(Int F\ ("I Int F2)•
The Stone-Cech compactification of X is denoted by f3X. The m a p g from
S{R{pX)) to /3X taking a maximal filter &~ of regular closed sets of j3X to f ) ^ "
(the singleton f| ^ " is identified wi th the point in it) is known to be continuous
and irreducible. The projective cover of X is the pair (E(X), h), where E(X) =
g~1(X) and h: E(X) —> X is the restriction of g; E(X) is called the projective
space of X . Projective covers have been constructed using different methods
by Gleason (1958), Rainwater (1959), Strauss (1967), Banaschewski (1968) and
Hager (1971).

Recently, Srivastava (1987) has extended an action of a discrete group G on a
space X to an action on /3X, which keeps X invariant. In Section 2 of this paper ,
after introducing an action on S(R{X)) th rough the given action of a discrete
group G on X , and passing to the extended action on /3X, we find E(X) to be
an invariant subspace of S(R{f3X)); thus E(X) becomes a G-space. We study
the projective cover of an orbit space in Section 3. It is obtained tha t , in case G
is finite, S{R{X/G)) is homeomorphic to S{R{X))/G. Since E(X) is S(R{X))
if X is compact, E(X)/G is homeomorphic to E(X/G) for a compact G-space
X with G finite. Taking X to be an arbitrary Tychonoff G-space, and passing
to its Stone-Cech compactification we establish E(X)/G to be homeomorphic to
E(X/G) with the application of the same result obtained for a compact space,
to /3X. Finally, an example is provided to show that the orbit space of the Stone
space of R(X) need not be homeomorphic to the Stone space of R(X/G).

For terms not explained here we refer to Willard (1970), Bredon (1972) and
Walker (1974).

2. Action on E(X)

Let Z be a zero-set of a G-space X. Then for a e G, a • Z = {a • z\z G Z} is
also a zero-set of X. It is easily seen that for a z-ultrafilter &~ on X, the family
a -&~ consisting of a • Z, Z € &~, is a 2-ultrafilter on X. Taking G to be a discrete
group, the map t/>: G x 0X —• /3X given by ip(a,&~) — a • &~ defines an action
of G on (5X keeping X invariant [see Srivastava (1987)].

In a similar way, the action on a G-space X, where G is a discrete group,
gives rise to an action u of G on S{R(X)). In fact, v.Gx S(R(X)) -• S(R{X))
is a map which sends (a, ^") to 0 • 9~ = {a • F\F 6 &~}. If !F is a maximal filter
of regular closed sets of 0X, then a • 9~ is also a maximal filter of regular closed
sets of 0X such that f]a • &" is the point a • p in /3X, where p is f)&~. Noting
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that X is an invariant subspace of 0X, we have

2.1 LEMMA. E{X) is an invariant subspace ofS(R(/3X)).

3. The orbit space S(R(X))/G

Throughout this section, unless stated otherwise, G will denote a compact
group. Let X be a G-space and let p: X —> X/G be the orbit map. Then, for
& G S{R(X)), the collection {p{F)\F G 9") is denoted by p{9~). We state the
following Lemma without proof.

3.1 LEMMA. We have
(i) p(F) G R{X/G), whenever F G R{X);
(ii) p-\H) G R{X), whenever H G R{X/G);
(iii) for H e R(X/G),p-HHc) = {p-l{H)f;
(iv) p[&) G S{R{X/G)), whenever 9" E. S{R{X)).

3.2 PROPOSITION. The map S{p): S{R{X)) - • S{R{X/G)) defined by S(p)
& e S(R(X)), is onto and continuous.

PROOF. Let %? e S(R(X/G)) and let 9~ be a maximal filter in R(X) con-
taining the filter generated by p~1(^'). Then p{&) = <%*, which proves that
S(p) is onto. The continuity of S(p) follows by noting that, for & G S(R(X)),
H G p{&) if and only if p'^H) G 9.

3.3 LEMMA. Let X be a G-space, where G is a finite discrete group and let
9r, %f G S(R{X)). Then p{&~) = p{J?) if and only if 9~ = a • %* for some
a EG.

PROOF. We prove the necessary part only. Suppose to the contrary that
& ^ a • 3?, for any a G G. Then, for each a G G, there exists an Fa G 9~ such
that Fa ^a-Zf. Put F = /\aeG Fa. Then F G & and F £ a-%', for any a G G.
Since, for each o 6 G, a • J " is a maximal filter, there exists Ha G 21? such that
F A a - H a = 0 . L e t H = /\aeG H a . T h e n , f o r e a c h a G G , F A a - H = 0 ,
that is F n a • Int # = 0 . For /i G Int H, Gh ^ Gx, for any x G F and hence
p(F)np(Inti/) = 0 . This implies that Intp(F)nClp(Int#) = Int p(F)Dp{H) =
0 and therefore p(F) A p{H) = 0 . Hence p{&) ^ p ( ^ ) .

The above lemma gives rise to an injective map pa :S(R(X))/G —> S(R(X/G))
defined by PG{Ggr) = p ( ^ ) , G? G S(R(X))/G. Since 5(p) is the composition
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of the orbit m a p q: S(R(X)) —> S(R(X))/G wi th pc, it follows t h a t PG is con-
tinuous and onto. From the compactness of S(R(X))/G, we obtain that po is a
homeomorphism. Thus we have the following theorem.

3.4 THEOREM. If G is a finite discrete group and X is a G-space, then
S{R{X))/G is homeomorphic to S(R(X/G)). In particular, if X is compact
then E{X)/G is homeomorphic to E{X/G).

Note that the above theorem determines the projective cover of the orbit
space X/G in terms of the orbit space of the projective space of X, when X is
compact and G is finite. Using this result, we generalize it below to an arbitrary
Tychonoff G-space.

Let G be a finite discrete group and let X be a G-space. Since X/G is a dense
subspace of 0X/G, the projective space E(X/G) of X/G is hp1(X/G), where
{S(R{/3X/G)), hp) is the projective cover of QX/G. In view of Lemma 2.1, E(X)
is a G-space. Now we have

3.5 THEOREM. Let X be a G-space, where G is a finite discrete group. Then
E(X/G) is homeomorphic to E(X)/G.

PROOF. Let q: 0X -»• (JX/G be the orbit map. Then the map

qG: S{R(PX))/G - S(R{/3X/G))

defined by qG{G&) — q{9), where 9~ e S(R((3X)), describes a homeomorphism
[see, Theorem 3.4]. Since, f o r ^ € S(R{/3X)), f\^ e X if and only if f]q{^) €
X/G, it follows that qG{E(X)/G) = E{X/G) and we have the result.

3.6 REMARK. Let (E(X/G),gi) be the projective cover of X/G. Then, in
view of Theorem 3.5, (E{X)/G,hi) can be regarded as the projective cover of
X/G, where hi is the composition of the restriction of the homeomorphism qG

to E(X)/G and g\. It may also be noted that h\ maps an orbit Ggr, 9~ € E(X),
to the orbit in X/G determined by f) 9.

3.7 EXAMPLE. Let D be the open interval (0,1) of the real line. Consider
the G-space D, where G is the discrete group consisting of all non-decreasing
homeomorphisms from D to D (group operation being the composition of home-
omorphisms) and the action 6 of G on D is given by T • x — T(x), x € D,
T € G. Let 9" be the filter in R{D) generated by the collection consisting of
regular closed sets containing 1/4 in their interiors, and closed intervals [s, 1/4],
0 < s < 1/4; and let <%* be the filter in R{D) generated by the collection consist-
ing of regular closed sets containing 3/4 in their interiors, and closed intervals
[3/4, t], 3/4 <t< 1. It is easy to check that both 9 and %? are in S(R{D))
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and t ha t 9" ^ T • <%*, for any T G G. This shows tha t Gy- and G# are distinct

and bo th belong to S{R(D))/G, whereas S{R{D/G)) is the singleton.
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