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On Locating Isometric �(n)
1

Anthony Weston

Abstract. Motivated by a question of Per Enflo, we develop a hypercube criterion for locating linear
isometric copies of �(n)

1 in an arbitrary real normed space X.
The said criterion involves finding 2n points in X that satisfy one metric equality. This contrasts

nicely to the standard classical criterion wherein one seeks n points that satisfy 2n−1 metric equalities.

1 Introduction and Terminology

The study of hypercubes (or, more simply, n-cubes) spans several areas of mathe-
matics, ranging from Banach space theory to problems in complexity. See, for ex-
ample, the papers of Enflo [E], Bourgain, Milman, and Wolfson [BMW], Lövblom
[L], Lennard, Tonge, and Weston [LTW2], and the monographs of Deza and Laurent
[DL], and Pisier [P].

In order discuss our hypercubes, which are a priori non-linear, and to motivate the
hypercube criterion that is the topic of this paper, it will be helpful to comment on the
properties of some well-known linear cubes. To this end, the 2n points C = {0, 1}n

form a natural n-dimensional cube in �(n)
p , p ≥ 1. In relation to C, the terms “edge”

and “diagonal” have their natural and well established meaning. If E denotes the set
of edges in C and D denotes the set of diagonals in C, then∑

e∈E

‖e‖1 =
∑
d∈D

‖d‖1(1.1)

while ∑
e∈E

‖e‖p >
∑
d∈D

‖d‖p(1.2)

if p > 1.
In this paper, we shall be interested in the following situation: consider an arbi-

trary collection C of 2n distinct points in a normed space (X, ‖ · ‖) where each point
in C is indexed by a distinct {0, 1}n vector. C now presents itself as a non-linear n-
dimensional cube, with edge and diagonal terminology determined via the indexing
vectors in the natural way. Let E denote the set of edges in C, and let D denote the
set of diagonals in C. In a private communication, Per Enflo asked the following
question. If such a non-linear cube C satisfies the equality∑

e∈E

‖e‖ =
∑
d∈D

‖d‖(1.3)
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does it follow that X contains a linear isometric copy of �(n)
1 ? Our main result (Theo-

rem 2.4) answers Enflo’s question affirmatively.
Since hypercube terminology and notation is not entirely standardized we shall

presage the ensuing discussion with an important list of definitions and conventions.
This list includes some cube-combinatorial conventions that are likely peculiar to this
paper.

Throughout this paper, our scalar field is the set of real numbers.

Definition 1 An n-dimensional hypercube (or, more simply, an n-cube) in a normed
space X is a set of 2n distinct points in X where each point in the set is indexed by a
distinct n-vector with coordinates chosen from the set {0, 1}. The points in such an
n-cube will be denoted by their indexing vectors only. In other words, {0, 1}n ⊆ X,
unless context dictates otherwise.

Two points, or vertices, in an n-cube will be called a edge if their two (indexing)
vectors vary in precisely one coordinate.

Suppose e1 and e2 are the endpoints of a given edge in an n-cube, with e1(k) = 0
and e2(k) = 1 for some k, 1 ≤ k ≤ n. Let v denote the (n − 1)-vector obtained by
deleting the k-th coordinate (of the indexing vector) of e1 (or e2). Then xk

v will denote
the edge vector that initiates at e1 and terminates at e2. In other words, xk

v = e2 − e1.
This notation will be very expedient later.

Two points, or vertices, in an n-cube will be called a diagonal if their two (index-
ing) vectors vary at each coordinate.

The opposite of a vertex e ∈ {0, 1}n is the vertex ē ∈ {0, 1}n for which the pair
(e, ē) forms a diagonal.

For a given k, 1 ≤ k ≤ n, there are 2n−1 edges in an n-cube whose endpoint
indexing vectors (pairwise) vary in the k-th coordinate. These edges will be called
parallel, or k-parallel if we need to be more precise.

Let F1 denote the set of vertices in an n-cube whose first coordinate is +1. We shall
refer to F1 as the distinguished face of the n-cube. The distinguished face allows us to
write the set of diagonal vectors of an n-cube as {de | e ∈ F1} where de = e− ē is the
adopted convention.

Between any two vertices in an n-cube there are connected paths of non-parallel
edges. Such paths will be referred to as short. If the vertices in question are the
endpoints of a diagonal, then there are n! distinct short paths between them.

Given n ≥ 2, we say that a normed space X contains a non-linear �(n)
1 -cube if there

exists an n-cube C in X such that the sum of the lengths of the n · 2n−1 edges equals
the sum of the lengths of the 2n−1 diagonals. In other words, (1.3) holds for C.

As noted in Weston [W], it follows from the proof of Enflo [E, Theorem 2.1], to-
gether with roundness computations from Lennard, Tonge, and Weston [LTW1] for
p > 2, that a normed space X which contains non-linear �(n)

1 -cubes for all n ≥ 2
cannot be uniformly homeomorphic to any Lp-space (be it commutative or other-
wise) with 1 < p <∞. For example, X could be �1, �∞, or any infinite dimensional
C∗-algebra.

To prove the result stated in the abstract the following theorem, from Weston [W,
Theorem 2.1], will be helpful.
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Theorem 1.1 ([W, Theorem 2.1]) Consider a non-linear �(n)
1 -cube C = {0, 1}n con-

tained in a normed space (X, ‖ · ‖). Then

(a) for a fixed k, 1 ≤ k ≤ n, any two k-parallel edges have the same length, and
(b) any two diagonals have the same length. Moreover,
(c) if S is a short path between the endpoints e and ē of a diagonal, then

∑
‖xk

v‖ = ‖e− ē‖

where the sum is taken over all edge vectors xk
v that lie in the path S.

We will refer to Theorem 1.1(c) as the Short Path Property.
Theorem 1.2 shows that the equality (1.3) imposes some ‘linear-like’ metric struc-

ture on a non-linear n-cube C, but falls short of showing the existence of a linear
isometry from a subspace of X onto �(n)

1 . In order to prove our main result (Theo-
rem 2.4) in the next section, we introduce a combinatorial strategy, based on short
paths, which allows the construction of a linear isometry from a subspace of the lin-
ear span of C onto �(n)

1 .

2 Parity and the Main Result

In this section, given an n-cube, we will be considering oriented short paths from ē to
e, e ∈ F1. More precisely, we adopt the convention that our short path initiates at ē
and terminates at e. This means that an edge vector xk

v in the oriented short path will
either be traversed positively or negatively.

Lemma 2.1 Consider a given n-cube {0, 1}n. Let e ∈ F1 be given, and consider the
diagonal vector de = e − ē. Consider an arbitrary edge vector xk

v with endpoint vertices
e1 and e2, where e1(k) = 0 and e2(k) = 1. (Note that e1 and e2, as {0, 1}-vectors, are
encoded in the edge vector notation xk

v.)

(i) If ē(k) = e2(k), then there are oriented short paths from ē to e that traverse −xk
v,

and none that traverse +xk
v.

(ii) If ē(k) = e1(k), then there are oriented short paths from ē to e that traverse +xk
v,

and none that traverse−xk
v.

Proof We give the proof of (i), noting that the proof of (ii) is similar.
Consider the sets M1 = { j | ē( j) �= e2( j)} and M2 = { j | e( j) �= e1( j)}. Then

{M1,M2, {k}} is a partition of {1, 2, . . . , n}. We begin by noting how to construct
oriented short paths from ē to e that traverse−xk

v .
Start by changing the M2 coordinates of ē, one at a time, until e2 is reached. Then

change the k-th coordinate of e2 to get e1. Finally, change the M1 coordinates of e1,
one at a time, to reach e. Such paths are clearly short. (Note that if, for example,
M2 = ∅, then ē = e2 and the process is simpler.)

To see that there is no oriented short path from ē to e that traverses +xk
v , note

the following: in going from ē to e1, the k-th coordinate must change. The k-th
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coordinate will then have to change again in order to go from e1 to e2. This is not a
short path.

Lemma 2.1 gives us the basis for a new concept that will play an important role in
the proof of our main result, Theorem 2.4.

Definition 2 Let xk
v be an arbitrary edge vector, and let de (e ∈ F1) be an arbitrary

diagonal, in a given n-cube {0, 1}n. We define the parity of xk
v w.r.t. de, denoted

(xk
v, de), to be +1 if there is an oriented short path from ē to e that traverses +xk

v , and
to be−1 if there is an oriented short path from ē to e that traverses−xk

v .

As an immediate consequence of Lemma 2.1, together with an examination of its
proof, we get the final lemma of this section.

Lemma 2.2 Let xk
v be an arbitrary edge vector, and let de (e ∈ F1) be an arbitrary

diagonal, in a given n-cube {0, 1}n. Then the parity (xk
v, de) is well defined with

(xk
v, de) =

{
+1 : if e(k) = 1

−1 : if e(k) = 0.

Moreover, if S is a short path connecting the vertices ē and e, then

de =
∑
xk

v∈S

(xk
v, de)xk

v.

Theorem 2.3 If a normed space X contains a non-linear �(n)
1 -cube {0, 1}n for some

n ≥ 2, then it contains a linear isometric copy of �(n)
1 .

In fact, given any oriented short path S between the endpoints of any given diagonal
in the n-cube, the set {xk

v | ±xk
v ∈ S} forms a basis for a linear isometric copy of �(n)

1 in
X.

Proof A standard result in linear functional analysis says that if a normed space X
contains non-zero vectors x1, x2, . . . , xn such that

‖x1 ± x2 ± · · · ± xn‖ =
n∑

k=1

‖xk‖(2.1)

for all possible combinations of sign, then the set {x1, x2, . . . , xn} forms a basis for a
linear isometric copy of �(n)

1 in X. We will appeal to this criterion shortly.
Since the linear span of {0, 1}n is finite dimensional, we may assume that our

ambient space is X = (�∞, ‖ · ‖∞).
Without loss of generality, by altering our definition of parity to reflect edge length

if necessary, we may assume that each edge in our n-cube {0, 1}n has length one.
Consequently, each diagonal of the n-cube will have length n by the Short Path Prop-
erty.
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Globally, the rest of our proof will be concerned with the specific diagonal d f =
f − f̄ , where f = (1, 1, . . . , 1). However, all other diagonals in the n-cube will play
important roles. Moreover, in the global sense, we shall be specifically concerned
with the oriented short path x1

v1
, x2

v2
, . . . , xn

vn
from f̄ to f defined by the following

(n− 1)-dimensional vectors:

v1 = (0, 0, 0, . . . , 0)

v2 = (1, 0, 0, . . . , 0)

v3 = (1, 1, 0, . . . , 0)

...

vn = (1, 1, 1, . . . , 1)

For symbolic economy, we shall set xk = xk
vk

for each k, 1 ≤ k ≤ n. (Note that
the following arguments can be cosmetically altered to suit any oriented short path
connecting the endpoints of any diagonal in the n-cube.)

Our aim is to show that {x1, x2, . . . , xn} forms a basis for a linear isometric copy
of �(n)

1 via the above-mentioned criterion (2.1) of linear analysis.
Let an arbitrary e ∈ F1 be given, and set

ẽ(k) = (xk
v, de) =

{
+1 : if e(k) = 1

−1 : if e(k) = 0

for each k, 1 ≤ k ≤ n. Each ẽ(1) = +1 on account of having e ∈ F1. Moreover,
varying e ∈ F1, ensures that any and all of the 2n−1 combinations of sign ẽ(2) = ±1,
ẽ(3) = ±1, . . . , ẽ(n) = ±1 will be attained. So our proof will be complete if we can
establish that ‖

∑n
k=1 ẽ(k)xk‖ =

∑n
k=1 ‖x

k‖.
If S is a short path from ē to e, we know from Lemma 2.3 that

de =
∑
xk

v∈S

(xk
v, de)xk

v.(2.2)

In addition, the Short Path Property says that

‖de‖ =
∑
xk

v∈S

‖xk
v‖.(2.3)

Consequently, viewing de as a point in �∞, there must be a natural number j = j(ε)
such that de( j) is within (any prescribed) ε > 0 of n (or −n, as the case may be),
meaning that: n − ε < de( j) ≤ n (or −n ≤ de( j) < −n + ε). We will express this
analytic condition by writing de ∼ε n (or de ∼ε −n, in which case the arguments
are similar). The nature of ‖ · ‖∞, together with (2.2) and (2.3), then imply that
xk

v( j) ∼ε (xk
v, de) = ẽ(k) for each xk

v ∈ S.
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Now observe that, given any k ∈ {1, 2, . . . , n}, precisely one of +xk or −xk will
be traversed in an oriented short path from ē to e by Lemma 2.1 with, moreover, the
alternative being encoded by the parity (xk, de). This gives xk( j) ∼ε (xk, de) for all
k ∈ {1, 2, . . . , n}, with the upshot being that

∑n
k=1 ẽ(k)xk( j) ∼ε n. In other words,

‖
∑n

k=1 ẽ(k)xk‖ = n =
∑n

k=1 ‖x
k‖, completing the proof.

Remark 3 The set of n-dimensional binary vectors {0, 1}n, equipped with the met-
ric d�1 induced by the standard norm on �(n)

1 , is often referred to as the Hamming
n-cube. In Bourgain et al. [BMW, Corollary 5.9(i)] it is shown that a Banach space
contains Hamming n-cubes uniformly if and only if it contains �(n)

1 ’s uniformly.
Since Hamming n-cubes are particular examples of non-linear �(n)

1 -cubes, it fol-
lows that Theorem 2.4 implies an isometric version of [BMW, Corollary 5.9(i)].
Namely, a normed space contains Hamming n-cubes isometrically if and only if it
contains �(n)

1 ’s isometrically.
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