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Confidence, likelihood, probability: An invitation

This chapter is an invitation to the central themes of the book: confidence, likelihood,
probability and confidence distributions. We sketch the historical backgrounds and trace
various sources of influence leading to the present and somewhat bewildering state of
‘modern statistics’, which perhaps to the confusion of many researchers working in
the applied sciences is still filled with controversies and partly conflicting paradigms
regarding even basic concepts.

1.1 Introduction

The aim of this book is to prepare for a synthesis of the two main traditions of statistical
inference: those of the Bayesians and of the frequentists. Sir Ronald Aylmer Fisher worked
out the theory of frequentist statistical inference from around 1920. From 1930 onward he
developed his fiducial argument, which was intended to yield Bayesian-type results without
the often ill-founded prior distributions needed in Bayesian analyses. Unfortunately, Fisher
went wrong on the fiducial argument. We think, nevertheless, that it is a key to obtaining a
synthesis of the two, partly competing statistical traditions.

Confidence, likelihood and probability are words used to characterise uncertainty in most
everyday talk, and also in more formal contexts. The Intergovernmental Panel on Climate
Change (IPCC), for example, concluded in 2007, “Most of the observed increase in global
average temperature since the mid-20th century is very likely due to the observed increase in
anthropogenic greenhouse gas concentrations” (Summary for Policymakers, IPCC, 2007).
They codify ‘very likely’ as having probability between 0.90 and 0.95 according to expert
judgment. In its 2013 report IPCC is firmer and more precise in its conclusion. The Summary
for Policymakers states, “It is extremely likely that more than half of the observed increase
in global surface temperature from 1951 to 2010 was caused by the anthropogenic increase
in greenhouse gas concentrations and other anthropogenic forcings together” (IPCC, 2013,
p. 17). By extremely likely they mean more than 95% certainty.

We would have used ‘confidence’ rather than ‘likelihood’ to quantify degree of belief
based on available data. We will use the term ‘likelihood’ in the technical sense usual in
statistics.

Confidence, likelihood and probability are pivotal words in the science of statistics.
Mathematical probability models are used to build likelihood functions that lead to
confidence intervals. Why do we need three words, and actually additional words such
as credibility and propensity, to measure uncertainty and frequency of chance events? The
reason is that probability is used in very different contexts and to measure different things.
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2 Confidence, likelihood, probability: An invitation

That an idealised coin has probability 1
2 of showing heads when flipped means that in an

imagined repeated trials experiment the frequency of heads will stabilise at 1
2 in the long

run. A person could also say that the probability is 1
2 for a particular coin to show heads

when flipped. This is a statement about the person’s degree of belief. The first concept is
that of frequentist or aleatory probability describing a chance setup, that is, an experiment
or phenomenon in the real world. The second is that of a quantified degree of belief, which
when based on knowledge, for example, that the coin is an ordinary Norwegian krone and
is flipped properly, is called an epistemic probability. The knowledge behind an epistemic
probability distribution is usually empirical data.

There are cases in which the frequentist concept of probability hardly makes sense. In
historical contexts such as the evolution of the earth or the global economic development
since the Industrial Revolution, the notion of a conceptual experiment that can be repeated
is farfetched. Our human history cannot be repeated. But personal or even inter-subjective
probability might apply. The statement from IPCC (2013) quoted earlier makes sense in
that it reflects the prevailing degree of belief among climate scientists about whether the
observed and expected climate changes are caused by human activity. Thus different types of
probability stand in contrast: objective/subjective, aleatory/epistemic, frequentist/personal.
The main distinction is between probability statements about the real world (e.g., ‘a newborn
child is a boy with probability 0.514’) and statements about how certain a statement is
(e.g., we are more than 95% confident that emission of greenhouse gasses from human
activity is causing more than 50% of the observed warming of the earth from 1951 to 2010).

Fisher introduced the likelihood function and maximum likelihood estimation (Fisher,
1918, 1922). From being more or less synonymous with probability, likelihood now has
a precise meaning in statistics distinct from probability. Statistical inference leading to
confidence intervals or Bayesian posterior distributions is based on the likelihood function.
The likelihood function, based on the probabilistic model of the data generating process,
is actually a bridge between the data and the inferred results as they are expressed in
confidence terms. Since the time of Laplace, statistical analysis followed the doctrine of
inverse probability, which we now would call Bayesian analysis with flat prior distributions.
This doctrine was challenged by Fisher (1930, p. 528):

I know only one case in mathematics of a doctrine which has been accepted and developed by the
most eminent men of their time, and is now perhaps accepted by men now living, which at the
same time has appeared to a succession of sound writers to be fundamentally false and devoid of
foundation. Yet that is quite exactly the position in respect of inverse probability. Bayes, who seems
to have first attempted to apply the notion of probability, not only to effects in relation to their causes
but also to causes in relation to their effects, invented a theory, and evidently doubted its soundness,
for he did not publish it during his life. It was posthumously published by Price, who seems to have
felt no doubt of its soundness. It and its applications must have made great headway during the next
20 years, for Laplace takes for granted in a highly generalised form what Bayes tentatively wished to
postulate in a special case. [. . . ] First, it is not to be lightly supposed that men of the mental calibre
of Laplace and Gauss, not to mention later writers who have accepted their views, could fall into
error on a question of prime theoretical importance, without an uncommonly good reason.

The “uncommonly good reason” was in Fisher’s view that the Bayesian method was the
only method around for formalised inductive reasoning under uncertainty. Fisher’s paper
was meant to present an alternative concept and methodology: fiducial probability. In
this book we present confidence inference, which is what we make of Fisher’s basic
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1.1 Introduction 3

idea, and its transformation and development through the work of Jerzy Neyman, Bradley
Efron and others. It will in many cases be a practical alternative to Bayesian analysis.
As Bayesian posterior distributions, confidence distributions capture inferential uncertainty
about parameters, but without requiring prior distributions for the parameters of the model.

Fisher regarded the Bayesian use of flat priors as noninformative, as “fundamentally
false and devoid of foundation”. It is ironic that his fiducial method, which Neyman (1934)
regarded “not less than a revolution in the theory of statistics”, led to a controversy that
lasted for some thirty years and ended with the fiducial method being put aside and nearly
forgotten. The irony is that Fisher himself got it wrong after 1935, as will be explained in
the text that follows.

Although also using the word credibility for measures of belief, the Bayesian speaks
of probability or posterior probability. The Bayesian would use prior probability when
assessing the parameters of the probabilistic model before new data are obtained, and
posterior probability for their ex post assessment. She would agree with the Fisherian or
frequentist statistician that the probability concept they both use when establishing the
probabilistic model and the likelihood functions are meant to describe the real world, but
she would insist on the model representing her personal view. This subjectivist Bayesian
has thus only one concept of probability, and it is personal. When based on knowledge
her subjective probability is epistemic. The Bayesian and Fisherian statistician would agree
on the importance of a probabilistic model and a likelihood function as a bridge between
data and inferred results, but the Bayesian would also carry her prior distributions over the
bridge while the Fisherian will cross that bridge without any prior. When, however, a prior
distribution is based on past observed data the Fisherian might, as explained in Chapter 10,
add these prior data to his other data and obtain a combined likelihood function, with one
component based on past data and another on the new data.

There are many Bayesians today (a lower bound for the number of different types
of Bayesians is 46,656, according to Good [1983]), but few purely subjective ones. In
most Bayesian analyses, whether performed by statisticians or subject matter scientists,
prior distributions are necessary ingredients for carrying out an analysis through the often
impressive Bayesian machinery. This is often done without representing prior uncertainties
in a precise and argued way, however. We agree with Bayesians that modelling and analysis
devoid of human judgement is impossible. The scientific issue to be investigated, data to be
collected and model in which the analysis is carried out will all be chosen by the scientist,
and will be influenced by personal judgements – to be made explicit and argued. But in
much of science it is regarded as essential to keep personal views out of the analysis itself as
much as possible, and to this end the methodology we present should be useful in medicine,
physics, climatology, biology and elsewhere.

One can find many books on distributional inference in the Bayesian sense. There
is, however, hardly a single book on distributional inference without prior probability
distributions for the parameters of the model. The present book attempts to fill this gap
by promoting what Hampel (2006) calls the original and correct fiducial argument (Fisher,
1930, 1973), as opposed to Fisher’s later incorrect fiducial theory. The second decade of the
second millennium is witnessing a renewed interest in fiducial analysis (see, e.g., Hannig
[2009] and references therein) and in the related concept of confidence distribution (see
e.g. the review and discussion paper Xie and Singh [2013]); see Section 1.9 for further
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4 Confidence, likelihood, probability: An invitation

pointers and remarks. This book will hopefully help to foster further active interest
in confidence distributions among theoretically inclined statisticians. More importantly,
however, it is our hope that the book will contribute to improving statistical practice in
the various empirical sciences.

Our context is that of empirical science based on quantitative data. In several sciences,
such as medicine, Bayesian methodology has arguably not made a serious impact
because it has been important to keep the researcher’s personal belief out as much as
possible. Prior distributions have been regarded with skepticism. Our inferred confidence
distributions are free of such prior distributions. They will, however, often be approximate
in the sense that their associated confidence intervals have coverage probabilities not
matching their nominal levels with full precision. Also, confidence distributions might
be computationally demanding. We demonstrate feasibility of confidence inference in
examples and applications.

In addition to confidence inference being attractive in many cases, the idea of a
confidence distribution represents a gold standard for epistemic probability distributions
in science. A Bayesian posterior distribution carries more weight when it is shown to lead
to credibility intervals that actually are confidence intervals. In this regard, Fraser (2011)
argues that the Bayes posterior distribution risks being “quick and dirty confidence”.

In what follows some philosophy of statistical inference is reviewed. In addition to the
more philosophical reasons for distributional inference, with confidence distributions as the
inferential results, we will illustrate their use in numerous examples. Some examples are
theoretical while others are analyses of real data. We will also prove optimality theorems for
confidence distributions. These are related to the Neyman–Pearson theory for testing and
estimation.

Our hope is that Fisher’s long neglected theory can be revived, and perhaps also that
Efron (1998, p. 107) will be proven right when he says, “I believe that objective Bayes
methods will develop for such problems, and that something like fiducial inference will
play an important role in this development. Maybe Fisher’s biggest blunder will become a
big hit in the 21st century!”

1.2 Probability

Probability theory is a branch of mathematics along with geometry, topology, and so forth.
Early probability theory dealt with games of chance. Here the basic probabilities were
equally likely, and the challenge was to calculate the probabilities of various outcomes of
the often rather complicated games. Games of chance were interesting in themselves, but
for Pascal, Fermat and other eminent scientists they might have been used as test beds for
ideas and mathematical arguments. Paccioli (1494) asked, “A and B are playing a fair game
of balla. They agree to play until one has won six rounds. The game actually stops when A
has won five and B three. How should the stakes be divided?” Bernstein (1996) argues that
this opened the way for the study of the quantification of risk, which indeed was in demand
in the early years of risky overseas trade.

Hacking (1975, 2006) is skeptical of the view that modern probability emerged and
developed in response to the needs of merchants, insurance premiums, and so forth. His
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1.2 Probability 5

view is that probability emerged around 1660 (actually, in 1662) as part of a general shift
in the European mind-set, associated with the discontinuity between the Renaissance and
the Enlightenment. The term probability (or close relatives, in different languages) had been
used earlier, but not with its modern connotations; its old use was typically associated with
‘approval’, as in “in accordance with views held higher up”. But from ca. 1660, with Pascal
and Huygens and various other thinkers and writers, probability got its modern Janus face,
of epistemic degree of belief and long-run frequency in repeated experiments.

Feller (1950, p. 1) argues that the mathematical discipline of probability has three
distinct aspects: (1) the formal logical content, (2) the intuitive background and (3) the
applications. “The character, and the charm, of the whole structure cannot be appreciated
without considering all three aspects in their proper relations.” The theory of probability
is limited to one particular aspect of chance, and might be called “physical or statistical
probability. In a rough way we may characterise this concept by saying that our probabilities
do not refer to judgments but to possible outcomes of a conceptual experiment” (Feller,
1950, p. 4). By possible outcomes is meant not only the list or space of outcomes, but also
the frequencies or probabilities of measurable events in the outcome space. Feller’s notion
of probability is called aleatory. It refers to statistical stability in the real world.

Feller wrote his book in an era that may be characterised as the heyday of frequentism.
His understanding of probability was also that of Neyman and Wald, but Neyman’s
confidence level of an interval for a parameter of interest must be understood as the
(degree of) confidence as equivalent to the fiducial probability of Fisher (1930), to be
discussed in Section 1.6. This probability reflects the degree of belief a rational person
would have in the true value of the parameter lying within the bounds of the interval.
The measure of belief in the observed interval covering the truth is obtained from the fact
that the method of calculating the interval would lead to success (i.e., the true parameter
being inside the interval) with (aleatory) probability equal to the degree of confidence
in (hypothetically) repeated applications. So, even Neyman used probability in the dual
sense, both epistemic and aleatory, but he preferred the term ‘confidence’ for the epistemic
variant.

Importantly, epistemic and aleatory probabilities differ in their mathematics, at least
when the two are distinguished from each other and epistemic probability is understood
as confidence. The formal structure of aleatory probability is an axiomatic branch of
mathematics; the intuitive background that enables us to give physical or social meaning
to statements about probabilities, and the subject matter applications of probability models,
have all grown in the past 60 years. The probability used for modelling processes or
phenomena in the social or natural world are mostly of the frequentist type. In the
background there is a conceptual experiment. In repeated realisations of the experiment,
the empirical frequency of the various possible events will stabilise in the long run. For a
finite number of replicates, the law of addition and negation from percentage calculation
applies to the frequencies. These laws are assumed also to apply to the probabilities,
and they are in the axioms of Kolmogorov (1933) extended to so-called sigma additivity:
P(∪∞

i=1 Ai)= ∑∞
i=1 P(Ai) when the sets Ai are disjoint. This extension was needed to ensure

continuity, but it comes at a price. If the outcome space is bigger than countable, such as the
real line, not all sets in the outcome space are assigned a probability. These difficult sets are
unmeasurable, while the family of measurable sets forms a sigma algebra.
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6 Confidence, likelihood, probability: An invitation

The Kolmogorov axioms of probability theory describe what in general can be done with
aleatory probabilities, while the theorems provide deduced results in the various cases.
One such basic result is Bayes’ lemma, which informs us how to update probabilities
on observing that an event has occurred. To be explicit, suppose A1, . . . , Ak is a list of
nonoverlapping events whose union is certain (i.e., one of the Aj needs to occur), with
probabilities P(Aj). If we now learn that event B has occurred, what are then the updated
probabilities for the Aj? These are called the conditional probabilities given that B has
occurred, and are

P(Aj | B)= P(Aj)P(B | Aj)

P(B)

= P(Aj)P(B | Aj)

P(A1)P(B | A1)+·· ·+ P(Ak)P(B | Ak)

(1.1)

for j = 1, . . . ,k. The continuous version of this is discussed in Section 1.3.
Here P(A | B) is the conditional probability of A given that the event B occurs.

Conditional probability and Bayes’ lemma are central elements of probability theory and
are equally fundamental to Bayesian and non-Bayesian statisticians. Fisher assumed that his
fiducial probabilities could be handled by ordinary probability calculus, just like for aleatory
probabilities. This is, however, not the case, as we shall see. No axiomatic theory has been
worked out for epistemic probability to be used in science, except for Bayesian probabilities,
but these are problematic because they rely on prior probabilities.

1.3 Inverse probability

The basic problem of statistics is that of induction, that is, to learn about the state of the
real system from what has been observed. When the observed data might have resulted
from many different underlying states or causes, what is learned about the true state or
parameter is uncertain. By the method of inverse probability, a distribution is obtained for
the parameter characterising the system. The distribution expresses what has been learned
from the data in view of the model and what the surrounding uncertainty is. Bayes’ lemma
is used repeatedly “to apply the notion of probability, not only to effects in relation to their
causes but also to causes in relation to their effects” (Fisher, 1930, p. 528). It calculates
the conditional probability of the cause A given the effect B from the direct conditional
probability of the effect given the cause. This inversion lies at the root of Bayesian statistics.
In its modern wrapping, we might speak of a parameter θ rather than cause A, and of data y
rather than the effect B, with modelled distribution f(y |θ) rather than the direct probability.
With a prior probability density fprior(θ) on θ the inverse probability equation is

fposterior(θ)= f(y |θ)fprior(θ)
/∫

f(y |θ ′)fprior(θ
′)dθ ′. (1.2)

This is the continuous version of (1.1).
In the Bayesian paradigm there is no distinction between aleatory and epistemic

probabilities, and Kolmogorov’s axioms rule the common ground. Inverse probability is,
in modern terminology, the Bayesian method with flat priors. The flatness of the prior

https://doi.org/10.1017/CBO9781139046671.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139046671.002
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was meant to reflect lack of prior information. The posterior distribution (1.2) should then
represent what was learned from the data without being influenced by previous knowledge,
except what is embodied in the model f(y,θ).

The inverse probability method was dominant from the time of Laplace to around Fisher’s
1930 publication. When discussing this paper, Neyman (1934, p. 619) hoped for an end to
“the more than 150 years of disputation between the pros and cons of inverse probability that
had left the subject only more befogged by doubt and frustration”. One of the difficulties
with the inverse probability method is that a flat prior on a parameter, say θ , is not flat
on a curved transformation thereof, say τ = h(θ); see Section 1.7 for more on this. But
lack of information about θ is certainly lack of information about τ . Flatness of a prior
therefore does not guarantee that it is noninformative. Fisher’s response to this problem in
inverse probability was to propose his fiducial method, which delivers epistemic probability
distributions (fiducial distributions) entirely without invoking prior distributions.

1.4 Likelihood

As mentioned in our preface, Hald (1998, p. 1) opens his book on the history of mathematical
statistics with the following words: “There are three revolutions in parametric statistical
inference due to Laplace (1774), Gauss and Laplace in 1809–1812, and Fisher (1922).”
The first revolution introduced the method of inverse probability, the second developed
linear statistical methodology based on the normal distribution, while the third introduced
the likelihood function as the workhorse of frequentist statistical inference.

Rather than regarding the modelled probability or probability density of the data as a
function of the data y for given θ , f(y |θ), Fisher regarded it as a function of θ for given
observed data y = yobs, and called it the likelihood function:

L(θ |yobs)= f(yobs |θ).
The likelihood function is an essential element in the inverse probability (1.2); it is actually
proportional to the posterior density because the prior density is flat. Unlike for prior
distributions, flatness of the likelihood function does represent lack of information. The
likelihood function is invariant to parameter transformations.

Fisher’s original twist was to regard the likelihood function as a random variable. By
substituting the random variable Y having the distribution f(y |θ) for its observed value y
the random likelihood function L(θ |Y ) emerges. By studying the properties of the random
likelihood function Fisher developed a number of central concepts and results for statistical
inference. One is the concept of a statistic, which is a function of the data such as the
likelihood function. Another is that of a sufficient statistic. A sufficient statistic S(Y ) carries
all the information in Y about the value of θ in the sense that the conditional distribution of Y
given S = s is independent of θ . There is thus no information left about the parameter when
the sufficient statistic has been extracted from the data. The likelihood function is a sufficient
statistic. The sufficiency property of the likelihood function constitutes the main reason for
the strong likelihood principle: always base the statistical method on the likelihood function
in parametric statistical models – and do not base the inference on anything else.

Birnbaum (1962) actually proved that the likelihood principle follows from the
sufficiency principle – always base the statistical inference on sufficient statistics – and the
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conditionality principle. The conditionality principle holds that when the data can be split
into a sufficient component S and a remaining component A that has the same distribution
for all values of the parameter θ behind the data, and is thus ancillary, then the statistical
inference should be conditional on the observed value of A = a. That is, instead of carrying
out the inference in the full model fθ (y), it can equally well be carried out in the conditional
model fθ (y |a).

The strict conditionality principle, that inference should always be conditional on
ancillary statistics when such exist, is controversial, however. One difficulty is that there
might be more than one ancillary statistic, and on which of these should one condition?
Sometimes there is a maximal ancillary statistic, which is the obvious candidate for
conditioning. But even then there might be reasons for not conditioning.

The strong likelihood principle is also problematic in that it precludes statistical inference
from also being based on the protocol for the experiment and how the inference would come
out in hypothetical replications of the experiment. By the likelihood principle all relevant
information is contained in the observed likelihood function, and such additional pieces
of evidence as sampling distributions of estimators and test statistics are irrelevant. See
Examples 1.2 and 3.6.

Example 1.1 Uniform data on unknown interval with known length

Assume that Y1, . . . ,Yn are independent and uniformly distributed over the interval [θ −
1
2 ,θ+ 1

2 ]. In this model A = Y(n)−Y(1) is the maximal ancillary, where Y(1) ≤ ·· · ≤ Y(n) is the
ordered sample and S = (Y(n)+Y(1))/2 is the sufficient statistic – A is ancillary because it has
the same distribution regardless of θ , and S is sufficient because it holds all the information
there is about θ in the model. When A is close to its maximal value 1, S is very informative
on θ , while the opposite is the case when the sample spread is small. Should the inference
then be conditional on A, say if an interval is sought for θ? Questions of this nature are
discussed in Section 2.3.

Of the many methods based on the likelihood function, the likelihood ratio test and the
maximum likelihood estimator might be the most widely used. In regular statistical models
these methods have desirable statistical properties; see Chapter 2.

1.5 Frequentism

Is all information relevant for statistical inference indeed contained in the observed
likelihood function? The frequentist view is no. In the case of Example 1.4, involving an
exponential distribution, the mean lifelength in the sample of size n = 82 is λ̂ = 34.12
years. The observed likelihood function is thus L(λ) = λ−82 exp(−2797.84/λ). Is that all
there is to say about what has been learned? The parameter is supposed to characterise
the population behind the sample. We could have obtained another sample from the
same population. The frequentist view of Fisher and Neyman, which breaches the strong
likelihood principle, is that the particular results obtained by a method applied to the
observed sample must be understood against the background of the distribution of the
results obtained by the same method in (hypothetically) repeated samples under the same
conditions.
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1.5 Frequentism 9

Example 1.2 Poisson or gamma?

In a Poisson process of constant rate λ, X (t) is the number of events from the start at time 0
until time t. We shall look at two different models leading to identical likelihood functions
when x events are observed up until time t, and suggest that the result should be interpreted
against the background of which model is in force. In the first model, t is given and X (t)= x
is observed. The likelihood is then the Poisson,

L1(λ |x)= exp(−λt)(λt)x/x! ∝ λx exp(−λt)
(where ∝ denotes proportionality). The proportionality coefficient depends on only t and x
and is of no consequence for the interpretation. In the other model, x is given and the waiting
time until the xth event occurs is observed. This waiting time Tx is gamma distributed with
shape parameter x and rate parameter λ. The likelihood comes out equivalent to that above,

L2(λ | t)= λx

�(x)
tx−1e−λt ∝ L1(λ |x).

The maximum likelihood estimate is λ̂ = x/t. When t is given, its mean in a long run of
repeated samples is E λ̂ = E X (t)/t = λ, while it is E(x/Tx) = λx/(x − 1) when the other
model is in force and x > 1 is given. The frequentist takes note of how the data were
obtained. His confidence distribution would depend on the model, despite the equivalence
of the likelihood functions. See Figure 1.1 for x = 5 and t = 10. We return to this example
and explain the two confidence curves in Example 3.4.

A confidence distribution provides confidence intervals by its quantiles. The two
confidence distributions of Example 1.2 differ because confidence intervals depend on the
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Figure 1.1 Confidence distribution for the rate parameter λ, for data with x = 5 and t = 10, for
Example 1.2. The top curve is for the gamma experiment of observing T (x) = t, and the lower
curve for the Poisson experiment of observing X (t)= x.
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model. If based on the Poisson model they would not have correct coverage probabilities
when the data really were obtained by the gamma experiment.

In the frequentist tradition, most forcefully formulated by J. Neyman and his school, the
emphasis is on the performance in repeated use of the method on new data, and the question
is whether the frequency of the results in this long hypothetical sequence agrees with the
nominal requirement. For confidence distributions the requirement is that the cumulative
confidence distribution function evaluated at the true value of the parameter is uniformly
distributed.

A particular concern for frequentists is that of bias. There are various forms of bias in
statistical studies. The data might be biased in that they are not representative of the target
population. If the model badly represents the process that generated the data, the model
might be said to be biased. But even when the data are a random sample from the population,
and the model accurately represents the essentials of the data generating process, there might
be unwanted biases in the results of the statistical analysis. An estimator might, for example,
have a sampling distribution that is located away from the true value of the parameter, and
a distribution proposed as a confidence distribution might in repeated use tend to be located
away from its target. This can occur for many different reasons.

Example 1.3 Bias

Let Y1,Y2 be independent and normally distributed with parameters μ and σ . The likelihood
L(μ,σ) factors as

1

σ
φ
(y1 −μ
σ

) 1

σ
φ
(y2 −μ
σ

)
∝ 1

σ 2
exp

{
−
(y1 − y2

2σ

)2}
exp

{
−
( ȳ −μ
σ

)2}
.

For observed data y1 = −0.64, y2 = 1.02 the likelihood is contoured in the upper left panel
of Figure 1.2. These data were simulated assumingμ= 0, σ = 1. Observe that the likelihood
is located in the σ direction at 1

2 |y1 − y2|, slightly to the left of the true value σ = 1. This
is a property of the observed data. It is, however, a property frequently shared with other
data simulated from the same model. Figure 1.2 shows the likelihoods for three additional
realisations of (Y1,Y2). The top of the likelihood is actually to the left of the true value of σ
with frequency P{|Y1 − Y2|/(2σ) < 1} = 0.843 in repeated samples.

Concern about possible bias inherent in a model and a method is difficult to conceptualise
outside the frequentist paradigm. Bias is particularly difficult to discuss for Bayesian
methods, and seems not to be a worry for most Bayesian statisticians.

1.6 Confidence and confidence curves

The word ‘confidence’ is used in everyday talk for degree of belief. We are confident that
Norway has gained from staying outside the European Union, and we are confident that
greenhouse gasses emitted to the atmosphere by human activity will cause a substantial
increase in global surface temperature. These statements are meant to tell the receiver that
we believe them to be true, and that we have a high degree of belief in their truth.

Confidence intervals, first discussed by Neyman (1934), are used routinely in science.
The method is first to select a degree of confidence α. Then a lower confidence limit L(Y )
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Figure 1.2 Contour plots of the likelihood function for four repeated normal samples of size
two, for μ= 0,σ = 1.

and an upper confidence limit U (Y ) are calculated from the data Y by a method ensuring
that the true value of the parameter, the one behind the observed data, is covered by the
stochastic interval [L(Y ),U (Y )] with probability α,

Pθ {L(Y )≤ θ and θ ≤ U (Y )} = α.

Thus if α = 0.95, for example, then, in repeated use, the true value is in the long run
covered in precisely 95% of the cases. The user will not know whether the actual case is
among the frequent lucky cases had the experiment been repeated, with the realised interval
correctly covering the parameter or whether it is an unlucky case where the interval is either
entirely above or below the true parameter value. Since the probability of bad luck, 1−α, is
controlled, the reader is invited to attach degree of confidence α to the realised interval.
We would say that the epistemic probability of the parameter being within the realised
confidence interval [L(y),U (y)] calculated from observed data y is α, and we use the word
confidence for this objective epistemic probability.

The objectivity of the confidence derives from the transparency of the method of
constructing the confidence interval. Anyone would come to the same interval for the given
level of confidence when using the method. Confidence is, however, not a frequentist
probability. The parameter is not viewed as the result of a random experiment. The
confidence is rather the degree of belief of a rational person that the confidence interval
covers the parameter. When the degree of confidence is 0.95, she will have as part of her
knowledge that L(y)≤ θ ≤ U (y) with (epistemic) probability 0.95.
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12 Confidence, likelihood, probability: An invitation

Confidence intervals for scalar parameters, and more general confidence regions for
p-dimensional parameters, are often calculated from the log-likelihood function. The
log-likelihood function additively normalised to have its maximum equal to zero, and
multiplied by −2, is called the deviance function, and is twice the log-likelihood ratio,

D(θ)= 2log
L(θ̂)

L(θ)
. (1.3)

The reason for the factor 2 is merely that the limit distribution of the deviance, which
is guaranteed to exist under mild regularity conditions, cf. Section 2.4, is then a χ2

1 (a
chi-squared distribution with 1 degree of freedom, when the dimension of the parameter is 1)
with cumulative distribution function �1, rather than the slightly more cumbersome 1

2χ
2
1 .

The confidence level is traditionally chosen say at 0.95, and a confidence region is
obtained. For parameters of interest we suggest calculating confidence regions for all
possible levels of confidence. These nested regions are the level sets of a curve called the
confidence curve. When the confidence regions are found from the deviance function D by
the chi-squared distribution, the confidence curve is cc(θ)= �1(D(θ)).

Example 1.4 The exponential model: Lifelength in ancient Egypt

How much have humans gained in lifelength over the past 2000 years? Karl Pearson asked
this question in the first issue of his journal Biometrika, and used data on age at death as
given by inscriptions on mummies from Roman era Egypt (Pearson, 1902, Spiegelberg,
1901). Figure 1.3 displays a histogram of the 82 male lifelengths in the data. Claeskens and
Hjort (2008, pp. 33–35) compared nine different models for these and the accompanying
female data with respect to fit. They found a Gompertz model to give the best fit according
to the Akaike information Criterion (AIC); see Example 3.7. Although the exponential
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Figure 1.3 Histogram of age at death for 82 males in Roman era Egypt, along with the fitted
exponential density curve. [Data source: Pearson (1902).]
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1.6 Confidence and confidence curves 13

distribution does not fit these data so well, for present purposes we proceed under the
assumption that male Egyptians of the class for which the data are representative have
a constant hazard 1/λ of dying throughout life, and thus have exponentially distributed
lifelengths with probability density f(t,λ) = (1/λ)exp(−t/λ). Lifelength t is measured in
years. The log-likelihood function of n = 82 independent observations Y1, . . . ,Yn is


n(λ)= −n logλ− nȲ/λ.

The maximum likelihood estimator is, as we know, λ̂ = Ȳ = n−1
∑n

i=1 Yi, which has a
Gamma distribution with shape parameter n and scale parameter n/λ, and the estimate is
34.12 years. The deviance function is

Dn(λ)= n
( λ̂
λ

− 1 − log
λ̂

λ

)
and is displayed in Figure 1.4. Below the deviance function the related confidence curve
is displayed. This curve has confidence intervals as its level sets. To obtain the confidence
curve we need the distribution of the deviance at the true value. According to the Wilks
theorem (cf. Section 2.4), this is approximately the χ2

1 distribution. The approximate
confidence curve is thus

cc(λ)= �1(D(λ)).

The 95% confidence interval is shown as a horizontal line segment in both panels. Note
that the confidence curve points at the point estimate. The right panels of the figure show
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Figure 1.4 Expected lifelength for males in ancient Egypt, exponential model: Deviance
function (upper left); confidence curve (lower left), both with a 95% confidence interval as
horizontal bar. Right panels: Deviance function and confidence curve, augmented by five
simulated replicas.
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14 Confidence, likelihood, probability: An invitation

how the deviance function and the confidence curve vary over five replicated datasets. For
each replicate n = 82 observations were drawn from the exponential distribution with mean
parameter λ = 34.12. The crossings of the vertical line above this value are χ2

1 distributed
in height in the upper right panel, while they are uniformly distributed over the unit interval
in the lower right panel.

For this illustration the exponential model is chosen for its simplicity of presentation.
In Example 3.7 a more appropriate Gompertz model is used for these data, with a further
variation used in Exercise 4.13.

The confidence curve is often just a probability transform of the deviance function. With
Fθ (·) the cumulative distribution function of the random deviance function evaluated at the
true parameter value, say D(θ ,Y ),

cc(θ)= Fθ (D(θ ,yobs)) (1.4)

is the confidence curve, obtained on the basis of the observed outcome yobs of Y . Thus the
random cc(θ ,Y ) is uniformly distributed, when θ is the true value of the parameter, and its
level sets are indeed confidence intervals.

The confidence curve will be a central concept in this book. It can be generalised to
one-sided confidence intervals and to higher-dimensional parameters, where its contours
provide a nested family of confidence regions indexed by degree of confidence. The
confidence curve and its sister concept, the confidence distribution, may be obtained from
the deviance function or from the directed likelihood discussed in Chapters 2, 3 and 7,
or from sufficient statistics through pivotal constructions, considered in Chapters 3, 4 and
later. Fisher (1930) used the pivotal method when he introduced the fiducial distribution; see
Chapter 6. Briefly stated, the confidence distribution function is such that any confidence
interval may be read off from its quantiles. Thus for the situation in Example 1.4 we may
easily construct a confidence distribution C(λ) from the confidence curve, such that the 95%
confidence interval visible from the two left panels of Figure 1.4 may also be computed as
[C−1(0.025),C−1(0.975)].

1.7 Fiducial probability and confidence

The background to Fisher’s seminal paper in 1930 was that the inverse probability method
from Bayes and Laplace, with flat priors supposedly reflecting lack of prior knowledge, was
still dominating as the formal method of statistical inference. Fisher referred to Boole, Venn
and Chrystal and rejected the notion of flat priors representing ignorance. The problem is,
as noted earlier, that flatness is not a property invariant under parameter transformations. If
p has a uniform distribution over (0,1), for example, the density of the odds θ = p/(1 −
p) is the decreasing function f(θ) = (1 + θ)−2 on the positive halfline – and the log-odds
log{p/(1 − p)} has a logistic distribution with density exp(γ )/{1 + exp(γ )}2 unimodal and
symmetric about zero. Lack of knowledge about p is equivalent to lack of knowledge about
its odds, but if the former has a flat density the latter does not. This lack of invariance led
Fisher to start his paper with the words quoted in Section 1.1. Fisher found, however, an
operational definition of noninformativeness in his likelihood function. A flat likelihood is
noninformative about the parameter. The likelihood function is also invariant, and it serves
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1.7 Fiducial probability and confidence 15

Fisher’s purpose. Fisher (1930) did not suggest his fiducial distribution as a transformation
of the likelihood function. Instead he used pivots such as Student’s t-statistic.

The t distribution was suggested by W. G. Gosset in 1908 (writing under his pseudonym
‘Student’; the t distribution is also called the Student distribution) for the t-statistic behind
the uncertainty interval for an unknown mean. Student (1908) did not manage to prove that
the t-statistic indeed has the Student distribution when the data are normally distributed;
instead, while still an undergraduate, Fisher was the first to prove this very important
result. The result is really that when Y1, . . . ,Yn are independent and normally distributed
with expectation μ and standard deviation σ , then with the familiar Ȳ = n−1

∑n
i=1 Yi and

σ̂ 2 = ∑n
i=1(Yi − Ȳ )2/(n − 1),

T = μ− Ȳ

σ̂ /
√

n

has a fixed distribution regardless of the values of the interest parameter μ and the (in
this context) nuisance parameter σ , and this distribution is the Student distribution with
n − 1 degrees of freedom. That T has a fixed distribution makes it a pivotal statistic (see
Definition 2.3), and that the statistic is monotone in the parameterμ (we are assuming σ̂ > 0,
which happens with probability 1) makes it a monotonic pivot. With F(t) the cumulative
distribution function of the appropriate t distribution it leads to the equality

F(t)= P
{μ− Ȳ

σ̂ /
√

n
≤ t

}
= P{μ≤ Ȳ + σ̂ t/

√
n}.

The interval (−∞, Ȳ + σ̂ t/
√

n] thus has probability F(t) of covering the unknown parameter
μ. For a given sample with observed mean ȳ the realised interval (−∞, ȳ + σ̂ t/

√
n] has

in Fisher’s terminology fiducial probability F(t). By this method Fisher assigned fiducial
probability to any interval for a scalar parameter when a pivot is available.

The function

C(μ)= F
( μ− ȳ

σ̂ /
√

n

)
is increasing from 0 to 1 in the parameter μ, and is thus an ordinary cumulative distribution
function. As such it represents a probability measure for μ. This is the fiducial probability.
The 1

2α and 1 − 1
2α quantiles of this distribution yield a confidence interval of confidence

degree 1 −α,
[C−1( 1

2α),C
−1(1 − 1

2α)].
The confidence interval is central in that it excludes one-sided confidence intervals of
equal confidence at either end. It is tail symmetric as it misses the true value of μ with
equal probability at both sides. Tail-asymmetric confidence intervals are also possible. Any
interval (a,b) is assigned the fiducial probability C(b)− C(a) = β − α, which then would
have been the coverage probability of intervals obtained from the pivot by

P{Ȳ + σ̂ tα/
√

n ≤ μ≤ Ȳ + σ̂ tβ/
√

n}
where α = C(a) and β = C(b). When, say, α = 0 and a therefore is the extreme possible
lowest value of the parameter, the interval is one sided. Neyman would have accepted [a,b]
as a confidence interval if it was constructed from given probabilities α and β. He was
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interested in the coverage frequency of intervals constructed by the method. Fisher, on the
other hand, was more interested in the logic of statistical inference. He asked what could
be learned from the observed data and what the surrounding uncertainties are. Because
the fiducial probabilities are simply a rearrangement of probability statements concerning
the stochastic data, they are correct, understandable and acceptable to any rational
person.

We shall look at many different exact and approximate pivots and the fiducial
distributions generated by them. The term ‘fiducial probability’ has, however, fallen into
disrepute as a result of the controversy over Fisher’s method from 1935 until Fisher’s death
in 1962, and we prefer to use instead ‘confidence distribution’. Neyman (1934) showed that
his confidence intervals are found from fiducial distributions. He preferred ‘confidence’
over ‘probability’ to emphasise that the value of the parameter is a state of nature and
not the result of a chance experiment. Neyman wanted probability to be understood in
strictly frequentist terms. Our reason for preferring ‘confidence’ over ‘fiducial probability’
is to emphasise the relation to confidence intervals and, for higher dimensional parameters,
confidence regions.

Fiducial probability “stands as Fisher’s one great failure” according to Zabell (1992,
p. 382) and has been characterised as “Fisher’s biggest blunder”. Hampel (2001, p. 5) writes
that “fiducial probability has been grossly misunderstood by almost everybody, including
Fisher himself”. We explain fiducial distributions in Chapter 6 and discuss Fisher’s claims
for their properties and also their shortcomings as they were identified in the debate from
1935 until Fisher’s death in 1962.

1.8 Why not go Bayesian?

Fisher (1930) revolted against the method of inverse probability. His main objection to this
method of Bayesian analysis with flat prior densities was that flatness is not a property of
noninformativity. Fisher was also uneasy about the meaning of the posterior distribution.
Despite Fisher’s revolt, seconded by Neyman and the vast majority of statisticians in the
following 30 years, Bayesian methodology has survived and has become the dominating
methodology in several fields of statistical analysis.

The Bayesian paradigm is attractive for several reasons. In his lecture upon receiving the
Nobel Prize in economics (the Sveriges Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel, to be pedantically correct), C. Sims (2012) advocated Bayesian methods.
His reasons might be summarised as follows.

1. Economists and policymakers like empirical results in the form of distributions, with
uncertainty fully presented.

2. It is important to have a way to take graded a priori information into the analysis.
3. Parameters should be regarded as stochastic, having a prior distribution.
4. Posterior distributions have a clear meaning.
5. Importance sampling and Markov chain Monte Carlo (MCMC) simulations are effective

computational methods for obtaining joint posterior distributions.
6. The posterior density for one parameter is obtained by simply taking the marginal.
7. Coherent learning: the old posterior is the prior for the new data.
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1.8 Why not go Bayesian? 17

8. The likelihood principle should be observed.
9. These gains are possible only within the Bayesian paradigm.

His reasons 1 and 5 might be the most important ones in applied fields. It is simply
impressive what can be achieved by MCMC methods and other Bayesian calculations in
complex models. Output in the form of distributions is indeed attractive to scientists and
users of statistical information in most fields.

We agree regarding points 1, 2 and 5. In Chapter 10 we discuss the relationship between
confidence distributions and likelihoods, particularly how a likelihood can be obtained from
a confidence distribution. Coherent learning (point 7) is also important, but is, as we argue
in Chapter 10, also achieved by Fisherian methods. Instead of updating the prior/posterior
distribution, updating is done on the likelihood.

Fisher (1930) found the inverse probability method basically flawed. Why had it survived
for 150 years, with proponents such as Laplace and Gauss? The reason, he thought,
was that no alternative methodology existed that could provide inferential results, in the
form of distributions, reflecting uncertainty. He put the fiducial distribution forward as
an alternative to the Bayesian posterior distribution. Because it does not depend on a
prior distribution it avoids the problem of the inverse probability method. The method of
confidence distributions discussed in this book is closely related to the fiducial argument
and will also serve as an alternative to the Bayesian method.

If no information is available for a parameter, except for its range, the confidence
distribution for the parameter is calculated from the data in view of the model, but with
no further input. If, however, a prior distribution, founded on data or expert judgment or
even on personal beliefs, is to be taken into account, we suggest regarding it as data on the
same footing as the other data, and converting it into a likelihood to be combined with the
other likelihood components. See Chapter 10 for confidence likelihoods. Thus, point 2 can
be achieved in our framework.

Should parameters be regarded as stochastic variables (point 3)? Often the value of a
parameter is the outcome of a stochastic phenomenon. Even the gravitational constant is the
result of the Big Bang, and could perhaps have come out differently. But when inference is
sought for a parameter it is reasonable to condition on that underlying process and to regard
the parameter as given, but surrounded by uncertainty for us. The inference has the twofold
aim of reducing this uncertainty as much as possible, and of characterising the uncertainty
accurately. In much of science, point 3 is thus not reasonable or relevant.

When knowledge or uncertainty can be expressed as a distribution, this distribution is
epistemic in nature. A confidence distribution aspires to represent the knowledge, including
the associated uncertainty, a rational mind would have when she agrees on the data, the
model and the method. Confidence distributions are distributions of epistemic probabilities.
Aleatory probabilities are different. They characterise randomness or chance variation in
nature or society (Jeffreys, 1931). The probabilistic components of statistical models are
cast in aleatory probability. The Bayesian has only one form of probability, and has no
choice but to regard parameters as stochastic variables. The Fisherian objects use epistemic
probability, that is, confidence, for uncertainty in knowledge, and aleatory probability for
chance mechanisms. The parameters of a model are regarded as fixed values. These values
are often called true values, to be learned about from data.
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The Bayesian finds the posterior distribution for a derived parameter just by marginal-
isation. In practice this is done numerically, by simulating a huge sample from the joint
posterior distribution. The posterior distribution, say for the first component θ1 of θ , is then
simply a smoothed histogram of the first column of the output from the MCMC run, or
from another method used to sample from the posterior distribution. Marginalisation can go
astray. When the model is nonlinear in a certain sense the marginal distribution might miss
the target. The so-called length problem is an extreme example.

Example 1.5 The length problem

Let Y1, . . . ,Yp be independent with Yi ∼ N(μi,1). In this model the prior of choice would
traditionally be independent improper flat priors on each μi. The posterior distribution for
μi is simply N(yi,1), and these are again independent. Let the parameter of interest be
θ = ‖μ‖, the length of the parameter vector. The marginal posterior distribution for θ2 is
the noncentral χ2 distribution with p degrees of freedom and with ‖y‖2 as noncentrality
parameter. Let Fpost be the posterior cumulative distribution function obtained from this
distribution. Stein (1959) considered this example, but in the context of joint fiducial
distributions; see Section 6.3. He showed that Fpost(θ)→ 0 as p increases. The posterior
distribution must therefore be judged as biased, and the more so the higher the dimension.
The Bayesian might not be happy with this example. Being pragmatic (Kass, 2011) she
might call for a different prior distribution as the aim is θ . But is she really at liberty to
choose different prior distributions for the same parameter vector according to what the
focus parameter is?

In the length problem the Fisherian notes that θ̂ = ‖Y‖ = (∑p
i=1 Y 2

i )
1/2 is the maximum

likelihood estimator for θ . Now, θ̂2 is noncentrally χ2 distributed with p degrees of freedom
and parameter of noncentrality θ2. Let this distribution have cumulative distribution function
�p(·,θ2). Since C(θ) = 1 −�p(θ̂

2,θ2) is a pivot increasing from 0 to 1, and with uniform
pivotal distribution, it is a cumulative distribution function of a confidence distribution for
θ ; see Figure 1.5, which is based on simulated data with p = 50 and θ̂ = 6.90. By chance
this estimate is only slightly larger than the true value θ = 5.40. Our confidence distribution
thus happens to be located a bit to the left of the true value. But the confidence distribution
is unbiased in the sense that its median has exactly θ as its median in repeated samples. Note
that the realised confidence distribution has a point mass of size 0.570 at θ = 0. The true
value could indeed easily have been zero with such a small estimate.

Bias is, as noted earlier, a serious concern in many applications. We strive to avoid bias in
data. But as the length problem, and also the problems of the previous section illustrate, bias
could also be intrinsic to the model, even for ideal data. Nonlinearity combined with limited
data typically lead to the likelihood surface frequently and systematically being located
away from the true value of the parameter in repeated samples. The Bayesian posterior
distribution is then frequently misplaced relative to the parameter vector, perhaps more in
some directions than in others. The Bayesian method in such cases provides biased results in
the frequentist sense. Fraser (2011) asks whether Bayes posterior distributions are just quick
and dirty confidence distributions. His main concern is bias of the type discussed here. We
continue the discussion of bias in Section 9.4.

In addition to sharing the Bayesian ambition to produce statistical inference in the form
of distributions representing knowledge with surrounding uncertainty, the Bayesian and
Fisherian paradigms have many points of contact. Lindley (1958), for example, proved
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Figure 1.5 The confidence distribution function for θ = ‖μ‖ in the length problem with p = 50
and θ̂ = 6.9, cf. Example 1.5. The true value was θ = 5.4.

that the fiducial (confidence) distribution in one-parameter models is equal to the Bayesian
posterior based on the so-called Jeffreys prior if and only if the model can be transformed
to a location model. See Section 6.4, where we compare the Bayesian and the Fisherian
methodologies in more detail.

It should also be noted that Bayesian posterior distributions are approximate confidence
distributions. Bayesian machinery might thus be used by Fisherians, but whether the
approximation is acceptable should be checked, perhaps by simulation, in each case.

1.9 Notes on the literature

Risk, chance and probability have fascinated humans at least since the Renaissance.
Bernstein (1996) writes vividly about the remarkable story of risk, from Paccaoli’s 1494
masterwork in which he discussed how to divide the stakes in an interrupted game of
chance and through Kahneman and Tversky (1979, 1984), who studied risk behaviour from a
psychological point of view. Kahneman (2011) has reached the general public with insights,
experiences and theory related to our understanding of risk. Spiegelhalter (2008) and
Spiegelhalter et al. (2011) are concerned with the individual’s and the public’s understanding
of risk, also touching on the important differences between aleatory and epistemological
uncertainties. Probability, as we know it today, is a distinctly modern concept. It was born
around 1660, according to the philosophical study of probability, induction and statistical
inference offered by Hacking (1975). In 1657 Huygens published his treatise, while Pascal
and Fermat were developing the concept a bit earlier. Hacking also points to John Graunt’s
study of life tables from 1662 as the start of statistical inference. Hacking emphasises the
Janus face character of probability: both being aleatory, that is, an objective property in the
real world, and being epistemic, that is, the degree of belief a person has. Hampel (2006)
follows up on this, and holds that the lack of distinction between aleatory and epistemic
probabilities is a cause of much confusion.
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Hald (1990, 1998) gives a rather comprehensive account of the history of mathematical
statistics before 1750, and from then to 1930. The revolutionary events in this history are the
introduction of inverse probability by Laplace in 1774, the linear statistical model based on
the normal distribution by Gauss and Laplace in 1809–1812, and the likelihood function by
Fisher in 1922. Hald notes that it took about twenty years and many papers for these authors
to work out their ideas in detail, and it took some fifty years for the statistical community to
accept and understand the new methods.

In his colourful history of statistics before 1900, Stigler (1986a) emphasises the
difficulties involved in measuring uncertainty. He observes that regression analysis and least
squares were introduced to the social sciences (by Francis Galton) some fifty years after it
was accepted in the physical sciences (Gauss), and asks whether this is because concepts
and theory are interwoven with model and empirical studies in a more profound way in the
social sciences compared to physics and astronomy.

The Fisher–Neyman confidence methodology grew out of Fisher (1930) and Neyman
(1934). Aldrich (2000) traces the roots of Fisher’s seminal paper. In rereading Fisher,
Efron (1998) puts Fisher’s fiducial approach in the wider context of statistical inference,
and finds it to be a most promising amalgamation of frequentist and Bayesian thinking.
He uses the term ‘confidence distribution’, and suggests that this compromise between the
two dominating methodologies, characterised as ‘objective Bayesianism’, might come to
widespread use. Fisher got his fiducial theory wrong when extended to multiple dimensions.
Efron says, “Maybe Fisher’s biggest blunder will be a big hit in the 21st century.” As did
Neyman (1934), we would say that Fisher (1930) is a revolutionary paper. Hald thought
there have been three revolutions in statistics. Perhaps Fisher, on line with Laplace, should
be regarded as responsible for two revolutionary events – but partly due to Fisher himself, it
might take nearly a century until the Fisher–Neyman confidence methodology, as conveyed
in the present book, will be widely accepted.

The fiducial debate following Fisher (1935) is laid out by Zabell (1992); see also Efron
(1998) and our Chapter 6. Cox (1958) discusses the fiducial approach and its relation
to Neyman’s confidence intervals. He suggests considering all the possible confidence
intervals for a parameter, and to represent them in a distribution, that is, in a confidence
distribution. Cox actually uses the phrase ‘confidence distribution’. This is the first
occurrence of this term we are aware of. Incidentally, Melville (1857) reminds us that
‘con man’ is also etymologically connoted with ‘confidence’; a person (or a government)
may exploit the gullibility of people by first gaining their confidence and then pulling off a
confidence trick.

Fraser (1961a, 1968) investigated fiducial probability in the context of invariance. In
his structural inference the pivot and its distribution, and thus the fiducial distribution, is
found as the property of the maximal invariant in a transformation group. Hannig (2009)
extends the fiducial argument to models defined by a structural equation X = G(θ ,U )where
U is a stochastic element with known distribution and X is the data. Hannig allows the
structural equation to implicitly define a set-valued function Q(X ,U ) into the parameter
space, from which his fiducial distribution is obtained. When single-valued, Q would
define an ordinary pivot. This is discussed further in Chapter 6. See also Hannig and
Xie (2012), concerning attempts to make Dempster–Shafer rules for combining expert
opinions amenable to handling of confidence distributions. The PhD dissertation of Salomé

https://doi.org/10.1017/CBO9781139046671.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139046671.002


1.9 Notes on the literature 21

(1998) presents theory for what Kardaun and Schaafsma in unpublished work (2003) call
distributional inference, that is, inference leading to distributions for parameters of special
interest; see in this connection also the “fourteen cryptic questions” formulated by D. R. Cox
and then discussed at length in Kardaun et al. (2003). Certain strands of work related to
confidence distributions include Schweder and Hjort (2002, 2003), Efron (1998), Singh
et al. (2005, 2007) and Xie and Singh (2013); cf. also notes on the literature sections in
later chapters.

Modern probability theory and hence statistics owe much to the treatise Kolmogorov
(1933) (reprinted in e.g. Kolmogorov [1998], with more material than in the German
original), where the axiomatic buildup is clarified, leading to sharp and relevant
mathematical results. Bayesians need to take on additional elements; see, for example, Good
(1983), Berger (1985) and Fraser (2011) for engaging discussions. That matters are delicate
when strict philosophical arguments are called for is illustrated in one of the Good Thinking
essays (Good, 1983), where the lower bound 56,656 is derived for the number of different
types of Bayesians.

Invariably each sufficiently rich and vibrant scientific community contains certain
cultural ‘schools of thought’, perhaps shaped and moulded by experiences or types of needs
that might differ from one context to another. Thus a Bayesian’s prior might mean a serious
piece of work in one type of application but simply be an off-the-shelf tool in another,
used because it does the job. Certain cultural-sociological divides are therefore visible in
the fields of statistics, reminiscent of “the two cultures” discussed in Snow (1959, 1963);
the number of identifiable cultures is later arguably extended to three (Kagan, 2009). In
such a spirit Breiman (2001) identifies and examines two such statistical cultures. One is,
roughly speaking, the emphasis on regression and classification, called for in a broad range
of engineering applications, associated also with machine learning, support vector machines,
neural networks, and so forth. The proof of the pudding is that the black box actually works
well, and the job of any model parameter is to be fine-tuned inside associated algorithms for
good performance. The complementary school concerns itself with more careful attention
to building meaningful models, interpretation of parameters, identification of significant
effects, hunting for causality, and so forth. Such needs are encountered in biology and
medical research, economics and social research, psychology, climatology and physical
sciences, and so forth, and in general when it comes to analyses of smaller and precious
datasets and meta-analyses for combining information across studies. The key question
to consider is “to explain or to predict” (Shmueli, 2010). We believe the inference tools
associated with confidence distributions have genuine potential for both of these statistical
schools.

As mentioned previously, fiducial probability has been regarded as “Fisher’s one great
failure” (Zabell, 1992). We agree with Fisher’s critics that Fisher went wrong when he
pushed his fiducial probability for vector parameters to be ordinary probability distributions.
The fiducial distribution works fine for a parameter of dimension one, but may go wrong
for higher-dimensional parameters. Fisher thought that his fiducial distribution, say in two
dimensions, could be integrated to obtain marginal distributions, but as pointed out by
several critics this can be done only in special cases; see, for example, Pitman (1957).
To regard the fiducial distribution as an ordinary probability distribution over an imagined
infinite population, as Fisher did, was also hard to swallow. Feller (1950) was not alone in
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regarding probabilities as referring to outcomes of conceptual experiments. But a parameter
such as the gravitational constant reflects an aspect of nature, and can hardly be thought of
as an outcome in an experiment in a hypothetical sequence of repeated experiments. The
fiducial argument and its ensuing controversy are discussed further in Chapter 6.

The basic problem with Fisher’s position after 1935 is that he regarded his fiducial
probability as an ordinary probability on par with other aleatory probabilities. We agree
with Hampel (2006) that fiducial probability, or confidence as we prefer to call it, must
be understood as an epistemic quantity. This epistemic probability is, however, objective
because it is obtained from a clearly defined method that rational people should agree on.
Thus Fisher (1930) succeeded in finding an alternative to probabilistic inference by the
inverse probability method with flat priors, and when keeping to his original ideas and
respecting the limitation with regard to how far the method reaches, a very potent statistical
methodology is established. By relating the confidence distribution to confidence regions,
as Neyman (1934) did, we agree with Efron (1998), and also with Fraser in his discussion of
that article, that Fisher’s fiducial method holds a key to “our profession’s 250-years search
for a dependable Bayes theory”, despite the unfortunate interpretation and use of fiducial
distributions that Fisher himself made after 1935.
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