EXISTENCE OF CERTAIN ANALYTIC HOMEOMORPHISMS

Z. A. Melzak

(received December 5, 1958)

1. This note has its origin in the following problem: do there exist non-trivial increasing continuous functions on $[0,1]$ to $[0,1]$, which map the following sets in $[0,1]$ onto themselves: the rational, the algebraic and the transcendental numbers? One such function is obviously $f(x)=x$; more generally, $f(x)=$ $(c+1) x /(c x+1)$, with c rational and non-negative, satisfies the conditions. Let G denote the space of order-preserving homeomorphisms of $[0,1]$ onto $[0,1]$, in the uniform metric. It follows from Theorem 1 below that the set S of all such functions is dense in G. S is clearly a subgroup of G and one may ask what are its group-theoretic properties. We shall not consider these questions.
2. In 1925 Franklin proved the following theorem [1] :if X and Y are two countable sets, both dense in (0,1), then there exists an analytic function f in G, such that $f(X)=Y$. By a change in Franklin's method the above theorem will be generalized as follows.

THEOREM 1. Let $\left\{X_{i}\right\}$ and $\left\{Y_{i}\right\}, i=1,2, \ldots$, be two sequences of countable sets, each set being dense in (0,1). Let the sets of each sequence be pairwise disjoint. Then there exists an analytic function f in G such that $f\left(X_{i}\right)=Y_{i}, i=1,2, \ldots$.

The proof proceeds by the method of successive approximations. Let

$$
\chi((i, j))=(i+j-2)(i+j-1) / 2+j
$$

be the usual $1: 1$ correspondence between the set of ordered pairs of positive integers and the set of positive integers themselves; let its inverse be

$$
x^{-1}(n)=(\varphi(n), \omega(n))
$$

Can. Math. Bull., vol. 2, no. 2, May 1959

In the sequel only the function $\varphi(n)$ will be used. At the $n-t h$ stage of the approximation process a function $f_{n}(x)$ in G is obtained which sends certain two points in $X_{\varphi(n)}$ onto two points in $Y_{\varphi(n)}:$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{n}}(\mathrm{x} \varphi(\mathrm{n}), \psi(\mathrm{n}))=\mathrm{y} \varphi(\mathrm{n}), \alpha(\mathrm{n}) \\
& \mathrm{f}_{\mathrm{n}}(\mathrm{x} \varphi(\mathrm{n}), \beta(\mathrm{n}))=\mathrm{y} \varphi(\mathrm{n}), \gamma(\mathrm{n})
\end{aligned}
$$

Here $x \varphi(n), \psi(n)$ and $y \varphi(n), \gamma(n)$ are the first two as yet unused points of $X_{\varphi(n)}$ and $Y_{\varphi(n)}$ respectively. In addition f_{n} preserves all the correspondences established at the earlier stages and the limit $f_{n}(x)$, as $n \rightarrow \infty$, is an analytic function in G.

The first few approximations will now be set up. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be a sequence of positive constants such that

$$
\sum_{j=1}^{\infty} \quad \varepsilon_{j}=h<1 .
$$

Let

$$
\begin{aligned}
x_{\varphi(1), \psi(1)} & =x_{1,1} \\
g_{1}(x) & =x+a_{1} x(x-1) \\
h_{1}(y) & =y+b_{1} y(y-1)(y-y \varphi(1), \alpha(1)),
\end{aligned}
$$

where a_{1}, b_{1} and $y \varphi(1), \alpha(1)$ are so chosen that

$$
\begin{gathered}
\left|\mathrm{a}_{1}\right|<\varepsilon_{1} / 2!,\left|\mathrm{b}_{1}\right|<\varepsilon_{1} / 3! \\
\mathrm{y} \varphi(1), \alpha(1)=\mathrm{g}_{1}\left(\mathrm{x}_{\varphi(1), \psi(1)}\right) \\
\mathrm{g}_{1}\left(\mathrm{x}_{\varphi} \varphi(1), \beta(1)\right)=\mathrm{h}_{1}\left(\mathrm{y}_{\varphi(1)}, \gamma(1)\right)
\end{gathered}
$$

for some $\mathrm{x}_{\varphi(1), \beta(1)}$; here $\mathrm{y}_{\varphi(1), \gamma(1)}$ is defined to be $\mathrm{y}_{1,1}$ if $\alpha(1)>1$ and $\mathrm{y}_{1,2}$ if $\alpha(1)=1$. Since X_{1} and Y_{1} are dense in $(0,1)$ the required numbers can be found.

Consider the equation

$$
h_{1}(y)=g_{1}(x) ;
$$

this determines a function f_{1} in G :

$$
\begin{aligned}
y & =f_{1}(x), \\
f_{1}\left(x_{\varphi(1)}, \psi(1)\right. & =y_{\varphi(1), \alpha(1)} \\
f_{1}\left(x_{\varphi(1), \beta(1)}\right) & =y_{\varphi(1), \gamma(1)}
\end{aligned}
$$

The function $f_{1}(x)$ is the first approximation to f. To find $f_{2}(x)$ introduce first two auxiliary functions $g_{2}(x)$ and $h_{2}(x)$ and four numbers

$$
\begin{aligned}
& \mathrm{x}_{\varphi(2), \psi(2)}, \mathrm{y}_{\varphi(2), \alpha(2)}, \\
& \mathrm{x}_{\varphi(2), \beta(2),} \mathrm{y}_{\varphi(2), \gamma(2)}
\end{aligned}
$$

such that

$$
\begin{aligned}
& g_{2}(x)= g_{1}(x)+a_{2} x(x-1)\left(x-x_{\varphi}(1), \psi(1)\right)\left(x-x_{\varphi}(1), \beta(1)\right), \\
& \mathrm{h}_{2}(\mathrm{y})=\mathrm{h}_{1}(\mathrm{y})+\mathrm{b}_{2} \mathrm{y}(\mathrm{y}-1)(\mathrm{y}-\mathrm{y} \varphi(1), \gamma(1))(\mathrm{y}-\mathrm{y} \varphi(1), \alpha(1))\left(\mathrm{y}-\mathrm{y}_{\varphi} \varphi(2), \alpha(2)\right), \\
&\left|\mathrm{a}_{2}\right|<\varepsilon_{2} / 4!, \quad\left|\mathrm{b}_{2}\right|<\varepsilon_{2} / 5!, \\
& \mathrm{x} \varphi(2), \psi(2)=\mathrm{x}_{\varphi(2), 1}, \\
& \mathrm{~h}_{1}(\mathrm{y} \varphi(2), \alpha(2))=\mathrm{g}_{2}\left(\mathrm{x}_{\varphi} \varphi(2), \psi(2)\right), \\
& \mathrm{y}_{\varphi(2), \gamma(2)}=\mathrm{y}_{\varphi(2), 1} \text { if } \alpha(2)>1, \\
&=\mathrm{y}_{\varphi(2), 2 \text { if } \alpha(2)=1,} \\
& \mathrm{~g}_{2}\left(\mathrm{x}_{\varphi(2), \beta(2)}\right)=\mathrm{h}_{2}\left(\mathrm{y}_{\varphi(2), \gamma(2)}\right) .
\end{aligned}
$$

By the hypotheses on the sets $\mathrm{X}_{\varphi(2)}$ and $\mathrm{Y} \varphi_{(2)}$ the required constants can always be found. Now consider the equation

$$
h_{2}(y)=g_{2}(x) ;
$$

this determines y as a function of x :

$$
\begin{aligned}
& \mathrm{y}=\mathrm{f}_{2}(\mathrm{x}), \quad \mathrm{f}_{2} \text { in } \mathrm{G}, \\
& \mathrm{f}_{2}\left(\mathrm{x}_{\varphi(1), \psi(1)}\right)=\mathrm{y}_{\varphi(1), \alpha(1)}, \\
& \mathrm{f}_{2}\left(\mathrm{x}_{\varphi(1), \beta(1)}\right)=\mathrm{y}_{\varphi(1), \gamma(1)}, \\
& \mathrm{f}_{2}\left(\mathrm{x}_{\varphi(2), \psi(2)}\right)=\mathrm{y}_{\varphi(2), \alpha(2)}, \\
& \mathrm{f}_{2}\left(\mathrm{x}_{\varphi(2), \beta(2)}\right)=\mathrm{y}_{\varphi(2), \gamma(2)} .
\end{aligned}
$$

The general method of procedure is now clear - at the ($n+1$)-th stage one determines the two auxiliary functions $g_{n+1}(x)$ and $h_{n+1}(x)$ by recursion, and two new pairs of points in $X_{\varphi(n+1)}$ and $Y_{\varphi(n+1)}$ are made to correspond under $f_{n+1}(x)$. The equation $h_{n}(y)=g_{n}(x)$, which determines $f_{n}(x)$, becomes in the limit

$$
\left.\begin{array}{c}
y+\sum_{j=1}^{\infty} b_{j} y(y-1)(y-y \varphi(j), \alpha(j)) \prod_{k=1}^{j-1}(y-y \varphi(k), \gamma(k))(y-y \varphi(k), \alpha(k)) \\
\quad=x+\sum_{j=1}^{\infty} a_{j} x(x-1) \prod_{k=1}^{j-1}(x-x
\end{array}(k), \psi(k)\right)(x-x \quad \varphi(k), \beta(k)),
$$

which may be written as $h(y)=g(x)$. Here h and g are increasing analytic functions in G and consequently y is thereby determined as an analytic function: $y=f(x), f$ in G.

By construction, each $x_{i, j}$ is mapped onto some $y_{i, k}$ and conversely, each $y_{j, m}$ is an image of some $x_{j, p}$. Since $f(x)$ is $1: 1$ this completes the proof.
3. COROLLARY 1. Any function $F(x)$ in G of class $C^{(n)}$, whose derivative is bounded away from zero, can be uniformly approximated by analytic functions $f(x)$ in G, such that $f\left(X_{i}\right)=Y_{i}$; the first n derivatives of $F(x)$ are uniformly approximated by those of $f(x)$.

COROLLARY 2. Any continuous function $F(x)$ in G can be uniformly approximated by analytic functions $f(x)$ in G, such that $f\left(X_{i}\right)=Y_{i}$.

The proots or these corollaries follow exactly the proofs of Theorems II and III in [1].

COROLLARY 3. A continuous function $F(x)$ in G can be uniformly approximated by analytic functions $f(x)$ in G, which map the following sets onto themselves: the rational numbers in $[0,1]$, the transcendental numbers in $[0,1]$, and the irrational algebraic numbers in $[0,1]$ of degree $n \geqslant 2$. Alternatively, $f(x)$ can be so chosen that it maps the set of transcendental numbers in $[0,1]$ onto itself and sends each algebraic number x in $[0,1]$ into $K(x)$, the field obtained by adjoining x to the field of rational numbers.

Proof. In each case it suffices to set up the sets X_{i} and Y_{i}. In the first case let $\mathrm{X}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}=$ the set of algebraic numbers in $[0,1]$ of degree $i, i=1,2,3, \ldots$; the other conditions of the theorem are easily verified. In the second case let $x \sim y$ be an equivalence relation defined as follows: $x \sim y$ if and only if $K(x)=K(y)$. This equivalence relation introduces then a partition of the algebraic numbers of $[0,1]$ into disjoint residue classes; there are countably many of these and each is a countable dense set on $[0,1]$; now let $X_{i}=Y_{i}=$ the $i-t h$ residue class.

It is easily shown that under the hypotheses of Theorem 1 the set of all functions f with required properties is uncountable because to any sequences $\left\{\mathrm{X}_{\mathrm{i}}\right\},\left\{\mathrm{Y}_{\mathrm{i}}\right\}$, one can adjoin (in uncountably many ways) two new sets X_{o} and Y_{0}. When proper disjointness and density conditions are satisfied, it is possible then to have $f\left(X_{o}\right)=Y_{o}$ as well as $f\left(X_{i}\right)=Y_{i}, i=1,2, \ldots$.

REFERENCES

1. P. Franklin, Analytic transformations of linear everywhere dense point sets, Trans. Amer. Math. Soc. 27(1925), 91-100.

McGill University

