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Abstract

We consider the level hitting times τy = inf{t ≥ 0 | Xt = y} and the running maximum
process Mt = sup{Xs | 0 ≤ s ≤ t} of a growth-collapse process (Xt )t≥0, defined as
a [0,∞)-valued Markov process that grows linearly between random ‘collapse’ times
at which downward jumps with state-dependent distributions occur. We show how the
moments and the Laplace transform of τy can be determined in terms of the extended
generator ofXt and give a power series expansion of the reciprocal of E e−sτy . We prove
asymptotic results for τy and Mt : for example, if m(y) = E τy is of rapid variation then
Mt/m

−1(t)
w−→ 1 as t → ∞, wherem−1 is the inverse function ofm, while ifm(y) is of

regular variation with index a ∈ (0,∞) and Xt is ergodic, then Mt/m
−1(t) converges

weakly to a Fréchet distribution with exponent a. In several special cases we provide
explicit formulae.
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1. Introduction and known results

A Markovian growth-collapse process (MGCP) is a Markov process (Xt )t≥0 on the state
space E = [0,∞) with no upward jumps and piecewise deterministic right-continuous paths.
The process Xt increases linearly with slope 1 between the jumps. Hence, it can be written in
the form

Xt = X0 + t −
Nt∑
k=1

Bk, t ≥ 0,

where (Nt )t≥0 is a state-dependent counting process and the downward jump sizes Bk > 0
also depend on the current state. MGCPs can be encountered in a large variety of applications
of which we mention population growth models, risk processes, stress release, neuron firing,
and window sizes in transmission control protocols; they have been studied in [7], [8], [14],
and [28]. They form a special class of piecewise deterministic Markov processes [6], [10], [11].

We are interested in the behavior of the first hitting time

τy = inf{t ≥ 0 | Xt = y}
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296 A. LÖPKER AND W. STADJE

of the level y ≥ 0 and in the running maximum process

Mt = sup{Xs | 0 ≤ s ≤ t}.
Note that Xτy = Xτy− = y almost surely (a.s.). The main objective of this paper is to evaluate
the Laplace transform E e−sτy and the moments of τy for the introduced growth-collapse model,
in particular the functionm(y) := E τy , and to derive a quite general result for the convergence
of Mt .

More formally, let T1, T2, . . . denote the times of the successive collapses (jumps) of the
MGCP, and let λ(·) be the jump intensity of the process, so that the probability of a jump during
(t, t + h] given that Xt = x is λ(x)h+ o(h) as h → 0. The probability of a jump from x into
the set [0, y] is given by µx(y), where µx is the distribution function of a probability measure
on [0, x) for each x ∈ E . We assume that

• λ : E → [0,∞) is locally integrable and
∫ ∞

0 λ(u) du = ∞;

• E(Nt ) < ∞ for all t ≥ 0.

Note that the first assumption implies that the first jump will a.s. occur in finite time. Let Px
and Ex denote the conditional probability and expectation given that X0 = x. It is easy to
see that, under Px , the first hitting time of level y > x has the same distribution as τy − τx
under P0, and that τx and τy − τx are independent under P0. Hence, we assume from now on
that X0 = 0 and write P instead of P0. The process Xt can also be viewed as a regenerative
process if we define cycles as the times between successive visits to some fixed recurrent state
z ∈ [0,∞). Let Ck denote the length of the kth cycle, where the first cycle starts at time
C0 = τz. Let Sk = ∑k

i=0 Ci , and let K(t) denote the number of the current cycle at time t .
Then SK(τy)−1 ≤ τy = SK(τy)−1 + τ̄y , where τ̄y is distributed as the first hitting time of level
y, starting from z and given that the process stays above z. Renyi’s theorem states that if
µC = E(C1) < ∞ then

P(K(τy) = 1)

µC
SK(τy)−1

w−→ Z as y → ∞,

where ‘
w−→’ denotes weak convergence and Z is an exponential random variable with unit mean

(see the extended version given as Theorem 2.4 of [17]). Let ξi = max{Xt | t ∈ [Si−1, Si]}
denote the ith cycle maximum, and let G(y) = P(ξ1 ≤ y) = 1 − P(K(τy) = 1) denote the
common distribution function of the ξi . If τ̄y is small compared to SK(τy)−1 then we can expect
that

1 −G(y)

µC
τy

w−→ Z as y → ∞. (1)

The fact that this is indeed true if Xt is ergodic is known as Keilson’s theorem [18]. Proposi-
tions 2 and 3 of [8] imply that, for an MGCP, E τny < ∞ for all y ≥ 0 and all n ∈ N, and that
Xt is ergodic if lim supx→∞ λ(x)

∫ x
0 µx(y) dy > 1. Moreover, it can be shown (see, e.g. [3,

Proposition 4.1]) that the convergence in (1) also holds in expectation so that

m(y) ∼ µC

1 −G(y)
as y → ∞. (2)

Consequently, any asymptotic result for the function m is at the same time a result for the tail
of G. It then follows from (1) and (2) that in the ergodic case

τy

m(y)

w−→ Z as y → ∞. (3)
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Clearly, Mt ≥ y if and only if τy ≤ t , so that various probabilistic properties of τy can be
expressed in terms of properties of Mt , in particular via the relation P(τy ≤ t) = P(Mt ≥ y).
Clearly, maxi≤K(t)−1 ξi ≤ Mt ≤ maxi≤K(t) ξi , and since K(t) ≈ t/µC , it is to be expected
that P(Mt ≤ y) is close to G(y)t/µC . Indeed, it was shown in [25] that supy≥0 |P(Mt ≤
y) − G(y)t/µC | → 0 as t → ∞. Hence, classical extreme value theory for independent
and identically distributed variables can be applied to find possible limits of the (properly
normalized) process Mt . The following results are known for general regenerative processes
(see [2] and [25]). Let 	G(t) = inf{x : 1 − G(x) ≤ 1/t}. A function f : [0,∞) → (0,∞) is
called regularly varying if, for a fixed a ∈ R,

f (λy)

f (y)
→ λa as y → ∞

for all λ > 0 and we then write f ∈ Ra . Suppose that Xt is ergodic. Then, if 1 −G ∈ R−a
for some a > 0, we have

Mt

	G(t/µC)
w−→ Za as t → ∞, (4)

where P(Za ≤ x) = e−x−a
(Fréchet distribution). If 1 −G(y) = exp(− ∫ y

0 [1/δ(u)] du) for
some absolutely continuous function δ > 0 having density δ′(y) → 0 as y → ∞, then

Mt − 	G(t/µC)
δ( 	G(t/µC))

w−→ ZG as t → ∞,

where P(ZG ≤ x) = exp(−e−x) (Gumbel distribution).
In this paper we supplement the above known results with the following contributions. In

Section 2 we consider the recursive sequence of equations Amn = mn−1, m0 ≡ 1, where A is
the extended generator of the MGCP, and show that the solution sequence (which is essentially
unique and can be given in integral form) is related to the moments of τy : we have, for example,
m(y) = E τy = m1(y) and E τ 2

y = 2(m1(y)
2 − m2(y)). The Laplace transform of τy can be

expressed in closed form (in terms of an integral involving a certain kernel) in a similar way.
We also prove the power series expansion

1

E e−sτy =
∞∑
n=0

mn(x)s
n, s, x ≥ 0, (5)

for the reciprocal of E e−sτy . Without assuming ergodicity of the MGCP, it can be shown
(using (5)) that the relation m2(y) = o(m1(y)) as y → ∞ implies (3). In Section 3 we
derive asymptotic results for the running maximum: (i) if m(y) is of rapid variation, we have

Mt/m
−1(t)

w−→ 1, where m−1 denotes the inverse function of m; (ii) if m(y) is of regular

variation with index a ∈ (0,∞) and the MGCP is ergodic, thenMt/m
−1(t)

w−→ Za . In fact, in
case (i) we even prove that all moments of Mt/m

−1(t) converge to 1. In Section 4 we present
several examples. In the case of separable jump measures (i.e.µx(y) = ν(y)/ν(x), 0 ≤ y ≤ x,
for some function ν(x)) we give various explicit results on τy . Moreover, we prove that if ν is
regularly varying with index b and xλ(x) tends to some limit a ∈ (b+ 1,∞] as x → ∞, then

Mt/m
−1(t)

w−→ Za if a < ∞ and Mt/m
−1(t)

w−→ 1 if a = ∞. In applications λ(x) is usually
nondecreasing, leading to a = ∞; a typical case is λ(x) = λ0 +λ1x

β for some β > 0, λ0 ≥ 0,
and λ1 > 0. If ν(x) = x, a collapse causes the cutoff of a uniform fraction of the current value,
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which can be modeled by the multiplication by a random variable that is uniform on (0, 1). We
also present several closed-form expressions in the general case of jumps generated by means of
multiplication by (0, 1)-valued random variables. Finally, the results on regularly and rapidly
varying functions that are used throughout are collected in Appendix A.

We note that instead of studying models with linear increase, we could also study MGCPs
Yt with a more general deterministic interjump behavior, say dYt = r(Yt ) dt , where r(x) is
a positive Lipschitz continuous function. It turns out that we can easily transform Xt into
Yt and vice versa by means of the transformation Xt = θ(Yt ), where θ(x) = ∫ x

z
1/r(u) du

measures the time the process Yt needs to increase from 0 to x. It then indeed follows that
dXt = (dθ(Yt )/dt)( dYt/dt) = 1 in between jumps. If τ̂y and M̂t denote the first hitting times
and the maximum process of Yt , then it is easy to see that τy = τ̂θ−1(y) and Mt = θ(M̂t ).

2. Integral equations and series representations

Our derivations require the notion of the extended generator of the Markov process Xt .
A measurable function f : [0,∞) → [0,∞) belongs to the domain of the extended generator
if the process

f (Xt )−
∫ t

0
g(Xs) ds, t ≥ 0,

is a martingale for some measurable function g : [0,∞) → [0,∞). In this case we write
Af (x) = g(x) and call A the extended generator. Note that A can be multivalued.

In [11, Theorem 26.14] broad sufficient conditions for a function to be a member of the
domain is given. Let Mabs denote the set of absolutely continuous functions f : [0,∞) →
[0,∞) with locally bounded, nonnegative Lebesgue density f ′(x). If f ∈ Mabs then f is
nondecreasing and since Xt ≤ t a.s., we have f (Xt ) ≤ f (t) a.s., yielding the bound

E
Nt∑
n=1

|f (XTi−)− f (XTi )| ≤ f (t)ENt < ∞

for all t ≥ 0. It follows from [11, Theorem (26.14)], that the functions in Mabs belong to the
domain of the extended generator and that Af (x) is given by

Af (x) = f ′(x)− λ(x)

∫ x

0
(f (x)− f (y)) dµx(y),

which, after applying Fubini’s theorem, can be written as

Af (x) = f ′(x)− λ(x)

∫ x

0
f ′(y)µx(y) dy.

Note that the actual domain of the extended generator may be much larger than Mabs, but Mabs
suffices here, since the relevant functions that appear throughout this paper belong to Mabs.

In the sequel we need the kernel Ks(x, y) = λ(x)µx(y)+ s, where x ≥ y ≥ 0 and s ≥ 0,
and its iterates K1

s (x, y) = Ks(x, y) and

Kn
s (x, y) =

∫ x

y

Ks(x, u)K
n−1
s (u, y) du, n ≥ 2.

It is straightforward to show that

Kn
s (x, y) ≤ (λ(x)+ s)

(
∫ x
y
(λ(u)+ s) du)n−1

(n− 1)! (6)
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(cf. Lemma 1 of [27]). Hence, the resolvent kernel

Rs(x, y) = 1 +
∞∑
k=1

Kk
s (x, y)

is well defined and converges for all s ≥ 0 and all x ≥ y ≥ 0. Moreover, it follows from (6)
that

Rs(x, y) ≤ 1 + (λ(x)+ s) exp

(∫ x

y

(λ(u)+ s) du

)
.

Theorem 1. 1. Letm0(x) = 1. For all n ∈ N, there exists a unique solutionmn ∈ Mabs of the
equation Amn(x) = mn−1(x) with initial condition mn(0) = 0. Moreover,

mn(y) =
∫ y

0

(
mn−1(x)+

∫ x

0
R0(x, u)mn−1(u) du

)
dx, n ≥ 2. (7)

2. We have E τy = m1(y), so that m(y) = m1(y), and var τy = m1(y)
2 − 2m2(y).

3. For all s ≥ 0, there exists a unique solution ψ(s, ·) in Mabs of the equation Aψ(s, x) =
sψ(s, x) with initial condition ψ(s, 0) = 1. Moreover,

ψ(s, y) = 1 + s

∫ y

0

(
1 +

∫ x

0
Rs(x, u) du

)
dx. (8)

4. The Laplace transform of τy is given by E e−sτy = 1/ψ(s, y).

Proof. A generator equation Af (x) = z(x) with z ∈ Mabs can be written as an integral
equation for the density f ′, namely,

f ′(x) = z(x)+
∫ x

0
K(x, y)f ′(y) dy, (9)

where K(x, y) := K0(x, y) = λ(x)µx(y). Similarly, the equation

Af (x) = sf (x), f (0) = 1,

is equivalent to

f ′(x) = sf (x)+
∫ x

0
K(x, y)f ′(y) dy = s +

∫ x

0
Ks(x, y)f

′(y) dy. (10)

It is well known that a solution of (9) is given by

f ′(x) = z(x)+
∫ x

0
R0(x, y)z(y) dy,

and that (10) is solved by

f ′(x) = s

(
1 +

∫ x

0
Rs(x, y) dy

)
.

Note that certainly f ∈ Mabs, since f is absolutely continuous and f ′ is locally bounded and
nonnegative. The homogeneous equation

h′(x) =
∫ x

0
Ks(x, y)h

′(y) dy
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is solved in the set of absolutely continuous functions only by constant functions h. This is
immediate from the fact that iteration yields

|h′(x)| =
∣∣∣∣
∫ x

0
Kn
s (x, y)h

′(y) dy

∣∣∣∣ ≤ (λ(x)+ s)

∫ x

0

(
∫ x
y
(λ(u)+ s) du)n−1

(n− 1)! |h′(y)| dy

for all n ∈ N and, hence, h′(x) = 0. Consequently, solutions of (9) and (10) are unique in
Mabs, once we specify f (0).

Since Am1(x) = 1, it follows that the process U1,t = m1(Xt ) − t is a martingale. Now,
since E τy < ∞, then on {τy > t} we have |U1,t | ≤ t +m1(Xτy ) ≤ t +m1(y) ≤ τy +m1(y),
so that

E(|U1,t |; τy > t) ≤ E(τy; τy > t)+m1(y)P(τy > t) = o(1) as t → ∞, (11)

since E τy < ∞. This justifies optional stopping for the martingale U1,t at time τy (see [15])
and it follows from m1(0) = 0 that m1(y) = m(y) = E τy .

The integrated process It = ∫ t
0 s d(m(Xs)− s) is also a martingale (see again [15, p. 92])

and it follows by partial integration that

It = tm(Xt )− 1
2 t

2 −m2(Xt )+Dt,

where Dt = m2(Xt )− ∫ t
0 m(Xs) ds is the Dynkin martingale of the function m2. Hence, the

difference
U2,t = tm(Xt )− 1

2 t
2 −m2(Xt )

of It and Dt is a martingale too. Optional stopping, which can be justified as in (11), leads to

var τy = E τ 2
y − (E τy)

2 = m(y)2 − 2m2(y),

showing part 2. We now turn to the functionψ . Since Aψ(s, x) = sψ(s, x)withψ(0, x) = 1,
we have

ψ ′(s, x) = s +
∫ x

0
Ks(x, y)ψ

′(s, y) dy,

which is tantamount to (10). Following the discussion above we conclude that a unique solution
in Mabs exists and ψ(s, ·) is given in terms of the associated resolvent kernel as in (8), so that
part 3 is proved.

It is known that the process e−stψ(s,Xt ) is a martingale (see, e.g. [15, p. 175] or [24]).
Optional stopping at τy , which can be justified as in [19], leads to E e−sτyψ(s, y) = ψ(s, 0) = 1,
so that part 4 is proved.

Remark. For n = 1, we can prove the equality Am(x) = 1 by an alternative probabilistic
reasoning, avoiding the use of martingales. The equation to be solved becomes

m′(y) = 1 + λ(y)

∫ y

0
m′(u)µy(u) du. (12)

Consider the first jump time T1. If T1 ≥ y then τy = y, while if T1 < y then τy is equal to T1
plus the hitting time of y, starting at XT1 . Hence,

τy
d= y 1{T1≥y} +(T1 + τ ′

y − τ ′
XT1
) 1{T1<y},
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where τ ′· is the family of hitting times for a processX′·
d= X· that is independent ofX·. It follows

that

m(y) = y +
E(T1 − τ ′

XT1
; T1 < y)

P(T1 ≥ y)
.

Conditioning on T1 yields

m(y) = y +
∫ y

0 (t −
∫ t

0 m(u) dµt(u))P(T1 ∈ dt)

P(T1 ≥ y)
.

Using dP(T1 ≤ y)/dy = λ(y)P(T1 ≥ y), we obtain (12) after a short calculation.

Theorem 2. We have the power series representation

ψ(s, x) =
∞∑
n=0

mn(x)s
n (13)

for all s ≥ 0 and all x ≥ 0.

Proof. To show (13), we first prove by induction thatmn(y) ≤ m(y)n/n!, which is certainly
true for n = 1. Moreover, if the assumption holds for n− 1 then

mn(y) =
∫ y

0

(
mn−1(x)+

∫ x

0
R0(x, u)mn−1(u) du

)
dx

≤
∫ y

0
mn−1(x)m

′(x) dx

≤
∫ y

0

m(x)n−1

(n− 1)! m
′(x) dx

= m(x)n

n! .

It follows that the series in (13) converges for all s ≥ 0 and all x ≥ 0. The function

h(x) :=
∞∑
n=0

snmn(x) ≤ esm(x)

is in Mabs and hk(x) := ∑k
n=0 s

nmn(x) converges to h(x) pointwise as k → ∞. Since

Ahk(x) =
k∑
n=1

snmn−1(x) = s

k−1∑
n=0

snmn(x) = shk(x)− skmk(x),

it follows that

|Ahk(x)− shk(x)| ≤ (sm(x))k

k! .

In particular, Ahk(x) − shk(x) tends to 0 as k → ∞. Hence, Ah(x) = sh(x) and, by the
uniqueness property, ψ(s, x) = h(x).

The following corollary is needed in the next section.
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Corollary 1. The function

s �→ ψ(s, y)− 1

s

is increasing for all y ∈ [0,∞) and in particular ψ(s, y) ≥ 1 + sm(y).

Proof. We have

ψ(s, y)− 1

s
=

∞∑
n=1

mn(y)s
n−1.

The next theorem gives a sufficient criterion for τy/m(y) to be asymptotically exponential
without the assumption of ergodicity.

Theorem 3. If m2(y) = o(m(y)2) then τy/m(y)
w−→ Z as y → ∞.

Proof. We carry out an induction proof to show that mn(y) = o(m(y)n) for all n ≥ 2. We
have m2(y) = o(m(y)2) by assumption. If the assertion is true for n − 1, we obtain, using
representation (7) and the monotonicity of the functions mn(y),

mn(y) =
∫ y

0

(
mn−1(x)+

∫ x

0
R0(x, u)mn−1(u) du

)
dx

≤ mn−1(y)

∫ y

0

(
1 +

∫ x

0
R0(x, u) du

)
dx

= o(mn−1(y))m(y)

= o(m(y)n).

It now follows from Theorem 1 that

lim
y→∞ E e−sτy/m(y) = lim

y→∞ψ
(

s

m(y)
y−1

)
= lim
y→∞

( ∞∑
n=0

sn
mn(y)

m(y)n

)−1

. (14)

Since supy mn(y)/m(y)
n ≤ 1/n! and limy→∞mn(y)/m(y)

n = 0 for all n ≥ 2, we can use
Lebesgue’s convergence theorem and conclude that the right-hand side of (14) tends to 1/(1+s)
as y → ∞, i.e. to the Laplace transform of Z. This completes the proof.

3. Asymptotics of the running maximum

We now consider the asymptotic behavior of Mt in two cases: (i) m(x) is regularly varying
and (ii)m(x) is rapidly varying. Assuming ergodicity, case (i) is a straightforward consequence
of known results. Case (ii) is more complicated.

Theorem 4. If m ∈ Ra for some a ∈ (0,∞) and Xt is ergodic, then

Mt

m−1(t)

w−→ Za as t → ∞.

Proof. If m ∈ Ra , it follows from (2) that 1 − G ∈ R−a . Hence, the conditions for
convergence in (4) are satisfied. Since 	G is increasing and unbounded, Theorem A of [12]

implies that 	G(t) ∼ m−1(µct), yielding Mt/m
−1(t)

w−→ Za as t → ∞.
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Theorem 5. If m ∈ R∞ then

E

((
Mt

m−1(t)

)n)
→ 1 as t → ∞ (15)

for all n ≥ 0. In particular,
Mt

m−1(t)

w−→ 1 as t → ∞. (16)

Proof. We define κn(t) = EMn
t and show that

(
m−1

(
1

s

))−n ∫ ∞

0
e−st dκn(t) → 1 as s → 0 (17)

for every n ∈ N. By Karamata’s Tauberian theorem, (17) implies that E(Mn
t ) ∼ (m−1(t))n

as t → ∞, and, hence, we have proved (15). Since the constant moment sequence obviously
satisfies Carleman’s criterion, (16) follows immediately.

To prove (17), let y = m−1(1/s). Then

y−n
∫ ∞

0
e−st dκn(t) = y−n

∫ ∞

0
e−st d

dt
(EMn

t ) dt

= y−n
∫ ∞

0
e−st d

dt

(∫ ∞

0
nun−1 P(Mt > u) du

)
dt

= y−n
∫ ∞

0
nun−1

∫ ∞

0
e−st P(τu ∈ dt) du

= y−n
∫ ∞

0

nun−1

ψ(s, u)
du

= J∞
0 (y),

where we define

J ba (y) :=
∫ b

a

nun−1

ψ(1/m(y), yu)
du.

We show that J∞
0 (y) → 1 as y → ∞ by dividing the range of integration into three parts.

Part (i): J∞
w (y) → 0 for anyw > 1. According to Corollary 1 we haveψ(s, y) ≥ 1+sm(y).

Hence,

ψ

(
1

m(y)
, uy

)
≥ 1 + m(uy)

m(y)
= 1 + r(uy)

r(y)
un+1,

where r(x) := xn+1m(x) is again rapidly varying. The convergence r(uy)/r(y) → ∞ is
uniform for u ≥ w > 1 (see (27) in Appendix A). In particular, for all K > 0, we ultimately
have infu≥w r(uy)/r(y) ≥ K for large y, yielding

J∞
w (y) ≤

∫ ∞

w

nun−1

1 + [r(uy)/r(y)]un+1 du ≤
∫ ∞

w

nun−1

1 +Kun+1 du

for sufficiently large t , so that J∞
w (y) tends to 0 as y → ∞.

Part (ii): Jw1 (y) → 0 for any w > 1. This is clear, since the integrand tends to 0 and is
uniformly bounded by nwn−1 on the bounded interval [1, w].
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Part (iii): J 1
0 (y) → 1. Let u ∈ (0, 1) and choose an ε > 0. Since mn(y)/m(y)n ≤ 1/n!

and m(yu)/m(y) → 0 as y → ∞, it follows that

lim sup
y→∞

ψ

(
s

m(y)
, yu

)
= lim sup

y→∞
ψ

(
s

m(yu)

m(yu)

m(y)
, yu

)

≤ lim sup
y→∞

ψ

(
ε

m(yu)
, yu

)

= lim sup
y→∞

∞∑
n=0

εn
mn(yu)

m(yu)n

≤ eε.

On the other hand, again using Corollary 1,

lim inf
y→∞ ψ

(
s

m(y)
, yu

)
≥ lim inf

y→∞

(
1 + s

m(yu)

m(y)

)
= 1.

Since ε was arbitrary, it follows that J 1
0 (y) → ∫ 1

0 nu
n−1 du = 1.

4. Applications to special cases

We have seen that m(y) = E(τy) serves as a normalizing function in (3) (in the ergodic
case) and in Theorem 3, while its inverse m−1(t) plays a similar role in Theorems 4 and 5.
Therefore, explicit formulae for these functions are of special interest. In several examples we
can computem(y) via the unique solution in Mabs of the integral equation given in Theorem 1
for n = 1, which reads as

m′(y) = 1 + λ(y)

∫ y

0
m′(u)µy(u) du.

Similarly, we can solve the equations

ψ ′(s, y) = sψ(s, y)+ λ(y)

∫ y

0
ψ ′(s, u)µy(u) du, (18)

m′
2(y) = m(y)+ λ(y)

∫ y

0
m′

2(u)µy(u) du

in Mabs to find E e−sτy = 1/ψ(s, y) and var τy = m1(y)
2 − 2m2(y). Let us consider a few

examples.

4.1. Separable jump measures

Suppose that the jump measures µx are given in the form

µx(y) = ν(y)

ν(x)
, x ≥ y ≥ 0,

for some nondecreasing function ν : [0,∞) → [0,∞) (defining 0/0 as 0). We give some
examples at the end of this subsection.
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Theorem 6. For an MGCP with µx(y) = ν(x)/ν(y) as above and general intensity function
λ(x), the mean of the first hitting time τy is given in closed form by

m(y) = y +
∫ y

0

λ(x)

ν(x)

∫ x

0
ν(w) exp

(∫ x

w

λ(v) dv

)
dw dx. (19)

The variance of τy can be computed from (19) and

m2(y) =
∫ y

0

[
m(x)+ λ(x)

ν(x)

∫ x

0
m(w)ν(w) exp

(∫ x

w

λ(v) dv

)
dw

]
dx. (20)

Proof. Let A ∈ Mabs be arbitrary, and define z(x) = ∫ x
0 z

′(u) du by setting

z′(y) := A(y)+ λ(y)

ν(y)

∫ y

0
A(w)ν(w) exp

(∫ y

w

λ(v) dv

)
dw.

A straightforward calculation yields∫ y

0
ν(u)(z′(u)− A(u)) du =

∫ y

0
λ(u)

∫ u

0
A(w)ν(w) exp

(∫ u

w

λ(v) dv

)
dw du

=
∫ y

0
A(w)ν(w)

∫ y

w

λ(u) exp

(∫ u

w

λ(v) dv

)
du dw

=
∫ y

0
A(w)ν(w)

(
exp

(∫ y

w

λ(v) dv

)
− 1

)
dw

=
∫ y

0
A(w)ν(w) exp

(∫ y

w

λ(v) dv

)
dw −

∫ y

0
A(u)ν(u) du

= ν(y)

λ(y)
(z′(y)− A(y))−

∫ y

0
A(u)ν(u) du.

Hence,

A(y) = z′(y)− λ(y)

∫ y

0
z′(u)ν(u)

ν(y)
du.

Letting A(y) = 1 and A(y) = m(y) we obtain (19) and (20), respectively.

Regarding the Laplace transform of τy , the required solution to Af (x) = sf (x) does not
seem easy to find. If all functions involved are smooth enough, we can transform the generator
equation into

∂2

∂x2ψ(s, x)− (s + ξ(x)+ λ(x))ψ ′(s, x)+ sξ(x)ψ(s, x) = 0, ψ(0, x) = 1, (21)

where

ξ(x) = λ′(x)
λ(x)

− ν′(x)
ν(x)

.

Fixing s and defining h(x) by ψ(s, x) = eh(x) we arrive at the Riccati equation

h′2(x)+ h′′(x)− (s + ξ(x)+ λ(x))h′(x)+ sξ(x) = 0, h′(0) = s,

which is difficult to solve in general.
Now we turn to the running maximum. For regularly varying ν(x), we have the following

result.
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Theorem 7. Suppose that
lim
x→∞ xλ(x) = a ∈ (1,∞]

and that ν ∈ Rb for some b < a − 1.

(a) If a < ∞ then
Mt

m−1(t)

w−→ Za−b as t → ∞.

(b) If a = ∞ then Mt/m
−1(t)

w−→ 1 as t → ∞.

Proof. We have b ≥ 0 because ν(x) is nondecreasing. By Proposition 3 of [8],Xt is ergodic
if lim supx→∞ λ(x)

∫ x
0 µx(y) dy > 1. In our case, for a < ∞, this lim sup is given by

lim sup
x→∞

λ(x)

∫ x

0

ν(y)

ν(x)
dy = lim sup

x→∞
a

xν(x)

∫ x

0
ν(y) dy

= lim sup
x→∞

a

xν(x)

xν(x)

b + 1

= a

b + 1
> 1

(where we have used part 1 of Theorem 8 in Appendix A for the second equality), and, for
a = ∞, it is infinite. By Theorems 4 and 5, it remains to show thatm ∈ Ra−b. This is done in
the following lemma (in which no inequality between a and b is assumed).

Lemma 1. Suppose that ν ∈ Rb for some b < ∞ and that xλ(x) → a ∈ (0,∞). Then
m ∈ R1∨(a−b).

Proof. If xλ(x) → a then λ ∈ R−1 and it follows that

x �→ λ(x)

ν(x)
exp

(∫ x

0
λ(s) ds

)
∈ Ra−1−b.

If b − a ≥ −1 then, by Theorem 9 in Appendix A,

x �→ λ(x)exp(
∫ x

0 λ(s) ds)

ν(x)

∫ x

0
ν(u) exp

(
−

∫ u

0
λ(s) ds

)
du ∈ R0,

yielding m ∈ R1. If b − a < −1 then
∫ ∞

0 ν(u) exp(− ∫ u
0 λ(s) ds) du < ∞,

x �→ λ(x)exp(
∫ x

0 λ(s) ds)

ν(x)

∫ x

0
ν(u) exp

(
−

∫ u

0
λ(s) ds

)
du ∈ R−1−b+a,

and m ∈ Ra−b. Note that a − b > 1 implies that y/m(y) → 0. If a = ∞ then
x �→ ν(x)exp(− ∫ x

0 λ(s) ds) is slowly varying and x �→ ∫ x
0 ν(u) exp(− ∫ u

0 λ(s) ds) du is in R1.
Thus, m ∈ R∞.

Example 1. (Renewal age processes.) If ν(x) ≡ 1 then µx(y) ≡ 1, i.e. the process restarts
at 0 after each jump. This is the age process from renewal theory, where the renewal epochs
have a distribution with density x �→ λ(x) exp(− ∫ x

0 λ(u) du), x ≥ 0. Note that τy is the first
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time at which the current lifetime reaches y. Equations (19) and (20) yield, after some further
calculations,

m(y) =
∫ y

0
exp

(∫ y

w

λ(v) dv

)
dw, m2(y) =

∫ y

0
(y − w) exp

(∫ y

w

λ(v) dv

)
dw.

The Laplace transform of τy is given by

E e−sτy =
(

1 + s

∫ y

0
exp

(∫ y

u

(λ(w)+ s) dw

)
du

)−1

.

This follows immediately from (18) which reads as

ψ ′(s, y) = sψ(s, y)+ λ(y)(ψ(s, y)− 1).

The case where λ(x) ≡ λ is constant has been discussed in [26].

Example 2. (Coupled intensity rate and jump measure.) Let ν(x) = λ(x) for all x ≥ 0. Then
we obtain, from (19),

m(y) =
∫ y

0
exp

(∫ x

0
λ(w) dw

)
dx.

Moreover, it follows from (21) that

∂2

∂x2ψ(s, x) = (s + λ(x))ψ ′(s, x)

and, thus, ψ ′(s, x) = s exp(sx + ∫ x
0 λ(w) dw). Hence,

ψ(s, y) = 1 + s

∫ y

0
exp

(
sx +

∫ x

0
λ(s) ds

)
dx

and, thus,

E e−sτy =
(

1 + s

∫ y

0
exp

(
sx +

∫ x

0
λ(s) ds

)
dx

)−1

.

This generalizes the result for the particular case λ(x) = λx and µx(y) = y/x in [8].

4.2. MGCPs with multiplicative jumps

Consider the case where at each jump time the current level of the process is multiplied by
an independent random variableQ having a distribution function F whose support is contained
in [0, 1) (i.e. F(1−) = 1). Owing to their importance in applications, these MGCPs have been
frequently studied [1], [4], [9], [13], [16], [20], [21], [22], [23]. Clearly, µy(u) = F(u/y), and
if we assume that λ(x) ≡ λ then

m′(y) = 1 + λ

∫ y

0
m′(u)F

(
u

y

)
du, (22)

ψ ′(s, y) = sψ(s, y)+ λ

∫ y

0
ψ ′(s, u)F

(
u

y

)
du. (23)

Suppose that m(·) and ψ(s, ·) can be expanded into power series: m(x) = ∑∞
k=1 akx

k and
ψ(s, x) = ∑∞

k=1 bkx
k . Then, letting θk = 1 − EQk ,

1 =
∞∑
k=1

akkx
k−1 − λ

∞∑
k=1

θkakx
k =

∞∑
k=1

(ak+1(k + 1)− λθkak)x
k.
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Hence,

ak+1 = λ
θk

k + 1
ak, a1 = m′(0) = 1,

yielding

m(x) = 1

λ

∞∑
k=1

∏k−1
i=1 θi

k! (λx)k. (24)

Similarly, the power series of ψ(s, x) satisfies

s

∞∑
k=1

bkx
k =

∞∑
k=1

(bk+1(k + 1)− λθkbk)x
k,

which means that

bk+1 = λθk + s

k + 1
bk, b0 = ψ(s, 0) = 1,

and, therefore, leads to

ψ(s, x) = 1 + s

∞∑
k=1

∏k−1
i=1 (λθi + s)

k! xk. (25)

The two power series in (24) and (25) obviously have infinite radius of convergence and satisfy
(22) and (23), respectively, so that they are indeed the desired solutions.

Two special cases. (a) The collapse consists of a multiplication by a deterministic constant
q ∈ [0, 1), i.e. F(x) = 1{x≥q}. Then θa = 1 − qa and, using the q-series symbols

(q)k =
k∏
i=1

(1 − qi) and (c; q)k =
k−1∏
i=0

(1 − cqi),

we obtain

m(x) = 1

λ

∞∑
k=1

(q)k−1

k! (λx)k

and

ψ(s, x) = 1 +
∞∑
k=1

(λ+ s)k(λ/(λ+ s); q)k
k! xk.

(b) Q = U1/α for some α > 0 and a uniform random variable U on (0, 1). Then

m(x) = αλ−1
∫ λx

0
u−αeu

∫ u

0
tα−1e−t dt du

and

ψ(s, x) = H

(
α

s

s + λ
, α; (λ+ s)x

)
,

where

H(a, b; x) =
∞∑
k=0

(a)k

(b)k

xk

k!
is the standard hypergeometric function.
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4.3. The Cramér–Lundberg model in risk theory

The classical risk-reserve process in the Cramér–Lundberg model is given by

Rt = t −
Nt∑
k=1

Bk,

where the claims Bk are independent, have a common distribution function B, and Nt is a
Poisson process with intensity λ which is independent of the Bk . Let Rt = infs≤t Rs , and
consider the reflected process

Xt = Rt − Rt .

The processXt can be interpreted as a risk-reserve process, where successive ruins are ignored.
It is easy to see that Xt is an MGCP with λ(x) = λ and µy(u) = 1 − B(y − u−), and

m′(y) = 1 + λ

∫ y

0
m′(u)(1 − B(y − u)) du = 1 + (m′ ∗ BI )(y),

where BI (x) = λ
∫ x

0 (1 − B(u)) du and ‘∗’ denotes the convolution operator. In what follows
we write ηn = ∫ ∞

0 un dB(u).
The above renewal equation has the unique solution

m′(x) =
∞∑
k=0

Bk∗I (x).

Therefore, the asymptotic behavior of m(y) can be deduced from known results in renewal
theory.

Theorem 8. 1. If λη1 = 1 and η2 < ∞, then m(y) ∼ y2/λη2.

2. If 1 < λη1 < ∞ or η1 = ∞ and
∫ ∞

0 e−δx dBI (x) = 1 for some δ > 0, then

m(y) ∼ eδy

δ2
∫ ∞

0 ue−δu dBI (u)
.

In this case we have
Mt

m−1(t)

w−→ 1.

3. If λη1 < 1 then m(y) ∼ y/(1 − λη1). In addition, if there is a solution β of the equation∫ ∞
0 eβx dBI (x) = 1 with

∫ ∞
0 ueβu dBI (u) < ∞, then |y/(1−λη1)−m(y)| tends to a constant

as y → ∞.

Proof. The three cases follow from Propositions 6.1 and 7.2 and Theorem 7.1 of [3]. Note
that ∫ ∞

0
un dBI (u) = λ

∫ ∞

0
un(1 − B(u)) du = λ

n+ 1

∫ ∞

0
un+1 dB(u) = ληn+1

n+ 1
.

Regarding the Laplace transform of τy , the equation for ψ is given by

ψ ′(s, y) = sψ(s, y)+ λ

∫ y

0
ψ ′(s, y)(u)(1 − B(y − u)) du

= sψ(s, y)+ (ψ(s, ·)′ ∗ BI )(y)
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and does not seem to be solvable in general. However, for the transform

�s(t) =
∫ ∞

0
e−txψ(s, dx),

there is a nice explicit formula in terms of the Laplace transform β(t) = ∫ ∞
0 e−tx dB(x) of B.

We obtain

�s(t) = s
�s(t)+ 1

t
+ λ�s(t)

1 − β(t)

t
.

Hence,

�s(t) = s

t − λ(1 − β(t))− s
.

Appendix A. Regular and rapid variation

A function f : [0,∞) → (0,∞) is regularly varying with index a ∈ R if, for all λ > 0,

f (λy)

f (y)
→ λa as y → ∞. (26)

In this case we write f ∈ Ra . The function f is called rapidly varying if (26) holds with
a = ∞ (letting λ∞ = 0 for λ < 1 and λ∞ = ∞ for λ > 1) and slowly varying if (26) holds
with a = 0. The convergence in (26) is uniform for

λ ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[c1,∞), c1 > 0, a < 0,

[c1, c2], c1 > 0, a = 0,

(0, c2], c2 > 0, a > 0,

(0, c1) ∪ (c2,∞), c1 < 1 < c2, a = ∞,

(27)

where c1 and c2 are constants. The function f is regularly varying with index a < ∞ if and
only if f is of the form

f (x) ∼ c exp

(∫ x

1
U(w) dw

)
,

where c > 0 and wU(w) → a. On the other hand, if

f (x) ∼ c(x) exp

(∫ x

1
V (w) dw

)
,

where c(x) is nondecreasing and wV (w) → ∞ as w → ∞, then f is rapidly varying. For f
to be rapidly varying, it is sufficient to show that f (λy)/f (y) → ∞ as y → ∞ for all λ > 1,
or that

xf ′(x)
f (x)

→ ∞ as x → ∞.

If f ∈ Ra with index a > 0 and is increasing, then its inverse, denoted by f−1, is regularly
varying with index 1/a and vice versa, where we agree to understand 1/∞ = 0 (see [5,
Theorems 1.5.12 and 2.4.7]). Finally, Karamata’s theorem (see [5, Section 1.6]) clarifies the
behavior of the integral of a function in Ra .
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Theorem 9. Let f ∈ Ra and F(x) = ∫ x
0 f (w) dw.

1. If f is locally bounded and a > −1, then F(x) ∼ xf (x)/(a + 1).

2. If a = −1 and xf (x) is locally integrable, then x �→ ∫ x
0 f (u) du is slowly varying and∫ x

0 f (u) du/(xf (x)) → ∞. If, additionally,
∫ ∞

0 f (u) du < ∞ then x �→ ∫ ∞
x
f (u) du <

∞ is slowly varying.

3. If a < −1 then
∫ ∞
x
f (u) du < ∞ for large x and

∫ ∞
x
f (u) du ∼ xf (x)/|a + 1|.

4. If a = ∞ then F ∈ R∞.
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