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Luisa Fiorot, Teresa Monteiro Fernandes and Claude Sabbah

ABSTRACT

We develop the theory of relative regular holonomic D-modules with a smooth com-
plex manifold S of arbitrary dimension as parameter space, together with their main
functorial properties. In particular, we establish in this general setting the relative
Riemann—Hilbert correspondence proved in a previous work in the one-dimensional
case.

1. Introduction

In this article, we are concerned with holomorphic families of coherent D-modules on a complex
manifold X of dimension dx, parametrized by a complex manifold S, that is, coherent modules
over the ring Dxyg/5 of linear relative differential operators with respect to the projection

x : X x5 — S (simply denoted by p when no confusion is possible). More specifically, we
consider families for which the characteristic variety in the relative cotangent space (1T*X) x S
is contained in the product by S of a fixed closed conic Lagrangian analytic subset A C T*X.
Following [FMFS21, MFS13, MFS19], we call these systems relative holonomic D x  g/5-modules.
Here are some examples.

(i) Deligne considered in [Del70] the case of vector bundles E on X x S with a flat relative
connection V, and established an equivalence with the category of locally constant sheaves
of coherent p)_(l(‘) s-modules on X x S. In this case, the relative characteristic variety is the
product of the zero section 75X by S.

(ii) For any holonomic D x-module M on X with characteristic variety A, the pullback ¢*M =
Oxxs ®g-104 ¢~ M by the projection ¢ : X x S — X is naturally endowed with a Dxxs/s-
module structure, and the relative characteristic variety of M is equal to A x S. For (E, V)
as in example (i), the characteristic variety of ¢*M ®o, ¢ £ (equipped with its natural
D x x5/s-module structure) is contained in A x S.

(iii) Some integral transformations from objects on X to objects on S have kernels which are
such flat bundles (E,V). One of them is the Fourier-Mukai transformation FM intro-
duced by Laumon [Lau96] and Rothstein [Rot96], which attaches to any bounded complex
of D-modules with coherent cohomology on an abelian variety A a bounded complex
of O-modules with coherent cohomology on the moduli space A of line bundles with
integrable connection on A (cf. [Sch15] and the references therein). It is obtained as the
integral transform with kernel P on A x Af associated to the Poincaré bundle on the

Received 10 March 2022, accepted in final form 6 March 2023, published online 15 June 2023.

2020 Mathematics Subject Classification 14F10, 32C38, 32540, 32560, 35Nxx (primary), 58J10 (secondary).
Keywords: holonomic relative D-module, regularity, relative constructible sheaf, relative perverse sheaf.

(© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica
under an exclusive licence. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited. Compositio Mathematica is
(© Foundation Compositio Mathematica.

https://doi.org/10.1112/S0010437X23007224 Published online by Cambridge University Press


http://www.compositio.nl/
http://www.ams.org/msc/
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1112/S0010437X23007224

L. FioroT, T. MONTEIRO FERNANDES AND C. SABBAH

product A x Pic’(A). By construction, P is equipped with a flat relative connection, i.e., is
a D gy a8/a:-module. Then ¢*M ®¢ . P is an instance of example (ii), and FM(M) is the

P). It is an object of D2, (O 4).

coh

pushforward pp.(¢g*M ®0 . 8

(iv) Given a holonomic D x-module M and holomorphic functions fi, ..., f, on X defining a
divisor Y = {[], fi = 0}, and setting S = CP with coordinates si,...,s,, the S-analytic
counterpart of [Mai23, Proposition 13] asserts that the Dy s/s-submodule generated by
g M- (I1; f;*) in the twisted coherent Dy, g/g(*(Y x S))-module ¢*M(x(Y x S)) - (T[; f;")
is relative holonomic.

(v) In his construction of moduli spaces for regular holonomic D-modules, Nitsure [Nit99] fixes
a divisor with normal crossings in X and deforms pre-D-modules (extending the notion of
vector bundle with flat logarithmic connection) relative to this divisor and its canonical
stratification. The corresponding holomorphic family of regular holonomic D-modules has
its characteristic variety adapted to this stratification, hence of the form A x S.

(vi) Mixed twistor D-modules (cf. [Mocl5]) are compound objects defined on the product of X
by the complex line C, whose module components are holomorphic families of holonomic
D-modules parametrized by S = C* degenerating at 0 € C to a coherent module on the
cotangent space T*X. On S, the characteristic variety of each holonomic D-module is, by
definition, contained in a fixed Lagrangian variety A. Of particular interest are the regular
mixed twistor D-modules, which have furnished the first example of families we are dealing
with (cf. [MFS13]).

Our definition of relative holonomicity imposes the following: the only possible changes in
the characteristic variety of the restricted D x-module to a fixed parameter, when the param-
eter varies, is a change of multiplicities on each irreducible component of A. This condition is
reasonable, as shown by the previous examples.

In addition, not any relative holonomic Dx, 5/g-module X can serve as the kernel of an
integral transformation as in example (iii), because it cannot be ensured that, for a holonomic
Dx-module M, the tensor product ¢*M ®p, s K is Dxg/s-coherent, in contrast with the
classical result when S is reduced to a point. Indeed, in general, Bernstein—Sato theory only
applies on some open subset of S depending on M, as exemplified in [MFS17, Example 2.4].
Fortunately, adding the regularity property, as defined in [MFS19], of the kernel X and of M
overcomes this difficulty, as already shown in [FMFS21] when dim S = 1.

In order to replace Bernstein—Sato theory, the main tool is the stability of regular holonomic-
ity by D-module pullback [FMFS21, Theorem 2], that we generalize to the case where dim S can
be arbitrary.

THEOREM 1 (Stability by pullback). Let M € D]rDhol(DXxS/S) and let f:Y — X be a mor-
phism of complex manifolds and let us still denote by f the morphism f x Id. Then pf*M €

D?hol(DYXS/S)'

A possible application of our approach is that, for an integral transformation as in example
(iii) with regular holonomic kernel K, the analysis of local properties of ¢*M ®éXXS X leads to
a better understanding of the K-transform pp.(¢*M ®ést K) of M.

Here we give natural examples of regular holonomic D y g/s-modules.

(i) Coherent Dx g/s-submodules of regular holonomic D x » s-modules, provided that the irre-
ducible components of the characteristic variety of the latter decompose as products with
respect to the product decomposition T7*X x T*S (cf. §3.c); they can be called integrable
regular holonomic Dy, g/5-modules.
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(ii) In the setting of example (iv), let us assume that M is regular holonomic. Then the coher-
ent Dy, g/5((Y x §))-module ¢*M(+Y x S) - [[,; f;* is Dxxg/s-regular holonomic, hence
D x xs/s-coherent (cf. Example 4.36) and this enables us to recover the S-analytic version of
the result of Maisonobe in example (iv) when M is regular holonomic.

We have developed in [MFS13] the notion of relative C-constructible complex and relative
perverse complex on X x S, generalizing the notion of a relative local system of coherent p)_(lO S-
modules considered by Deligne. For each stratum X, of a suitable complex stratification (X,)
of X, each cohomology of such a complex is locally isomorphic to p}i G, for some coherent
Og-module G,. We prove here a Riemann—Hilbert correspondence for any dim S (the dim S =1
case was proved in [FMFS21]).

THEOREM 2 (Relative Riemann-Hilbert correspondence). The functors
PSolx DPhol(DXXS/S) - DE-C(P;{IOS)
RH?( : D((b:—c(p)_(los) - D]rohol(‘DXXS/S)
are quasi-inverse equivalences of categories.

The proof of the correspondence is now made possible owing to [MFP21], as we con-
struct the relative Riemann—Hilbert functor RH}"} by means of the site Xy, x .S introduced
in [MFP21] instead of the subanalytic site Xg, X Ssa considered in [MFP14] and used in [MFS19,
FMFS21]. The main results are the exact analogues of Theorems 2 and 1 in [FMFS21] for S
of arbitrary dimension, with the same notation for relative regular holonomic complexes and
S-C-constructible complexes, and the same meaning for the perverse solution functor PSolx. We
change the order of the theorems with respect to Theorems 2 and 1 in [FMFS21] because their
proofs are done the other way round in the present paper.

The strategy for the proof of these theorems is similar to that of [FMFS21]: it is made precise
in §§4.e and 6. However, when dim S > 2, we have to distinguish between S-torsion-freeness and
S-flatness (also called strictness in [FMFS21]). Although this is not much trouble for some of
the results, owing to the analysis of t-structures made in [FMF18], we are led to using Rossi’s
flattening theorem of [Ros68] at some point.

Along the way, we complement the results of [MFS19, FMFS21] by giving further character-
izations and properties of regular holonomic D yx, 5/5-modules or objects of the bounded derived

category D1 (Dx s/s), which are needed for the proof.

Comparison with other works on regular holonomic D-modules with parameters. (i) In
[DGS11], the authors introduced a formal parameter h and the corresponding rings C[A], Ox [A],
Dx[h] denoted by D;L(. They define the notion of regular holonomic D?c—module by asking that
the restriction to the closed point & = 0 is a regular holonomic D x-module which is different from
our point of view because we ask for regular holonomicity at any value of the parameter. They
proved a Riemann—Hilbert correspondence with the category of C-constructible complexes of
Cx[h]-modules by means of a functor they denote by THp, which would correspond to the
notation RH; in the present paper. The main difference with the notions introduced in
the present paper (or more precisely with those introduced in [FMFS21], which only considered
the case where dim S = 1) is that the sheaves considered in [DGS11] are sheaves of C[h]-modules
on X, whereas we consider sheaves of p;(l(f)s—modules on the product space X x S. The authors
also considered the restriction at the generic point of C[A], that is, modules over the ring D x (%))
which has no counterpart in our setting.
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(ii) If instead of considering D x-modules one considers flat meromorphic bundles on X
(i.e., meromorphic connections) with fixed pole divisor, there are many works in the algebraic
or formal setting, with base fields or rings that can be different from C. As the literature is
vast, let us only mention [ABC20] and the more recent preprint [HdST21]. In the latter preprint,
the authors extend Deligne’s equivalence result [Del70, Theorem I1.5.9] to an equivalence with
a formal parameter. The corresponding equivalence in the present article would be that for
Dx xs/s-modules of D-type, as defined in § 4.

(iii) Wu [Wu21] has established a Riemann-Hilbert correspondence similar to that of Theorem 2
in the case of Alexander complexes that occur in example (iv).

Organization of the paper. In §2, we review and complete various results on coherent
D x x 5/s-modules obtained in our previous works [MFS13, MFS19, FMF18, FMFS21]. We empha-
size the behavior of holonomicity with respect to pullback and proper pushforward both with
respect to X and to the parameter space S. Note that the parameter space S is always assumed
to be a complex manifold, whereas one should be able to generalize various statements to any
complex analytic space. For example, the sheaf D x 7/ is well-defined if T" is a possibly singular
and non-reduced complex analytic space with sheaf of functions Or. In this work, we restrict the
setting to those complex spaces T' that are embeddable in a smooth complex manifold S, with
ideal Jr C Og, and we regard D x 7 p-modules as Dy g/s-modules annihilated by Jr.

In §3, we complement various results of [FMFS21] on the regularity property. In particular,
we give details on [FMFS21, Remark 1.11]. Furthermore, the relation with the usual notion of
regularity of holonomic D xxg-modules is made precise in §3.c. Stability under base pullback
and proper base pushforward is established in §3.b (as usual, under a goodness assumption for
proper pushforward). The case of pushforward with respect to a proper morphism f: X — Y
(with a goodness assumption) has already been treated in [MFS19], and stability by pullback,
which is the content of Theorem 1 needs first a detailed analysis of holonomic D x g/5-modules
of D-type.

This analysis is performed in §4. The reasoning made in [MFS19] when dim S = 1, relying
on the property that the torsion-free quotient of a coherent Og-module is locally free, has to
be adapted by using base changes with respect to S, so that the base functoriality properties
considered in §§2 and 3 are most useful. Theorem 1 is proved in §4.e in a way similar to that
done in [FMFS21]. In §4.f, we give a characterization of relative regular holonomicity in terms
of formal solutions.

Section 6 gives details on the main steps of the proof of Theorem 2. The strategy is similar
to that in [MFS19], although we need various new technical details contained in §5. On the one
hand, the construction of the Riemann—Hilbert functor RH‘;( is now performed by using the par-
tial subanalytic site Xg, % S introduced in [MFP21]. On the other hand, the comparison between
two definitions of Deligne’s extension, one using the standard notion of moderate growth and the
other obtained via the complex of tempered holomorphic functions on the partial subanalytic
site Xga x S, is also done in §5, relying once more on results of [MFP21]. We emphasize that
the proof given here is simpler, when dim S = 1, than that given in [MFS19].

2. A review on relative coherent and holonomic D-modules

For complex analytic manifolds X and S, we denote the projections by

px: X xS —85 and ¢g: X x5 — X,
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and we use the notation p, ¢ when there is no confusion possible. The sheaf of relative differential
operators Dy, /g is naturally defined as

Dxys/s =4 Dx Dg-10y Oxx5 = Oxxs Dg-10y ¢ Dx. (2.1)

2.a Coherence, goodness, and holonomicity
We adapt the definitions of [Kas03, §4.7], which we refer to for properties and proofs.

DEFINITION 2.2. We say that an Ox«g-module ¥ is:

(i) O-good on X x S if, on any relatively compact open set U of X x S, F|; is the direct limit
of an increasing sequence of Oy-coherent submodules (equivalently, the direct limit of an
inductive system of Op-coherent modules);

(i1) O-quasi-coherent if each point of X x S has an open neighborhood U on which F is O-good.

We say that a Dy, g/g-module M is:
(iii) good on X x S if it is O-good on X x § and Dy g/s-coherent.

The category Modo_q_coh(O xxg) of O-quasi-coherent O xyg-modules is an abelian full sub-
category of Mod(Ox«g) closed under extensions. Let Y be a hypersurface of X. We denote by
«(xY"), instead of «(x(Y x S)), the localization functor along the hypersurface Y x S of X x S.
We use the notation X* = X \Y.

LEMMA 2.3.

(i) Let L be an O-quasi-coherent module. Then L(*Y) is O-quasi-coherent.
(ii) Let L be an O-quasi-coherent module supported on Y x S and localized along Y x S
(ie., L~ L(xY)). Then L = 0.
(iii) Let M 2. Nbea morphism of O-quasi-coherent modules which are localized along Y x S.
If the restriction of ¢ at X* x S is an isomorphism (respectively, zero), then ¢ is an
isomorphism (respectively, zero).

Proof. (i) By definition, any point of X x S has an open neighborhood U, which we can suppose
to be a relatively compact open set, on which Ly = |J; £L; is the direct limit of an increasing
sequence of O-coherent submodules £;. As L;(xY"), being equal to | J,, Iy, ¢L4, is O-quasi-coherent
for every 4, so is L7 (*Y) = J; Li(*Y).

(ii) The question is local. As L is an O-quasi-coherent module supported on Y x S, we can
suppose (up to shrinking the neighborhood) that it is a direct limit £ = J, £; of an increasing
sequence of O-coherent submodules £; which are supported on Y x S. Therefore, L;(xY") = 0 for
every i and, thus, L(xY) = J, Li(xY) = 0.

(iii) Let us denote by L and L’ the kernel and the cokernel of ¢, respectively. They are
O-quasi-coherent modules. If the restriction of ¢ to X™* x S is an isomorphism, they are supported
on Y x S. By applying the localization functor along Y, we get the following exact sequence of
O-quasi-coherent modules (by the first point)

0 — L(xY) — M(+Y) — N(*Y) — L'(xY) — 0.

By hypothesis, M(xY) ~ M and N(xY") ~ N, thus L(xY) ~ L, L'(xY) ~ L’ and by the previous
point £ and L' are zero. If @) x+xs is zero, then L — M is an isomorphism on X* X S, hence it
is an isomorphism and so ¢ is zero. O
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Let Dxyg/s(¥Y) be the coherent sheaf of rings Oxxs(xY) ®0y,s Dxxs/s- Then any
coherent D x, 5/5- or Dx g/ 5(xY)-module is O-quasi-coherent. On the other hand, any O-quasi-
coherent Dy g/g-submodule N of a coherent D x g/g-module M is D x g/g-coherent. The next
lemma follows by an easy adaptation of [Kas03, Proposition 4.23].

LEMMA 2.4.

(i) The category of coherent, respectively, 0-good, Dxg/g-modules, is abelian and stable
by extensions in Mod(Dxyg/s5), and DEOh(DXXS/S), respectively, Dgood (Dxxs/s), is a
triangulated full subcategory of DP(D x 5/8)-

(ii) Let M* be a bounded complex of O-good D x , g/5-modules. Then each cohomology FE(M®)
is O-good on X x S.

(iii) On any relatively compact open subset U € X x S, each good Dy g/g-module N comes in
an exact sequence

0— N — DX><S/S ®PO0xxs L— N|U — 0,

with L being Op-coherent and N’ being good on U. In particular, Njy has a coherent
F.Dx xs/s-filtration.

Remark 2.5. (i) With a slight adaptation of the proof of Lemma 2.3(i) we conclude that if M is
good (respectively, D x, g/g-coherent), then M(xY") is O-good (respectively, O-quasi-coherent).

(ii) If a local section m of an O-quasi-coherent module satisfying M = M(xY") is zero when
restricted to X™* x S, then it is zero. Indeed if m is defined on U x Ug, m generates an O-coherent
submodule of M(*Y") 7«7 Which is supported on Y x S; given a local defining equation f =0
for Y, we have f*m = 0 for some k, thus m = 0.

Characteristic varieties. To any object M of Modeon (D x x 5/5) is associated, by means of local
coherent Ox g-filtrations, its characteristic variety Char(M), which is contained in 7*X x S.
A coherent Dy, g/g-module is holonomic if its characteristic variety is contained in A x S,
with A closed complex analytic Lagrangian C*-homogeneous in T*X. The derived categories
Dsoh(DXxS/S) and DEOI(DXXS/S) and the characteristic variety Char(M) for such objects M are
defined correspondingly.

The structure of the characteristic variety of a holonomic D, g/g-module M is described in
[FMF18, Lemma 2.10]: for each irreducible component A; of A (i € I) there exists a locally finite
family (73;) e, of closed analytic subsets of S such that

il jeJ; iel J

The projection to X of A; is an irreducible closed analytic subset of X that we denote by Z;.
These subsets form a locally finite family of closed analytic subsets of X. We have

SuppM) = U Z; x T3, (2.7)

i€l
and we set
Suppx (M) = U Zi, SuppsM) = U T,
il iel

that we call the X-support (which is a closed analytic subset of X) and the S-support of M
(which may be not closed analytic if [ is infinite), respectively. Anyway, we set dim Suppg(M) =
max; ; dim7T;; < dim S.
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Any D x 5/5-coherent submodule or quotient module of M is holonomic and its characteristic
variety is the union of some irreducible components of Char(M).

LEMMA 2.8. The category Modpel (D x xg/5) of holonomic Dy s/5-modules is closed under tak-
ing extensions in the category Mod(D x s/ s), and under taking sub-quotients in the category

Modeon(Dxx5/5)-

We say that a local section m of a D x, g/g-module M is an S-torsion section if it is annihi-
lated by some holomorphic function on S. The S-torsion submodule My of M is the submodule
consisting of S-torsion local sections. Note that if M is a holonomic Dx g/5-module, then the
D x x5/5-submodule My is holonomic because it is an O-quasi-coherent submodule of M. We say
that M is S-torsion-free if My = 0. We denote by Mt : M/M; the torsion-free quotient.

We recall that the duality functor D for Dy, g/g-modules was considered in [MFS13,
Definition 3.4] and that DP (D s/s) is stable under duality which is an involution.

2.b Behavior with respect to pullback, pushforward, and external product
Notation 2.9.

(i) For a holomorphic map f : X — X', we also denote by f the morphism of complex manifolds
fxId: X xS — X'x Sandby ,f* and p f« the pullback and pushforward functors in the
derived category of relative D-modules.

(ii) For a morphism 7 :S — S’ between analytic spaces, we denote by 7* and R, the natu-
ral extension to the category of relative D-modules of the similar functors defined on the
categories of O-modules

DEFINITION 2.10. We say that a D, g/s-module M is f-(0-)good (respectively, 7-(0-)good)
if it is (O-)good in some neighborhood of each fiber of f (respectively, ).

We recall results concerning the behavior with respect to a morphism of complex manifolds.
PROPOSITION 2.11. Let M be a coherent D x g/5-module.

(i) If f : X — X is a holomorphic map of complex manifolds, then, for each { € Z, H’, f*M
is an f-0-good Dxr, g/5-module.

(ii) Let f: X — X’ be a proper holomorphic map. If M is f-good (respectively, f-good and
holonomic), then, for each ¢, Hs f,M is D xxs/5-coherent (respectively, holonomic).

Proof. We refer to [SS94, Theorem 4.2 and Corollary 4.3] for the proof of part (ii) (or one can
adapt the proof of [Kas03, Theorems 4.25 and 4.27]), whereas for the proof of part (i) we can
easily adapt the argument of [LS87, Proposition 2.1] which gives the absolute case. O

Base pullback. Let w: S’ — S be a morphism of complex analytic manifolds. We also denote
by 7 the induced map Id x7 : X x S’ — X x S. We have

Dxxs/sr = Oxxs' On-10x,5 T Dxxsss = 7 Dxxs/s; (2.12)
hence, D x g/ is a right ﬂleXXS/S—module. One can then define in a natural way the functor

Lm*: D(DXXS/S) — D(DXXS’/S/) as LW*(-) = DXXS’/S’ ®L (')

7 1Dxyg/s

The following is straightforward.

LEMMA 2.13. Let L be an O-quasi-coherent O x xg-module. Then each cohomology sheaf LI 7* L
is m-O-good.
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LEMMA 2.14. The functor L7* induces a functor DEOI(DXXS/S) — DEOI(CDXXS//S/). For a holo-
nomic Dy g/g-module M and for each j, the characteristic variety Char Li7*M is contained in
the pullback 7~! Char M (here, m denotes the map T*X x S’ — T*X x §).

Proof. By using that, locally, a coherent D x g/s-module has a resolution of length 2dim X by
free D x 5/5-modules of finite rank, one obtains the first point for DEOh(D xxs/s)- It thus suffices
to prove the second point, which is a local question. One can find such a resolution which is
strictly compatible with coherent filtrations relative to F,Dxg/g. In such a way, one can find
that for each j, Char Li7*M is contained in the support of Lax*grf M, hence the assertion. [

Base pushforward. We now consider pushforward by a proper morphism = : S — S. Owing
to (2.12), we have a natural morphism W*1®XXS/S — Dx s/ which, by adjunction, entails a
natural morphism Dy, g/5 — TDx x5/

We recall [MFS19, Proposition 1.6].

PROPOSITION 2.15. Assume that w is proper and that M is Dyxgr/g-holonomic and
w-good. Then, for each j, RIm,M is Dy, s/s-holonomic with characteristic variety contained
in 7(Char M).

An adjunction formula. Let m: S’ — S be a morphism of complex manifolds. We make use
of the following adjunction formula.

LEMMA 2.16. Let M, N be objects of Dth(DXxS/S)- Then there is a bi-functorial isomorphism
in D" (Dxs/s):

Rm.RHomq Lr*M, L7*N) =~ RHomp o, (M, Rm. L7*N). (2.16 )

Xxs'/s’ (
If N is a coherent Dx, 5/5-module, there are functorial morphisms in DP(Dxyg /5):

N — Rm.Lm*N — Rm, "N, (2.16 )
and if 7 is proper, Rm,L7*N ~ (Rm.Dx g /5') ®%Xxs/s N belongs to Dth(DXXS/S)-
Proof. We have (cf. [Kas03, p. 241])

R¥omop . o o (LT M, L7*N) ~ RHom,, 7'M, L7*N),

/s'( _1DX><S/S(

hence (2.16 *) is obtained by adjunction (cf. [KS90, (2.6.15)]). By setting M = N in (2.16 ) we get
It (L7*N, L7*N) ~ Homop, o ¢ (N, Rmy L7*N). The image of Id by this isomorphism
is the first morphism in (2.16 #*) while the natural morphism L7*N — 7*N in Db(DXxs//S/)
provides the desired morphism Rm,L7*N — Rmw,m*N. The last isomorphism is obtained by the
projection formula (cf. [KS90, Proposition 2.6.6]). O

Hom@XXS,

Remark 2.17 ((External) tensor product). If M,N € D™ (Dxg/s), the tensor product
M ®éX><S N S Di(‘DXXS/S)

is isomorphic to the pullback ,d*(M K% N) of the S-external tensor product (recall that
Dxxxxs/s is flat over Dy /9 Moy Dxxs/s)

MR N = Dxxxxs/s O M&és N)

Dxxs/sMogDxxs/s) (
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by the diagonal embedding 6 : X x S — (X x X) x Sover S. If M, N € DEOh(DXXS/S), M XE N
belongs to Dth(DXxXXS/S) and we have
C := Char(M &% N) € Char(M) x g Char(N).

This is seen by considering local resolutions of M (respectively, N) by free Dy g/g-modules,
showing both inclusions C' C T*X x Char(N) and C' C Char(M) x T*X. Therefore, if M, N are
holonomic, so is M @% N.

3. Regular holonomic D x g/s-modules

In the special case of Lemma 2.14 where 7 is the inclusion is, : {s,} — S of a point s, in 5,
we recall a consequence of [Kas03, (A.10)].

ProposiTIiON 3.1 (Cf. [MFS13, Proposition 3.1]). For any M, N in Db(fDXXS/S), for any s, € S,
the natural morphism

Li;, RHomp, s, (M, N) — RHom;:

is an isomorphism in D(Cx).

oDxxs/s (LZ'ZOM, Li:UN)

3.a Characterization of relative regular holonomicity
The category of regular holonomic D x g/5-modules was introduced in [MFS19] as well as the full

subcategory DEhol(DXxS/S) of DEOI(DXXS/S) of bounded complexes of Dy g/g-modules having

regular holonomic cohomology. According to [MFS19], we say that an object M € DP_;(Dx « S/s)
is reqular if it satisfies:

(Reg1) For each s, € S and any j € Z, Li} H/(M) € Db..1(Dx).
An alternative and natural property of regularity would be the following:
(Reg2) For each s, € S, Lif, M € D} (D).

Regularity in either sense is the same property for objects of Mod(Dyyg/s). Property
(Reg1) is, by definition, compatible with the truncation functors whereas property (Reg2)
is compatible with base change on S, meaning that, for any morphism w:S" — S of com-
plex manifolds and any object M € DP_ (D x s/s) which satisfies property (Reg2), the pullback
L7*(M) € DPy(Dxry s/s) satisfies property (Reg2) too. We enlarge the setting for further use
because both conditions make sense for any complex in Db(D XxS/S)-

PROPOSITION 3.2. Let Y be a hypersurface of X. On any complex manifold S:

(i) for a complex in DEOh(DXXS/S) (respectively, in DE’Oh(QXXS/S(*Y))), the condition (Reg1)
is equivalent to (Reg2), and we denote both by (Reg);

(ii) the category of coherent Dx,g/g (respectively, coherent Dy g/5(*Y))-modules satisfy-
ing (Reg) is closed under taking extensions in the category Mod(D xg/s)(respectively,
in Mod(Dxys/5(¥Y))) and sub-quotients in the category Modeon(Dxxg/s) (respectively,
MOdcoh(DXXS/S(*Y)));

(iii) the category of regular holonomic Dy g/s-modules is closed under taking extensions in

Mod(Dxs/s) and sub-quotients in Modcon(Dx xs/s)-

We note that statement (iii) follows from statements (i) and (ii) together with Lemma 2.8,
so that we focus on the latter properties. The proof in both cases is the same because it is based
on the coherence of the rings involved. We provide it in the localized case.
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LEMMA 3.3. Condition (Reg1) implies condition (Reg2).

Proof. We argue by induction on the amplitude of the complex M. We may assume that M &
Di%(@ xx5/5(xY)) and we consider the following distinguished triangle:

FHOM — M — 721 5, (3.4)

where 72! is the truncation functor with respect to the natural ¢-structure on D2, (D x g 15(xY)).

Let us assume that M satisfies (Reg 1), hence by definition and induction, both H°M and 72'M
satisfy (Reg1). As remarked, H°M satisfies (Reg?2) too and by induction on the amplitude of
M, 7'M satisfies (Reg2). O

Proof of Proposition 3.2. For d > 0, we denote by (Regl)y, respectively, (Reg2)4, the corre-
sponding condition for dimS < d. If dimS =0, (i)o holds true, and (ii)y is proved, e.g., in
[Bj693, Theorem 5.3.4]. We thus assume from now on that d > 1 and we proceed by induc-
tion on d := dim S, denoting by (i)4 and (ii)4 the statements of the proposition restricted to
dim S < d. We prove the following implications for d > 1:

(a) (Vg1 A ()1 = (D)gs
(b) (g A (i) = (ii) 4

Let us start with implication (a). Assuming that both (i)4—; and (ii)4—; hold, we have to prove
that (Reg2)y = (Regl)y. Owing to the induction hypothesis (i)4—1 we simply write (Reg)q—1
for either (Reg1)4—1 or (Reg2)4_1.

We note that M € DEOh(DXXS/S(*Y)) satisfies (Reg2)y if and only if for each smooth
codimension-one germ (H,s,) C (S, s,), Li;;M satisfies (Reg)q—;. It is then enough to prove
that, for such an M, Li},H'M satisfies (Reg)s—1 for any j and H. We shall argue by induc-
tion on the amplitude of M. We may assume that M € Di%(@XXS/S(*Y)) and we consider the

distinguished triangle (3.4). We deduce an isomorphism
HALiHOM ~ H LM (3.5)
and an exact sequence
0 — HOLi% HOM — HOLiHM — HOLi%m2IM — 0.

(Note that HFLi%HOM =0 for k#0,—1.) As Li};M satisfies (Reg)q_1, so does H*Lit,M
(k= —1,0), and so does H~1Li%;HM by (3.5). Since (ii)4—1 is assumed to hold, any coherent
sub-quotient of .’HOLZ'}{M satisfies (Reg)q4—1, hence so does J—COLi*HiHOM, which proves, following
Lemma 3.3, that Lit;HOM satisfies (Reg)q—1. Thus, HM satisfies (Reg2)q and, by the distin-
guished triangle (3.4), 7'M satisfies (Reg2)4. Induction on the cohomological length applied
to 721M implies that Lit; HIM satisfies (Reg)g—1 for any j > 1, which concludes the proof of
implication (a) and we now simply write (Reg)y.

Let us now prove implication (b). The extension property in (ii)q is clear. Let us consider sta-

bility by sub-quotients in Modcon (D x xs/5(*Y")). Let M € Modeon (D x x5/5(xY)) satisfy (Reg)q.
Given any short exact sequence

00— My —M— My —0 (3.6)

of coherent D x g/5(*Y)-modules, we wish to prove that M; and My satisfy (Reg)q. Owing to
our assumption on M, Lij;M satisfies (Reg)q—1 for any smooth codimension-one germ (H, s,) C
(S, s0), and it is enough to prove that either Li};M; or Lij; My satisfies (Reg)q—1. From (3.6) we
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obtain the long exact sequence:
0 — H'Lity My — HELiM — H L% My
— HOLitM, — HOLipM — HOLi% My — 0. (3.7)
As Lit;M satisfies (Reg)y—1, then so do H~1Li%M; and HOLi% Mz owing to (ii)4_1, and it
remains to be proved that either fJ-C*ILz'}‘{Mg, or fHOLi}‘,Ml, satisfies (Reg)g—1. Let s be a local
coordinate on S vanishing on H.
Let us denote by M’ the pullback of M := torsy(Mz) in M and by Mo the quotient

Mz /M. The following commutative diagram is Cartesian and its columns and rows are short
exact sequences.

0—— M, M M, 0
H [ [
0 My M Mo 0 (3.8)
| |
My tf === Mo it

As My ¢ is i3-acyclic, the exact sequence (3.7) for the middle column splits as
HALipM = H LiyM,
0 — HOLis M — HOLitM — HOLit Mo ¢ — O,

which implies that Li},M’ and Lij;Ms ¢ satisfy (Reg)qs—1 by (ii)g—1, hence M and My 4 satisfy
(Reg)q. We now prove that LijM, satisfies (Reg)q—1, which will conclude the proof. As M)
is Dy xg/s(*Y)-coherent, there exists locally an integer k£ > 1 such that sF M), = 0. We prove
by induction on k that any Dy S/S(*Y)—coherent torsion quotient of a Dy S/S(*Y)—coherent
module satisfying (Reg)y, satisfies (Reg)q too.

If k = 1, we have H 1 Li}, M} ~ HOLi3, M), and, by (ii)4—1 the latter satisfies (Reg)q—1, being
a quotient of HOLi%t M’

If £ > 1, we argue with the following Cartesian commutative diagram, analogous to (3.8).

0— M M 0
| [ [
0— M M, 0
| Is
s - M, s - M,

By the induction hypothesis on k, Li}; (s - My) satisfies (Reg)q—1 because s - My is a Dy, g/g(*Y)-
coherent quotient of M’ which is annihilated by s*~!. It follows that, by considering the middle
vertical sequence, so does LijM”. As M5 is a D x, g/5(¥Y)-coherent quotient of M” annihilated
by s, Li};(M5) satisfies (Reg)q—1. It follows that, by considering the first horizontal sequence, so
does Li§; My, hence, finally, by considering the middle horizontal sequence, so does Lij;My, as
required. O

COROLLARY 3.9. The category D}fhol(DXXS/S) is a full triangulated subcategory of
Den(Dxws/s) stable by duality.

Proof. We note that (Reg2) implies that D]fhol(’D xxs/s) is a full triangulated subcategory
of DEOI(‘DXXS/S). As the latter is a full triangulated subcategory of Dsoh(DXXS/S), the first

1423

https://doi.org/10.1112/S0010437X23007224 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007224

L. FioroT, T. MONTEIRO FERNANDES AND C. SABBAH

assertion follows. Stability by duality follows from the same property in the absolute case (cf.,
e.g., [Bjo93, Theorem 5.4.15(4)]), together with the isomorphism Lii DM ~ D Li; M, which
follows from Proposition 3.1. O

3.b Stability of regular holonomicity under base pullback and base pushforward

For a proper morphism f : X — Y, it has been shown in [MFS19, Corollary 2.4] that if M is an
object of D?hol(DXXS/S) with f-good cohomology, then p, f,M belongs to D}r’hol(ﬁyXS/S). On the
other hand, stability of regular holonomicity (and, hence, its coherence) by pullback , f* has been
shown in [FMFS21] only if dim S = 1 as a consequence of the Riemann—Hilbert correspondence
proved there. This will be obtained in general by the proof of Theorem 1 in §4.e. In this section,
we consider on the other hand the behavior with respect to base pullback and pushforward.

PROPOSITION 3.10 (Stability under base pullback). Let 7 :S" — S be a morphism of complex
manifolds and let M be an object of DEhol(DXXS/S). Then L7*M belongs to D'r’hol(DXXS//S/).

Proof. We already know that L7*M belongs to Dlﬁol(@ xxs'/s) by Lemma 2.14. Regularity
follows from the isomorphism of functors Lij, Lw* ~ Li7 | for any s, € 5. O

Let t, be a fat point of S, that is, a complex subspace of S supported on a reduced point
|to] € S. In other words, the ideal J;, C Og, which satisfies J;, C m,,| (which is the ideal asso-
ciated to [t,| such that its fiber in [t,| is the maximal ideal of Og, ), contains some power
mf“to‘. By abuse of notation we still denote by J;, (respectively, my, |) the ideal J; |, | (respec-
tively, my, | ,,|) and also the sheaf p~ 19, (respectively, p*1m|t0|). Let i, : t, — S denote the
natural morphism of complex spaces defined by the surjective morphism Og — Og/J;,. For an
Ox xs-module, respectively, a D x g/g-module M, we set

it M= (p ' 0s/p '04,) @p-10s M,
that we regard in a natural way as a D x-module because Og | /34, is a finite-dimensional vector
space. We define thereby the pullback functor
Liy, : D*(Dxxs/5) — D"(Dx).
We note that, endowed with its natural structure of D x-module, if Dy /g is coherent. As a con-
sequence, if M is Dy g/g-coherent, then Li; M has Dx-coherent cohomology. In other words,

Li; induces a functor Dth(DXxS/S) — D>, (Dx).

COROLLARY 3.11. Let M be an object of D?Oh(fDXXS/S). Then, for any fat point t, of S, Lij M

belongs to DB, (Dx) if and only if Lij, \ M does so.
Proof. For k > 0, we set I, =J;, N mf“tol (with m‘gd := 0g), so that J; =J;, and I, = mﬁ()' for k
large enough. It is enough to prove that p~!(J3/Jpi1) ®z€*1(‘)s M belongs to D5, ;(Dx) for any

k if and only if Lij, M does so. As the sheaf Jj/Jg 41 is an Og/my, |-module supported on [t,|

whose fiber is a finite-dimensional vector space, we have
PO/ Trr1) @199 M~ (T /Tpg) ®1[7/*1(Os/m‘to‘) (™1 (0s/my,)) @19, M)
= (Te/Irs1) ® Ly, ) M,
and the conclusion follows. O

Setting 3.12. We consider a local setting where S is a polydisc A? written as A1 x A = 8" x A,
and we denote by ¢ : S — S’ the projection (s',t) — s, and we keep the same notation after
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taking the product with X. Recall (cf., e.g., [Kas03, Proposition A.14]) that the sheaves of rings
¢ '0g, ¢ ' Oxyg and q*1®XXS//S/ are Noetherian.

Let h(s',t) = tF + Zi':()l h;i(s")t" be a Weierstrass polynomial, with h; holomorphic on S’ and
let T = h~1(0). The equivalence between the categories of:

e coherent Og-modules supported on T
e h-nilpotent coherent ¢~'Og [t]-modules;
e h-nilpotent ¢~!Og [t]-modules which are ¢~!Og,-coherent;

extends in a natural way to Oxxs, to Dxyg/s and to Dy, g/5(*Y") for a given hypersurface Y’
of X. For example, in one direction, if M is Dy g/5-coherent and supported on X x 7', then
Mis ¢ 'Dyyy ssr-coherent and each local section is annihilated by some power of h. By taking
local D x g/5-generators of M, we conclude that there exists locally an integer £ > 1 such that
R‘M = 0. Conversely, if M satisfies the latter property, we can regard it as an h-nilpotent coherent

q_IDXxsx/S/ [t]-module and the associated D, g/g-module is Dy, /g Rq1Dy 51511

By definition, the characteristic variety of a coherent ¢ 'D y, g /sr-module is (locally) the
support in (T*X) x S of the graded coherent ¢ 'grf Dy, o /s-module with respect to any local
coherent ¢ ' F, Dy, g ss-filtration. Such a module is said to be holonomic if this support is
contained in A x S for some Lagrangian variety A C T*X.

Remark 3.13 (Holonomic and regular holonomic ¢~ 1Dy, ¢ /s-modules). Given a  coherent
Dx xs/5-module M supported on T' as above, one checks that a coherent F,D y g/s-filtration is
also a coherent ¢ 'F,Dy g ss-filtration by the above correspondence. As a consequence, such
a module is D x g/5-holonomic if and only if it is ¢ 'Dxyg /sr-holonomic.

On the other hand, we say that a holonomic ¢~ 'D y, g ss-module M is regular if, for any
s/ € S and any s, € ¢~ *(s}), the holonomic D x-module i;)l(LiZ_l(Sg)M) is regular.

COROLLARY 3.14. A coherent D x 5/s-module M supported on X x T is regular holonomic if
and only if, when regarded as a ¢ Dy g /sr-module, it is regular holonomic.

Proof. By Remark 3.13, we only need to check regularity, and we can suppose from the start
that M is D g/s-holonomic supported on X x 7. We assume first that M is q_1®XXS//S,-
regular. We wish to prove that Lii M is D x-regular holonomic for any s, € S. It is enough to

prove this for s, € T. Let us choose coordinates (s,...,s) ;,t) of S’ x A centered at s,. There
exists k > 1 such that Og/(h*) ®és M ~ M[1] & M, because h*M = 0 for some k > 1, so, by the
assumption,

Os/(sh, .-, s4_1) @b [os/(hk) R M} = 0g/(sh,..., sy 1, h") @6, M

is a regular holonomic D yx-module. As the support of Og/(s],..., s, 4, h*) is a finite union of
fat points in S (defined by the ideal generated by h*(0,t)), one of which is supported at s,,
we conclude that Liz M is a regular holonomic D y-module by applying Corollary 3.11. The
converse is proved similarly. O

THEOREM 3.15 (Stability under projective base pushforward). Let 7w : S — S’ be a projective
morphism of complex manifolds and let M be an object of D}r’hol(DXXS/S). Assume that the

cohomology of M is m-good. Then Rm, M belongs to DEhol(DXXSI/S/>.

Proof. A standard consequence of Proposition 2.15 is that Rm,M belongs to DEOI(D XxS'/8")-
Furthermore, we note that the question is local with respect to X and to S’.
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Step 1: reduction to the case where S’ is a point. As m is projective, we can regard
(locally with respect to S’) as the composition of the inclusion S < P™ x S’ and the projec-
tion P™ x S — S’ for a suitable m. Moreover, we note that the result is easy if 7 is a closed
embedding. We can thus assume that 7 is a projection S = P™ x S’ — S’. For a complex M in
DEhol(i)Xxs/S), proving the D x, g/ /g-regularity of Rm,.M amounts to proving the D x-regularity
of Liyy RmM for any s, € S. Let my, be the maximal ideal sheaf of Og at s;. Let us set
Py =P x {s,} and consider the following Cartesian square.

/
X x P X x {s}}

ilf \[ZS’O

XxS—" 5 Xxs8
Then we have

Li:gRﬂ'*M = ig{)l((OXXSI/p_l(mSZ)OXXSI) ®éX><S’ Rm. M)

~ iy R, <7r*1(OXXs,/p’l(ms:,)OXxS') D10y M)

~ Rl ! (W_l(OXXS’/p_l(mSZ)OXXS/) D10y, M)

(*)
~ R, (OXXIP’;’} ®%

"~ 1O0xxs

/—1
1 M)
= R (Li"*M),

where the isomorphism (x) follows by extension of scalars because M is a complex of Oxxg-
modules. By Proposition 3.10, Li*M is a complex with regular holonomic cohomologies, so that
if we know the theorem for 7/, we deduce it for .

From now on, we assume that S’ is a point. In such a case, S is a projective space P™. As
the question is local with respect to X and since S is compact, we can assume that the sets [
and J; occurring in (2.6) are finite, so the S-support T' of M is a closed analytic subset of S. We
argue by induction on the dimension of the S-support of M.

Step 2: the case dim Suppg M = 0. If the S-support of M has dimension zero, it consists of
a finite number of points, and it is enough to consider the case where the support consists of
one point s, € S. By a standard argument we may assume that M is concentrated in degree
zero and locally we can assume that there exists k > 1 such that, denoting by m,, the maximal
ideal sheaf of s, in S, we have mI;OM = 0. If we denote by t, the fat point supported by s,
with ring OS/m’s“o(‘)g, we conclude that M = i . M. Therefore, Rm.M = Ryis,«if M = iy M.
In this case, the theorem follows from Corollary 3.11.

Step 3: the case dim SuppgM > 1. We recall that, in this step, 7 is the constant map on
S =P,

(i) Proof of the regularity of mM. Let d > 1. We now assume that the statement holds
true for any complex M’ whose S-support has dimension < d and we aim at proving the same
property for any complex M with S-support T' of dimension d. We may then reduce again to the
case where M is a single module.

We first prove that m, M is regular holonomic (instead of all modules Rkw*M).
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One checks that the Dy g/g-submodule M’ of M consisting of local sections m such that
the S-support of Dy, g/g-m has dimension < d is holonomic (denoting by T4 the union of
irreducible components of T of dimension < d, M’ is locally defined as the sheaf of local sections
annihilated by some power of the ideal J7_, of T4 in Og). By Proposition 3.2(iii), M’ is regular
holonomic and, by the induction hypothesis, m,M’ is regular holonomic. It is thus enough to
prove regularity of m,(M/M’), and we can likewise assume that

(3.16) M has no non-zero coherent submodule with S-support of dimension < d.

Let us denote by A a Lagrangian subvariety of 7% X such that the characteristic variety of M is
contained in A x S. As T is compact, it has a finite number of irreducible components and we
index by I; those which are of dimension d. We choose a point s; on the smooth part of each T;
(1 € 13). For the sake of simplicity, we denote by s, the finite set {s; | i € I}.

There is a natural morphism of D y-modules

M — i 'M (3.17)

which associates to a section m € I'(U; m,M) =T'(U x S; M) (U open in X) its germ along
U x 8,. As M has no S-torsion supported in dimension < d, this morphism is injective. Indeed,
let 2, € U C X and let m € I'(U x S; M) belong to the kernel, that is, such that its germ at
(%o, o) vanishes, i.e., m is zero in some neighborhood of (z,,s,) that we write U x V, up to
shrinking U. Let us suppose by contradiction that m # 0. Let us consider the coherent D7, /5~
submodule Dy, /5 - m C Mjyxg which is holonomic with S-support contained in 7'. By (3.16)
Dyxs/s - m has S-support of dimension d. Hence, any irreducible d-dimensional component of
its S-support is equal to some T; for a suitable ¢ € I;, but because m is zero on U x V this is
not possible.

Let mg, denote the ideal sheaf of s, in Og. For each k£ > 1, we consider the induced morphism

M — i M /ig tmh M.

The proposition will be proved if we prove that this morphism is injective for k large enough,
because the right-hand side is regular holonomic by Corollary 3.11.

Its kernel Ny, is a coherent, hence holonomic, D x-submodule of 7,M and the sequence (Ny) is
decreasing with characteristic variety contained in A. It is thus stationary. Let N C m,M denote
this constant value. We conclude that the map

e =1k
N —ig M/ig, mg M

is zero for any k. As N = Ny for k large enough, we aim at proving that N = 0.

The image of N by (3.17) is contained in (0, ig'm¥ M, and because (3.17) is injective, it
suffices to prove that M := (), i;}mﬁoj\/{ = 0. For z, € X, let us denote by D(,, s, the germ
at (zo, 80) of Dxyg/5 and similarly by M, 4,y that of M. It thus suffices to prove that, for all
Zo € X, the germ M/(a:mso) =k m’;OM(%,SO) is zero. We note that M’(
D(z,,s,) because the latter ring is Noetherian, hence J\/[’(

Tor80) is of finite type over

) is holonomic with characteristic

Zo,80
variety contained in A., x (S, s,), where A,, is the germ of A along T; X. Furthermore, it
satisfies M’(xm s) = mSOM’(:Cm s,)- The Nakayama-type argument given in the proof of [MFS19,
Proposition 1.9(1)] shows that M’(xo sy) = 0 for each z,. This concludes the proof of step 3(1).

(ii) Regularity of R*m, M. We use the result of step 3(i) in order to prove holonomicity and
regularity of RFm, M for all k.
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For any ¢ € Z, we consider the line bundle Og(¢) that we can realize as Og(¢H) for
any hyperplane H of S. For a Dx,g/s-module or an Oxxs-module N, we set N({) =
p_l(‘)s(ﬂ) ®p—104 N.

We apply the technical Lemma 3.18 below to M. We note that M({) is Dxg/g regular
holonomic: indeed, this is a local property on S, and locally Og(¢) ~ Og. In addition, M(¢) is -
good. Furthermore, we choose a hyperplane H C S such that dim H N'T < dim T, and we realize
Os(¢) as Og(¢H). We also consider M(¢/H) with such a choice of H. From step 3(i), we know
that m,M(¢H) is D x-regular. Let us consider the sheaf Oyy defined by the exact sequence

0— O0s — Os(lH) — Opg — 0,
yielding to the distinguished triangle

M — M(CH) — N L,
where N is a complex in Df’hol(Q Xxxs/s) with S-support contained in 7'N H. We deduce the long
exact sequence

0— H'Re, N — .M — T MUH) — H'RZ N — R, M — 0

and the isomorphisms R*t'7,M ~ H¥Rnx, N for k > 1. By the induction hypothesis, Rm N
belongs to D?hol(D x). The latter isomorphism implies the regularity of RFlx, M for k > 1,
and, together with Corollary 3.9, it implies that of 7,M and R'7, M. O

LEMMA 3.18. Let us assume S = P™. Let N be a coherent m-good Dx g/s-module. Then, for
any x, € X, there exists a neighborhood nb(x,) C X and an integer ¢ > 0 such that, for any
k=1, REmN(0)nb(z,) = 0.

Zo)

A similar result is well-known to hold for a coherent O x«g-module, as a consequence of
Grauert—Remmert’s Theorems A and B (cf. [GR58] and [BS76, Theorem IV.2.1]).

Proof. For any N > 1, by iteration of Lemma 2.4(iii) we obtain a distinguished triangle on
nb(z,) x S:

+1
N'[N] — Dxxs/s ®0xys Lo — N ——.

Let us choose N = 2m + 1 and let £ be an integer given by Grauert—Remmert’s theorems for L;
(i=—N,...,0) in nb(x,). We consider the same triangle obtained after tensoring with p~10g(¢).
As 7 has cohomological dimension 2m, we find that RFm,N'(£)[N] =0 for any k > 0. On the
other hand, on nb(z,) (cf. (2.1)),

Ry (Dxxs/s @0y ys Lill) = Rru(n ' Dx @r-10, Lill))
~Dx ROy R?T*Ll(g) =Dy Koy W*LZ(E)

As Rm N({) &nb(%) is in non-negative degrees, it follows that Rm.N(f)|,p(s,) is isomorphic to the
complex 720(Dx ®o, m«L.(f)) and because the latter is in non-positive degrees, we conclude
that RW*N(€)|nb(xo) ~ W*N(€)|nb(xo)' O

3.c Integrable regular holonomic D x y g/s-modules

The following proposition, answering a question of Lei Wu, shows that, under a suitable condition
on the characteristic variety, a coherent D x, g/5-submodule of a regular holonomic D x » s-module
is relatively regular holonomic. We call such D, g/s-modules integrable because their relative
connection can be lifted as an integrable connection, i.e., a D x « s-module structure.The condition
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on the characteristic variety is due to the restrictive definition of a holonomic Dx 5/5-module
(cf. after Lemma 2.4).

PROPOSITION 3.19. Let X and S be complex manifolds and let N be a regular holonomic D x » g-
module. Assume that the characteristic variety of N is contained in A x T*S for some conic
Lagrangian closed analytic subset A in T*X. Let M be a coherent Dx g/g-submodule of N.
Then M is a regular holonomic D x  5/g-module.

Let us first recall two properties (see (3.20) and (3.21)) of regular holonomic D x x s-modules
that will be useful for the proof and do not depend on the assumption on Char N made in the
proposition.

Let N be any regular holonomic D x x s-module and let M be a coherent D y g/5-submodule
of N. Any irreducible component of Char N projects to X x S as an irreducible closed analytic
subset Z and, denoting by Z° the smooth part of Z, this irreducible component is the closure of
the conormal bundle 77, (X x S), that we denote by T (X x S). We also denote by Z°° the open
set of the smooth locus Z° on which pzo : Z° — S has maximal rank. The closure in the relative
cotangent space T*(X x S/S) of the relative conormal bundle Ty 700 (X x S/S) is denoted by
Ty 7(X x S/S), and is a conic analytic subset of T*(X x S/S).

(3.20) According to [Sab87, Theorem 3.2] any irreducible component of CharM is equal to
T;|Z(X x S/8) for some Z such that T (X x S) is an irreducible component of Char N.

Assume furthermore that dim S = 1. For each s, € S, we denote by s a local coordinate on S
vanishing at s,. We postpone after the proof of Proposition 3.19 that of the following classical
result.

(3.21) Under the above assumptions, the kernel and cokernel of s:M — M are regular
holonomic D x-modules.

Proof of Proposition 3.19, step 1. We now add the assumption on Char N. We first show that M
is relative holonomic with characteristic variety contained in A x S. We note that T (X x §) is
contained in A x T*S if and only if Z decomposes as the product Y x T for some irreducible
closed analytic subsets Y C X and 7" C S and Ty X is an irreducible component of A (this seen
by considering first the smooth part Z°). It is then easily seen that T, /(X x 5/5) = (Iy X) x T,
hence is contained in A x S. The conclusion follows from (3.20). O

Proof of Proposition 3.19, step 2. It remains to show the relative regularity of M. We argue by
induction on d = dim S. If d = 1, relative regularity is provided by (3.21), because we already
have relative holonomicity by step 1. We thus assume that the statement of the proposition holds
whenever dim S < d — 1 and we assume dim .S = d > 2. The question being local, we fix a local
coordinate s in S, defining a smooth hypersurface H := {s = 0}. Locally, we can assume that
S = H x C. According to Proposition 3.2, we are reduced to proving the following.

(3.22) The kernel and cokernel of s: M — M are regular holonomic D x , g/ pr-modules.
For the sake of clarity we set
X' =XxH, §=C,p:X'x8 —8 sothat X=X'"x8, S=HxS.

We denote by My the Dy, 5/ /s-submodule of the regular holonomic D x/y g-module N generated
by M. It is D xs, g/ /g/—coherent, so by (3.21), the kernel N1 and the cokernel N} of s : My — My
are D y/-regular holonomic.

CLAIM. The characteristic varieties Char Ny and Char N} are contained in A x T*H.
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Proof. We apply (3.20) to My C N and to the map X’ x S’ — S’. As any irreducible component

of CharN takes the form Ty X x T7.S = T4 (X' x §') with Z =Y x T, any irreducible compo-

nent of Char M; takes the form T;f (X' x §’/S") for some such Z. Denoting by ¢ : S — S’ the
zZ

projection H x S’ — S’ the latter space reads

(T3 X) x Ty, (H x §'/5").

The fiber of the composition Tq*|T

(H x S'/S") — T — S above s = 0 (s is the coordinate on S’)
is contained in T* H and is Lagrangian: indeed, it has dimension dim H since T:lT(H x S’/S8") has
dimension dim H + 1, and it is easily seen to be isotropic. We denote it by A7. The characteristic
varieties of N7 and N} are contained in the fiber above s = 0 of Char My, hence in the union,
over Y, T occurring in Char N, of the Lagrangian subsets 7y X x Ar, as claimed, because A is

nothing but (Jy T3 X. O

As a consequence, N7 is a regular holonomic D x » y-module satisfying the assumption of the
proposition, and ker(s : M — M) is a coherent D x, g sm-submodule of it. We can thus apply the
induction hypothesis to conclude that (3.22) holds for ker s.

On the other hand, for each k > 0, by applying (3.21) to s*M;, we obtain, according to
the claim, that s*M; / sPHIM; is a regular holonomic D x « -module with characteristic variety
contained in A x T*H. Then

ME) = (MM /(A sFTIMG)

is a coherent D x . rr/r-submodule of sFMy /s¥1My. The induction hypothesis implies that M)
is Dy py/p-regular holonomic. It follows by Proposition 3.2(iii) that M/(M N sFHIM,) is also
a regular holonomic Dx f/g-module. It remains to note that coherence implies that, locally
on X, there exists k such that M N s*T1M; C sM, so that M/sM is a coherent quotient of a
regular holonomic D x , f/g-module. Again by Proposition 3.2(iii) it is also a regular holonomic
D x x iryg-module, concluding the proof of (3.22). O

Proof of (3.21). We consider the Kashiwara—Malgrange V-filtration V,N of N relative to the
function s (cf., e.g., [MS89, MMO04]). This is an increasing filtration indexed by Z which satisfies,
owing to the regularity of N, the following properties:

e ViNis Dy, g/s-coherent for any k € Z (see [MS89, Theorem (4.12.1)]);

e for each k € Z, s(Vi;N) C Vi1 N and for k < —1, the multiplication by s on ViN is injective
with image V1N (cf., e.g., [MS89, Proposition (4.5.2)]);

e cach gry N is a regular holonomic D x-module (cf., e.g., [MMO04, Corollary 4.7-5]).

From the second point we deduce that, for k < —1, Lig VipN =i VN = grkVN, and by the
third point the latter is D x-regular holonomic. For k > 0, V3N is a successive extension of V_{N
by regular holonomic D x-modules gr}/N. Therefore, for each k, the kernel and cokernel of s :
ViN — Vi N are Dx-regular holonomic: this is proved by induction on k since it is clear for
k < 0, and the inductive step follows by considering the snake lemma applied to the following
commutative diagram of exact sequences.

0 —— VN Vi N grkVN — 0
SJ/ ls lo
0 —— VN Vi N grkVN — 0
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We deduce that sViN/s‘Vj is regular holonomic for any ¢>1. As any Dy, s5/5-coherent
submodule of N, locally on X x S, M is contained in VN for some k> 0 and, by the
Artin-Rees lemma, sM contains M N sV N for some £ > 1. Since ker(s : M — M) is contained in
ker(s : ViuN — ViN), the former is regular holonomic because the latter is so. On the other hand,
by considering the inclusion and the quotient maps

sViN/s" VN «— (M N sViN) /(M N s“ViN) — (M N sVN) /sM,

we conclude that (M N sVpN)/sM is also D x-regular holonomic. Furthermore, by considering
the exact sequence

0— (MNsVEN)/sM — M/sM — VipN/sViN,

we conclude that M/sM is D x-regular holonomic. O

4. Holonomic D x s/s-modules of D-type and applications

4.a S-locally constant sheaves and their associated relative connections
Let X be a connected complex manifold and let L be an S-locally constant sheaf of p~1Og-
modules on X x S (cf. [MFS19, Appendix|). For any x, € X, L is uniquely determined from
a monodromy representation (X, z,) — Aute,(G) with G = i;olL. As a consequence, there
exists an Og-module G such that, for any 1-connected open subset U of X x S, there exists an
isomorphism L, g ~ pElG. Two choices of G are isomorphic, but non-canonically in general.
Furthermore, L is p~!Og-coherent if and only if G is Og-coherent.

To any S-locally constant sheaf L one can associate an exact sequence of sheaves of p~10g-
modules

0— Ly — L — Ly — 0, (4.1)

where L; denotes the subsheaf of p~'Og-torsion and L the maximal p~!Og-torsion-free quotient.
Then Ly and Lt are S-locally constant and the previous exact sequence yields (for any choice
of G) to the exact sequence of Og-modules

0— G — G— Gy — 0,
with Gy and Gy defined similarly. The following is straightforward.
LEMMA 4.2. Let w: S — S’ be a holomorphic map between complex manifolds.

(i) If L is an S-locally constant sheaf on X x S with associated Og-module G, then mL is
S’-locally constant on X x S’ and mG is an associated Qg -module to m L.

(ii) If L’ is an S’-locally constant sheaf on X x S" with associated O'g-module G, then 7*L’ is
S-locally constant on X x S and n*G’ is an associated Og-module to w*L’.

We denote by dyyg/s: Oxxs — Qﬁ(xs/s the relative differential associated to p. Let us
recall the Riemann—Hilbert correspondence for coherent S-local systems proved in [Del70,
Theorem 2.23 p. 14], in the particular case of a projection X x S — S, where X and S are
complex manifolds.

The functor L — (EL,V) = (Oxxs @p-104 L, dxxs/s @ Id) induces an equivalence between
the category of coherent S-locally constant sheaves of p~!Og-modules and the category of
coherent O x«s-modules F equipped with an integrable relative connection

ViE— Q%(XS/S D0xxs L-
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A quasi-inverse is given by (E,V) — EV =ker V. The monodromy representation attached to
the coherent S-locally constant sheaf EV is also called the monodromy representation of V on E.
Let us emphasize a direct consequence.

COROLLARY 4.3. Let (E,V) be a coherent Ox yxs-module equipped with an integrable relative
connection. Then the natural O x «g-linear morphism

Oxxs ®p-104 EVY — E
is an isomorphism compatible with the integrable connections dy /s ® Id and V.
ProrosiTIiON 4.4. Notation as in Lemma 4.2.

(i) Let L be a coherent S-locally constant sheaf. If 7 is proper, then 7.L is S’-coherent and
there exists a natural morphism E . ; — w.Fr,.
(ii) Let L' be a coherent S’-locally constant sheaf. Then E s« ~ 7*(E/).

Proof. (i) As 7 is proper, 7. L is a coherent S’-locally constant sheaf on X x S’ (Lemma 4.2(i) and
Grauert’s theorem). The natural morphism Oy yg — 7Oxxs induces a composed morphism

OXXS’ ®p/_1osl TF*L e W*OXXS ®p/_1ogl 7T*L — W*(OXXS ®p—los L),

which is clearly compatible with the relative differential d ® Id. We note that if 7 is surjective
with connected fibers, the first morphism is an isomorphism because Ox g — TOxxg is then
an isomorphism. This is the case if for example S’ is a complex manifold and 7 is a proper
modification of 5.

(ii) The second point is straightforward. O

4.b The Deligne extension of an S-locally constant sheaf
We recall Theorem 2.6 and extend Corollary 2.8 of [MFS19] to the case where dim S > 1.

Notation 4.5. Let Y be a hypersurface in X (assumed to be connected) and let us denote the
inclusion by j: X" : = X \Y — X. Let L be a coherent S-locally constant sheaf on X* x S.
Let (B, V) = (Ox+xs ®p-104 L, dx+xg5/5 ® Id) be the associated coherent O x«xs-module with
flat relative connection V =dy=yg/s ® Id, so that L = ELV. We simply set £ = E;, when the
context is clear, that we consider as a left Dy« g/g-module. We sometimes call L a coherent
S-local system.

LEMMA 4.6. The functor j.FE, : L — j.Ey, with values in Mod(Dx g/5) is exact.

Proof. Any (z,,s,) € Y x S has a fundamental system of open neighborhood U x U(s,) such
that (U ~ D) x U(s,) is Stein. As Ef, is O x+xg-coherent, the result follows. O

We assume from now on that Y = D is a divisor with normal crossings in X. Let w : X =X
denote the real blowing up of X along the components of D. We denote by 7: X* — X the
inclusion, so that j =wo 7. Let z, € D, T, € w_l(mo) and let s, € S. Choose local coordinates
(1,...,xn) at x, such that D = {z1-- -2y, = 0} and consider the associated polar coordinates
(p,0,') := (p1,01,...,p0,00, 2041, - - ., p) s0 that T, has coordinates p, = 0, ,, z;, = 0. We also
denote by w the induced map X xS — X x S and by p: X x .S — S the projection.

DEFINITION 4.7. The subsheaf Agc’xds of 7,0x+xg of holomorphic functions having moderate

growth along w™1(D) is defined by the following two requirements:

>~—1 gmod __ .
® 7 -A)N(XS—OX xS3
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e foranyz, € D, T, € w (z,) and s, € S, a germ h € (7+0x+x5) (3,,5,) 18 said to have moderate

. mod
growth, i.e., to belong to A;{X&(%SO)

U= {llp|l <& |lz'| <&, 08, <e' and U(s,) 3 so (4.8)

(¢ small enough) such that, setting U := U. ~{p1---pe = 0}, h is defined on U x U(s,) and
|h| is bounded on this open set by C||p| =%, for some C, N > 0.

, if there exist open sets

We recall the following properties of the sheaf ﬂ;‘;dsz

(i) A isaw " Dyxsys(+D)-module (cf. [Sab00, § 1.1.6]) which is ™' Oxxs-flat (cf. [Mocl4,
Theorem 4.6.1]);

(ii) for any coherent Oxxg-module M, the natural morphism

Amed

Xx8§ C@ '0xxs

is injective (cf. [Moc14, Theorem 4.6.1]);
(i) R AR = @ AR = Oxxs(+D) (cf. [Sab00, Corollary IL.1.1.18]).

o M — M

Let us already note for later use that these properties imply, for any Og-module G,

(AR @p-105 P 'G) ~ Oxxs5(+D) @10, 0™ G (4.9)

Indeed, we have

R, (A;Ojs D510, ﬁ’1G> ~ R, (A;Ojs ®L 10, ﬁ’lG) by property (i)

= R (A3) o, 0716

~ Oxxs(*D) @5 1o p "G by property (iii)
~ Oxxs(*D) @p-104 p ' G,

where the latter isomorphism follows from flatness of Oxyxs(*D) over p~'Og. Furthermore,
property (ii) implies that, for any coherent Og-module G, the natural morphism

As 105 PG — J(Oxxs @p105 07 C)
is injective.
Note that, U being contractible, we have Ljyxxpy(s,) = pE}Gw(SO) (cf. [MFS19,
Proposition A.12]). We thus have an identification

B\, (s,) = T (OU;W(SO) Bp10p(ag) PUz G1U(50)> AUz xU(50)/U(50) @ Id)

~

(G200 050) 51000y 5 O Doty @14 ) (4:10)
Indeed, for a polysector V.cU.andV CU (S0), the natural morphism
F(V;* x V; OXXS) ®O(V) F(‘Z X V;ﬁflG) — F(V: x V; Oxxs) ®O(V) F(V; X V;pilG)

is an isomorphism, because the adjunction morphism pw*p;le — (G is an isomorphism for

both W =V and W =V, (both being connected, cf., e.g., [MFS19, Proposition A.1(2)]).
The assertion is obtained by passing from the pre-sheaf isomorphism to a sheaf
isomorphism.
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DEFINITION 4.11 (The Deligne extension). Let x, € X, T, € @ !(x,) and s, € S.

(i) A germ v of (j+EL)(
as above, and for some (equivalently, any) identification Ly xv(se) = p&l G\u(s,), v belongs
to the image of the injective morphism

r(ﬁa X U(s0); A2 @510, ]TlG) DU, % U(sy); T EL).

Fo,s0) 18 said to have moderate growth if for some open set [75 x Ul(so)

(i) A germ v of (juEL) (s, s, is said to have moderate growth if for each Z, in @™ '(z,), the
corresponding germ in (j«FL),,s,) has moderate growth. In particular, this holds for any
local section of Er, at (z,,S,) if x, ¢ D.

(iii) The subsheaf of j,E consisting of local sections whose germs have moderate growth is
denoted by E;. It satisfies j*EL = FEr. It is called the Deligne extension of Ef.

Remark 4.12. By definition, with the previous notation, v has moderate growth if and only if,
on any such polysector U: x U(s,), for any isomorphism L|y-yp(s,) = pEEG‘ U(s,)» for any family
of local generators (g;) of G on U(s,), v can be written as 3 v; ® g; with v; being holomorphic
functions on the corresponding polysector in X* x S with moderate growth with respect to D.

As A;"de is stable by derivations with respect to X, E isaD xxs/s(*D)-submodule of
j*EL~

PROPOSITION 4.13 (First properties of the Deligne extension EL) Let L be a coherent
S-locally constant sheaf on X* x S and let (EL,V) = (Ox+xs ®p-104 L,dx+x5/5 ®1d) be the
associated O x««s-module with flat relative connection.

(i) The assignment L — (Er,, V) with values in Mod(Dxg/s) is functorial.
(ii) Let w: S — S’ be a proper holomorphic map. Then the natural morphism j.(Er,1,,V) —
T+ J«(EL, V) sends the subsheaf EW*L to W*EL.
(iii) Let 7w:S"— S be a holomorphic map. Then the natural morphism 7*j.(FEp,V) —
ju(Eger, V) sends isomorphically 7 (Er, V) to (Eg-r, V).

Proof. We only prove parts (i) and (ii), and part (iii) will be a consequence of Theorem 4.15.
(i) A morphism of S-locally constant sheaves ¢ : L — L’ defines a morphism ¢ : E;, — Ep,
compatible with V, hence j.F; — j«F compatible with V, and we only need to check that it
sends EL to EL/. This is straightforward from the definition.
(ii) From the commutative diagram

X*XSC‘]—>X><S

7{ | y (4.14)

X*xS’C‘]—> x S

together with the natural morphism of Proposition 4.2(i), we obtain the morphism j.(Er, 1, V) —

mJ«(Er, V) and similarly 7, (Er, 1, V) — mJ«(EL, V). Let us consider an open subset U, C X as
in (4.8). Then U is contractible and for any s}, € S’, L+ xr—1(0(s1)) = p[_]}GMﬂ(U(Sg)). In order
o

pux = poJ. According to (4.10), we are led to proving that the natural morphism

to simplify the notation, we set S’ = U(s)) and S = 7~ 1(U(s))). We also set p = pg.» so that

(j*OUgXS’) ®5/—1OS/ ﬁ_lﬂ'*G — Tk ((j*OUS*XS) ®P_1OS p_1G>

sends A%‘O: o Op-10, P inG  to . (Argoj ¢ ®p-10g p~'G). Following the proof of

Proposition 4.4(i), we are led to proving that the natural morphism J7.O0pxxsr — T(7:Ovzxs)
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sends Ar[i]w:j o to W*A%‘(’S = This follows from the definition of moderate growth, owing to the

properness of . O

4.c Regular holonomicity of the Deligne extension of an S-locally constant sheaf
We continue to refer to Notation 4.5 and assume that Y = D has normal crossings.

THEOREM 4.15. Assume that L is a coherent S-locally constant sheaf on X* x S. Then:

(i) the subsheaf Ey, of j+Ey, is Oxxs(*D)-coherent;
(ii) the functor L — Ej, from the category of coherent S-locally constant sheaves on X* x S to
that of Dy g/g-modules is fully faithful;

(iii) as a Dxyg/5-module, (Er,V) is regular holonomic.

We make use of the following flattening result for a coherent Og-module (here, we only need
a local version, but the corresponding global version also holds true).

PROPOSITION 4.16. Near each s, € S, there exists a projective modification 7 : S’ — S with S’
smooth such that the torsion-free quotient of 7*G is Ogs-locally free.

Proof. We first apply the flattening theorem [Ros68, Theorem 3.5] to the coherent sheaf G.
There exists thus a projective modification 7" : S” — S such that 7”*G, when quotiented by its
Ogr-torsion, is Ogn-locally free. We then apply resolution of singularities 7’ : S” — S§” of S” in
the neighborhood of the projective subset 7/ ~1(s,) (cf. [Hir64, § 7, Main Theorem I']) and denote
by 7 the morphism 7" o 7/, which answers the question. g

Proof of Theorem 4.15(i). We recall the proof of [MFS19, Theorem 2.6] for the Oxxs(xD)-
coherence. The problem is local on X x S. We thus assume that X x S is a small neighborhood
of (z,,S,) as above. In such a neighborhood, giving the local system is equivalent to giving
Ti,...,Ty € Aut(G) which pairwise commute. Let U(s,) be an open neighborhood of s, iso-
morphic to an open polydisc. The formula [Wan08, (2.11)] defining a logarithm of T; can be
used to show that there exist A1(s),..., A¢(s) € Endog(G|y(s,)) Which pairwise commute, such
that T; = exp(—2miA;(s)) for each i on U(s,) (cf. [Wan08, Corollary 2.3.10 and Chapter 3)).
Set EG = 0xxs(*D) ®p-104 p~1G, equipped with the connection V such that €mi81i acts on
1 ®,-104 p~'G by Id®A;(s) if i = 1,..., £, and zero otherwise. Then the monodromy represen-
tation of V on EG\X*xS is given by T1,...,Ty, hence an isomorphism L ~ (Egp(*xs)v, from
which one deduces, according to Corollary 4.3, an isomorphism

(EL, V) = (Ox+xs ®@p-104 L,dx+xs/5 ®1d)
~ (Ox+xs ®p-104 (Egixexs)Y dxexs/s ® 1d) = (Egxxs, V). (4.17)
It follows that EL ~ EG\X*xS and we are thus reduced to proving that EC”X*XS = E’G
(we have trivialized the locally constant sheaf but the connection is not trivial anymore).

Remark 4.18. Let p)_(iG be the constant S-local system on X* x S. Thus, locally on X x .S,
there exist O x~xg-linear isomorphisms Fy, >~ Eg|x+xg =~ Epfl > but, in general, we do not have
X*

~

(EL,V) ~ <Ep§iG’ V), i.e., this isomorphism is not Dy« g/g-linear.
Let us prove the inclusion EGP(*XS - Eg. Let v € (j*EG)(a:o,so) be locally defined on

U x U(8,). On any polysector U x U(s,), we can choose logarithms of x; (i = 1,...,¢) and the
automorphism Hle x?i(s) of EG|X*X5 = OurxU(so) Dp-10p, )p_lG is well-defined by setting
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w?i(s) =", [(logz;)*/k!] ® A;(s)k. By definition, v has moderate growth, i.e., is a local section
of £ G|x+*xgs, if and only if, on any such polysector U. x U(so), the section w := (Hf:1 x;A"(S)) v
is a section of AI)HZ'Ode @p-104 D G-

Let ( ;) be a family of local generators of G on U(s,). The entries of the matrices of
Hf 1T (8) and of HZ 1T A with respect to this family have moderate growth. If, on such a
polysector, w writes Zj wJ ® g;, where w; are sections of A;"de, then v = Hle x?i(s) - w writes

similarly > ;Ui ® gj, where v; are sections of Amed - Conversely, if v has the previous expres-

XxS
sion, then so does w = Hle x; Ai(®) 4. We conclude that, for any such polysector, the moderate

growth condition on v is equivalent to v € T'(Us x U(so);AI)E(OXdS ®p-10¢ P ' G). In other words, if
v has moderate growth, we have by (4.9) that

v ET(U x U(se); weA2 @5-104 b G) = T(U x U(80); Ox x5(+D) @104 p~'G)
=T (U x U(s,); Be),

hence E’G‘ xxg C EG The reverse inclusion also follows from the moderate growth of the entries
of the matrices of Hl 1T A and of HZ 1T Ails), O

Proof of Theorem 4.15(ii). We already know7 by the Riemann—Hilbert correspondence of [Del70,
Theorem 2.23], that the functor L ~— FEj, is fully faithful, and it is clearly exact, so it remains
to prove that Ej +— EL is so. Faithfulness is clear. Let us check fullness. Let ¢ : EL — EL/
be a morphism and set @ = j*p : E;, — Eys. The kernel and cokernel of @ — @ are coherent
Ox xs(*D)-modules by Theorem 4.15(i), and are zero when restricted to X* x S. Therefore they
are zero, and ¢ = @, proving the assertion. g

Proof of Theorem 4.15(iii). The question is local at a point (z,,s,) € X x S. By the proof of
Theorem 4.15(i), we can work with

(Ec,V) = (0xxs(+D) ®p10, 27" G, V)

(with V =d ® Id + > dwi/z; ® A; and A; € Endpg(G)). Our method is to reduce to the case
where G is locally free of rank one and then prove Theorem 4.15(iii) for it.

We argue by induction on the lexicographically ordered pair (dim S, rk G), where rk G is the
rank of GG at a general point of S. The case dim S = 0 and rk G arbitrary is well-known. We thus
assume that d = dim S > 1 and r = rk G > 0, and that Theorem 4.15(iii) holds for (E¢qs, V) for
any p'~1Og-module G’ with (dim S’, vk G') < (d, 7).

Step 1: the case (d,0). If rkG =0, G is an Og-torsion module. As the question is local, we
can assume that the support of GG is contained in a hypersurface T' C S locally presented as
in the local Setting 3.12. Then G is ¢~ !Og/-coherent and is endowed with an endomorphism ¢
(i.e., multiplication by t), so that the natural Og-linear morphism Og Qg=1041] G — G is an
isomorphism. Furthermore, the endomorphisms A; are ¢~ 'Og/-linear (via the natural inclusion
¢ 'O0g — Og. Let us set (E/G,V) = (Eg,ﬁ) when regarded as a q_1®XXS//S/—module. By the
induction hypothesis, it is regular holonomic. By Corollary 3.14, we conclude that (Eg,ﬁ) is
regular holonomic, so that Theorem 4.15(iii) holds for (Eg, V).

Step 2: reduction after proper surjective generically finite base change. Let m:S" — S be
a proper surjective generically finite morphism of complex manifolds and let p’ : X x S’ — §’
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denote the projection. Let us assume that Theorem 4.15(iii) holds for (Oxxs/(*D) ®p-10,,
PG, 77*6) The purpose of step 2 is to show that, under such an assumption,
Theorem 4.15(iii) holds for (Eg, V).

From now on, we assume dim S = d and rk G > 1. Let G’ be the Og-torsion subsheaf of G. We
note that the endomorphisms A; of G preserve G, so the exact sequence 0 - G — G — G" — 0
with G” being torsion-free gives rise to an exact sequence

0 — (Eer,V) — (Eq, V) — (Egn, V) — 0.

As Theorem 4.15(iii) holds for (Ecr, V) by step 1, it is enough to prove Theorem 4.15(iii) for
(Egr, V). In other words, we may assume that G is torsion-free.

By assumption, there exists a closed analytic subset T' of codimension > 1 in S such that,
setting T’ = 7~ (T, the morphism 7 : $' N\ T’ — S \ T is finite étale. We have dim S’ = dim S
and dim7” < dim S.

Remark that we have, for any holomorphic map 7 : S’ — S, and denoting for clarity by 7
the map Id x7 : X x 8" — X x S, the following list of canonical isomorphisms:

L7* (OXXS(*D) ®p—1os p71G>

= Oxxs/(¥D) ®F-10,, su0) T _1(OXXS<*D) ~0s p_1G>
v Oxxs (xD) ®~ 104 @
= OXxS’(*D) ® ’— 10 , (p'_lﬁs/ ®£71 p—10g %_lp_lG)

= Oxws (+D) ®f1, p' 7' L1"G = Ox 50 (+D) @10, P Lr*G, (4.19)
which reads
L' Eg ~ Oxxg/(+D) @y-10,, v ' LT*G. (4.20)
We conclude that, for each j, we have ij*ﬁwka% =d®ld+IdeLit*Ay.

Furthermore, under the assumption on 7 for this step, according to the projection formula
for R7, applied to (%), we have

Rr,(L*Eg) ~ Rm,Ox x5 (+D) @51 p'G.

By induction, if j # 0, Theorem 4.15(iii) holds for (Oxxg (D) ®py-10,, p TG, ij*ﬁ),
according to the argument given in step 1, because L/7*G is supported on 1", hence is a tor-
sion module. Thus, Theorem 4.15(iii) holds for LW*EG (i.e., for each of its cohomology modules
L TI'*EG') because for j = 0 it is the initial assumption.

As E¢ is O-quasi-coherent (cf. Remark 2.5(i)), one deduces from Lemma 2.13 that each
Lir*Eq is n- -good. Then, by Theorem 3.15, Theorem 4.15(iii) holds for R, (L7 E(;) hence for
HO(Rm, (L7*Eg)).

The natural morphism O xxs(*D) — RmOx s (*D) yields a morphism

Eq — HO(Rm,(L7*Eg)).
Both modules are Ox xg(*D)-coherent, hence so is the kernel of this morphism.
On S\ T, we claim that this morphism is injective: indeed, since 7: S ' ~\T' — S\ T

is finite étale, the trace morphism tr; : m.Og v — Ogp defined by trr(¢)(s) = (1/degn)
Zslerl(s) ©(s') satisfies tr o v = Id, if « denotes the natural morphism Og. 7 — m.Og . 77; hence

Egisr is locally a direct summand of the right-hand side. As G, hence Eg, is assumed to be
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Og-torsion-free, the kernel is Og-torsion-free, O xxs(*D)-coherent and S-supported on T'. It is
thus zero and this morphism is injective.

Furthermore, Eg is D Xxxs/s-coherent: indeed, as Theorem 4.15(iii) holds for
HO(Rm, (LW*Eg)) and Eg is O-good, it follows that Eg is Dy s/s-coherent, and then regular

holonomic by Proposition 3.2(iii), so that Theorem 4.15(iii) holds for Eg.

Step 3: reduction to the case where G is Og-locally free. We choose 7 as in Proposition 4.16
and by step 2 we can assume from the start that the torsion-free quotient G” of G is Og-locally
free. By step 1, it is enough to prove Theorem 4.15(iii) for (Egr, V), i.c., we can assume (and
we do assume from now on) that G is Og-locally free.

Step 4: the case where G is Og-locally free. We still work locally on S and we assume that G
is Og-free of rank r > 1. By the induction hypothesis, Theorem 4.15(iii) holds for any (EG/ V)
with tk G’ < r. Locally let us fix an Og-basis of G and let Aj(s) denote the matrix of A in
this basis. Let ¥ C S x C be the zero locus of P := det(a; Id —A;) and let o : ¥ — S denote the
projection. As P is a Weierstrass polynomial with respect to the variable «; (considered as a
coordinate on C) with coefficients in Og, o is a finite morphism of degree deg o and ¥ is defined by
the corresponding reduced Weierstrass polynomial. We note the following two properties related
to o and similarly to Idx xo.

(4.21) The sheaf 0,0y is Og-free of degree deg o (with basis 1, o, . . a(licga b.

(4.22) There exist dense analytic open subsets ¥° C ¥ and S° C § such that o : 3¥° — S° is
a finite covering of degree deg o. The corresponding trace morphism tr, : 04,050 — Ogo
has been defined previously. If ¢ is a section of 0,0y, its trace on X° is bounded on S°,
hence extends holomorphically to S, so that tr, extends as a morphism 0,0y — Og. If
¢ denotes the natural morphism Og — 0.0y, we clearly have tr, o+ = Id, making Og a
direct summand of ¢,0s5.

Let w : 8" — ¥ be a resolution of singularities of 3, so that the natural composed map (o o 7) :
S" — S is projective and generically finite. Let us set G’ = ker(ayId —Aj oo o7) C (0 o m)*G,
where we regard «; as a function S’ — C. Noting that o o 7 is generically a local isomorphism, it
follows by construction that rk G’ > 1. We consider the exact sequence 0 — G’ — (o o 7)*G —
G" — 0 which satisfies 0 < rk G’ and rk G” < rk G, and which is preserved by the endomorphisms
(0 om)*A;, so that it induces an exact sequence of Dy g/g-modules:

0— (E\GU%) - (UOW)*(EGS@) - (EG’U%) — 0.

Ifrk G" <tk G, we can apply induction to (EG/ V), (Egr, V) and conclude that Theorem 4.15(iii)
holds for (o o m)* (E¢, V), hence for (Eg, V) according to step 2.

If rk G’ = 1k G, then tk G” = 0, so step 1 applies to (Egu, @), and we are reduced to proving
Theorem 4.15(iii) for (Eg,@), i.e., we can assume that A; = aq Id. Iterating the argument,
we are reduced to the case where A; = o;1d for ¢ = 1,...,¢, where aq,...,ap are holomorphic
functions on S, and G is Og-locally free. By considering a local basis of G, it suffices to consider
the case where rk G = 1.

Step 5: the case where G is Og-locally free of rank one. We now consider (E’@@) =
(Oxxs(xD),dxxg/s + Ele a;(s)dz;/x;). The argument for obtaining Theorem 4.15(iii) is then
similar to that used in the proof of [MFS19, Corollary 2.8]. One can assume that, in the
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neighborhood of s, and for any ¢, a;(s) € Z = «a;(s) = 0. Then there exists a surjective morphism

D/ (@i, = i(s) + Vict,ots (00, )j=e41,..0) — (B, V)

sending 1 to 1/zq---xy, which is easily seen to be an isomorphism by the condition on
(Q)i=1,....e- O
Proof of Proposition 4.13(iii). The statement is local, so, as a consequence of (4.17) in the proof
of Theorem 4.15(i) and keeping the same notation, we are reduced to proving m “(Eq,V) ~
(Er+c, V), that is,

W*(OXxs(*D) ®p—1os p_lG, %) ~ (Oxxgl(*D) ®p/_1os/ p_lﬂ'*G,ﬂ'*%),
which follows by taking the 0-cohomology in (4.19). O

4.d Dxys/s-modules of D-type

Recall Notation 4.5. In this section, we exhibit a family of regular holonomic D x g/5-modules,

that we call of D-type and we prove in Proposition 4.26 a special case of the analogue in the

relative setting of [KK81, Theorem 2.3.2] asserting that the restriction functor to the complement

of the divisor is an equivalence of categories. The general case will be obtained in Theorem 6.17.
Let Y be a closed hypersurface of X.

DEFINITION 4.23. We say that a coherent Dx,g/5(xY )-module L is of D-type if:

(a) there exists a coherent S-locally constant sheaf L on X* xS such that Lx«,g =~
Er = (0x+xs ®p-104 L dx+xs/s ® 1d), equivalently, L|x«.g is D x«xg/s-holonomic with
characteristic variety contained in the zero section;

(b) for each s&€ S, the cohomology of Li¥L is Dx-regular holonomic (in particular,

D x-coherent); in other words, L satisfies condition (Reg2) and, thus, condition (Reg1l)
(cf. Proposition 3.2).

We say that L is strict if L is p~'Og-locally free.

We denote by Mody (D xg/5(*Y)) the full subcategory of Mod(D x . 5/5(*Y")) whose objects
are coherent D x 5/5(*Y")-modules of D-type.

LEMMA 4.24. For 7:8 — S and L € Mody(Dxyg/5(xY)), Lm*L has cohomology in
MOdY(DXxS’/S’(*Y))-

Proof. The good behavior of Definition 4.23(a) by base pullback is clear. Let us check
that of Definition 4.23(b). Arguing as in Lemma 2.14, we see that L7*L is an object of
DEOh(DXXS//S/(*D)). For any s’ € S’ we have Li¥, L*L ~ Liy L, so the complex Lij, Lw*L has
D x-regular holonomic cohomology. By Proposition 3.2(i), each Li, Li7*L also has D x-regular
holonomic cohomology. O
PROPOSITION 4.25. Assume that Y = D is a divisor with normal crossings in X.

(i) IfL is Dxyg/5(*D)-coherent of D-type and strict, then the natural morphism ¢ : L — j.Ey,

sends L isomorphically to EL.
(ii) If £ is Dxyg/5(*D)-coherent of D-type, then L is Dy g/g-regular holonomic.

Proof. We note that the question is local on X x S, so we may replace Ej, with E\G‘ X*xg as in
(4.17). Namely, we have

Lixexs = (Oxexs @p105 0 G, V).
We note the following.
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o If L is strict, the second assertion follows from the first one, because Epis D X x5/g-regular
holonomic (Theorem 4.15(iii)).

e For any coherent D x, g/5(*D)-module of D-type, the morphism ¢ is injective. Indeed, accord-
ing to the first point of Definition 4.23, the restriction of ¥ to X* x § is an isomorphism.
The assertion follows from the O-quasi-coherence of L (cf. Remark 2.5(ii)). We thus identify
L with a Dy g/5(*D)-submodule of j.Ep.

e Due to Definition 4.23(b), Proposition 4.25(ii) amounts to holonomicity of £ (in particular,
D x xs/5-coherence).

Proof of Proposition 4.25(i). We assume that G is Og-locally free of finite rank. We can
mimic the end of the proof of [MFS19, Proposition 2.11] to directly show that ¢ is an
isomorphism £ — FJ, because, although in [MES19, Proposition 2.11] we assumed the Dy g/5-
coherence of L, that proof works under the weaker assumption of its Dy S/S(*Y)—coherence.

This shows Proposition 4.25(i). In particular, this implies the Dy, g/g-regular holonomicity
of L.

Proof of Proposition 4.25(ii). We now prove the holonomicity of £ by assuming only that G
is Og-coherent. As in the proof of Theorem 4.15(iii), we argue by induction on the dimension
of S. The case where S is a point is well-known [KK81, Theorem 2.3.2]. We assume that the
result holds if dimS < d—1 (d > 1) and that dim S = d.

Step 1: the case where G is a torsion Og-module. As we work locally, we can assume that
the support of G is contained in a hypersurface T of S, having equation h = 0, endowed with
a finite morphism ¢ to S’ of dimension d — 1, and that h*G = 0 for some k > 1. We claim that
any local section m of L is annihilated by h*. Indeed, for any such m, h*m is zero on X* x S
and we can apply the result of Remark 2.5(ii).

Therefore, Suppg L is contained in 7. By the induction hypothesis and the equivalence
recalled in Setting 3.12, we deduce that £ is ¢ 'Dy, g /sr-holonomic, hence, arguing as in
Remark 3.13, we conclude that L is Dx, g/5-holonomic, as desired.

Step 2: the case where Gy is Og-locally free. We consider the exact sequence (4.1) and we
assume that Gyir is Og-locally free. We also consider the similar exact sequence 0 — Ly — L —
Lie — 0. Let us prove that L is of D-type. First, L; is easily seen to be @XXS/S(*D)—coherent,
hence so is L. Next, L satisfies the first point of Definition 4.23, with local system p~!Gis.

For the second point, we note that the image of i;L; — 3L is D x-coherent because ;L is
so and i: Ly is O-quasi-coherent. As a consequence, it is D y-regular holonomic because i:L is so,
and thus Ly is regular holonomic. On the other hand, for j < 0, L7i*L¢; is O-quasi-coherent
and supported on D by our assumption on Gy, so L7i* L = 0 by Lemma 2.3(ii).

In conclusion, Ly is of D-type, and we also deduce that L; is of D-type. By step 1 and
Proposition 4.25(i), £ is holonomic if Gy is Og-locally free.

Step 3: the general case. Let m: 5" — S be a projective modification as in Proposition 4.16
such that the S’-torsion-free quotient of 7*Gy; is Og-locally free. The S’-torsion-free quotient of
G, being equal to it, is then Og/-locally free.

By Lemma 4.24, L7*L has cohomology in Modp(Dxys//g/(xD)). We can therefore
apply steps 1 and 2 to deduce that 7*L is Dy, g/ g-holonomic, and it is regular by
Definition 4.23(b). It is moreover 7-good (cf. Lemma 2.13). Hence, m.7*L is Dy g/g-regular
holonomic (Theorem 3.15).
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As L is Dxyg/g(*D)-coherent, the image L' of the adjunction morphism L — m.7*L is
D x x5/s-coherent, hence regular holonomic (Proposition 3.2(iii)) and its kernel is D x g/5(*D)-
coherent. It follows that the latter, which clearly satisfies the first point of Definition 4.23, also
satisfies the second point because L and L’ do so (cf. Proposition 3.2). As 7 is biholomorphic
above S\ T for some closed analytic subset T of codimension > 2, this kernel satisfies the
assumption of step 1. It is thus D y , g/g-holonomic, hence £ is D x 5/5-holonomic, as desired. [

Note that the assignment L +— L = H° DR(L‘X*XS) is a functor which takes values in the
category of coherent S-locally constant sheaves, because the characteristic variety of Ly« is
contained in the zero section.

PROPOSITION 4.26. The category of strict regular holonomic D x  g/s-modules of D-type with
singularities along D is equivalent to the category of S-locally constant sheaves on X* x S which
are p~1Og-locally free of finite rank, under the correspondences L — L = H° DR(L|xxg) and

LHL:EL.

Proof. Owing to the Riemann—Hilbert correspondence on X* x S (cf. [MFS19, Remark A.10]),
we have Lix«yg =~ (Ox+xs @p-104 Lydxxg/s @ 1d) = Er. As the natural morphism £ — j.Ep
sends isomorphically £ to Ef, (Proposition 4.25(i)), the functor L — E;, from the category of
S-locally constant sheaves on X* x S which are p~!Og-locally free of finite rank to that of regular

holonomic D x, 5/g-modules of D-type is essentially surjective. That it is fully faithful has been
proved in Theorem 4.15(ii). O

4.e Proof of Theorem 1
Although the next proposition is not general enough to prove Theorem 1, it will be one of the
main tools for its proof.

Let f: X — Y be a morphism of real or complex analytic manifolds, we denote by Dy _ x /s
and by Dx_,y /g the relative transfer bi-modules.

PROPOSITION 4.27. Let M be a regular holonomic D x  g/g-module with X-support Z =, Z;
(see (2.7)). Let Y C X be a hypersurface such that Y D Z; if dimZ; < dim Z, and Z, :=
Z ~ (Y N Z) is smooth of pure dimension dim Z. Then the localized D x , g/g-module M(xY") is
regular holonomic and locally isomorphic to the projective pushforward of a relative D-module of
D-type.

Proof. The question is local. The assumption on Y implies that the characteristic variety of
M(xy)xs is contained in (77 X) x S. By Kashiwara’s equivalence, M|x.y)xs is the pushfor-
ward by the inclusion map of a coherent Oz, «g-module with flat relative connection, which is
thus of the form (Oz,xs ®,-104 L,dz,xg/s) for some coherent locally constant p}ol(f) s-module L.

One can find a complex manifold X’ together with a divisor with normal crossings Y’ C X’
and a projective morphism f : X’ — X which induces a biholomorphism X’ \ Y' — Z, (cf., e.g.,
[AHV18, Prologue, Theorem 4]). We set § = dim Z — dim X = dim X’ — dim X < 0. For each ¢,
we consider the D /. g/g-module M .= Ht, f*M. Although it is not yet known to be coherent,
it is f-O-good in the sense of Definition 2.2 (Proposition 2.11(i)). By considering the filtration
by the order of the pole along Y”, one checks that M’*(xY”) is also f-O-good (cf. Remark 2.5(i)).

If ¢ # &, the sheaf-theoretic restriction of M’ to (X’ \ Y’) x S is zero, therefore M*(xY') = 0
owing to O-quasi-coherence (cf. Lemma 2.3(ii)). As Ox/«g(*xY”) is flat over Ox/« g, we conclude
that

o[ ¥ (M(Y))[8] = (D f*M)(xY")[6] ~ MO (xY7). (4.28)
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We can interpret pf*(M(xY")) as the pullback of M(xY) as a Dy, g/g(xY)-module. As f is a
modification and Y’ = f~1(Y), we have

Dxrns/s(Y') = Oxries(+xY") @p-1(0x ws(ev)) £ Dxxsys(xY)

(in local coordinates ' in X’ and x in X, the determinant of the matrix expressing Ox; in terms
of 0y, is invertible in Ox/yg(xY”)). It follows that M (xY") = Dy, g/5(xY”) 1Dy 5/5(+Y)
FTIM(%Y) is Dxryg/5(*Y")-coherent.

As Li* commutes with p f*, M (xY”) is Dxrxs5/5(xY")-coherent of D-type (Definition 4.23) so,
by Proposition 4.25(ii), it is D x+ g/s-regular holonomic. As M (xY") is f-O-good and Dxrxs/s-
coherent, it is f-good.

According to [MFS19, Corollary 2.4], pf.(M”(xY”)) has regular holonomic cohomology.
Furthermore, because 3 (,fuM®(xY")) is supported on Y xS for j#0, and since
o fs (VP (xY")) = (p £ M?)(*Y), we have

o fe M (+Y")) 2 H £ (MO (1Y) 22 HO (o L M) (4 ).
On the other hand, there is a natural adjunction morphism (cf. [Kas03, Lemma 4.28 and
Proposition 4.34])
b fen fTM[G] — M,

which induces a morphism of coherent D x, g/5(*Y)-modules
HO (o £ M (V7)) = (HOp M) (+Y) — M(+Y), (4.30)

where the left-hand side is Dy, g/g-coherent and regular holonomic. Its cokernel is zero on
(X \Y) xS and Dx,g/5(xY)-coherent, hence it is zero according to Lemma 2.3(ii), so that
this morphism is an isomorphism. In conclusion, M(xY") is regular holonomic. 0

COROLLARY 4.31. Let M be a regular holonomic D x  g/s-module and let Y be any hypersurface
in X. Then the localized D x . /s-module M(xY") is regular holonomic (hence, D x  5/5-coherent).

Proof. The question is local on X x S. Let Z denote the X-support of M. We argue by induc-
tion on the dimension of Z. The case where dim Z = 0 is clear because either Z C Y and then
M(xY)=0,0r Z ¢ Y and then M(xY) = M.

Let Y/ be a hypersurface satisfying the properties as in Proposition 4.27. Then Y U Y’ satisfies
the same properties. We consider the following commutative diagram.

0 —— Ly M M M(*Y") —— R'Ty M —— 0

! l | !

0 — CyM(Y) — MEY) — MY UY)) — (BT M)(+Y) — 0

By Proposition 4.27, the terms of the top horizontal line, together with M(x(Y' UY")), are reg-
ular holonomic. On the other hand, the support of the regular holonomic modules I'ty;M and
le‘[y/]M is of dimension < dim Z, hence the assertion holds for these modules by the induction
hypothesis, and the extreme terms of the lower horizontal line are regular holonomic. It follows
that the remaining term M(*Y") is regular holonomic. O

COROLLARY 4.32. Let M be a regular holonomic Dy g/s-module and let Y be any closed
analytic subset in X. Then RI'y1M belongs to DEhOl(‘DXXS/S).
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Proof. The question is local. The case of a hypersurface follows from Corollary 4.31. The general
case follows by writing locally Y as the intersection of hypersurfaces. O

COROLLARY 4.33. Let Y be a closed hypersurface of X and let M be a coherent Dy, g/5(*Y)-
module L of D-type. Then M belongs to Mod;nol(Dxxs/s)-

Proof. This is obtained by the arguments used in the proof of Proposition 4.27. g

Proof of Theorem 1. We regard the morphism f as the composition of a closed inclusion and a
projection. The latter case is clear, so we only consider the case where f : Y < X is the inclusion
of a closed submanifold. Then Corollary 4.32 implies that RI'y1M is regular holonomic. By

Kashiwara’s equivalence, we conclude that , f*M belongs to D5 ;(Dy « 5/8)- O

PROPOSITION 4.34. If M, N are objects of thol(DXXS/S), then so is M ®(L<)Xxs N.

Proof. Recall that the tensor product has been defined in Remark 2.17. According to Theorem 1
applied to the diagonal embedding ¢, it is enough to prove that the S-external tensor product
M XL N is an object of Df’hol(D( XxX)x5/s)- Holonomicity has been observed in Remark 2.17.
Regularity follows from the isomorphism Li*(M K% N) ~ Dy y x @p meny (LitM K¢ LitN) and
from the regular holonomicity of the latter as a complex in D”(Dy x). d

Let Y; (i=1,...,p) be hypersurfaces of X defined as the zero set of holomorphic func-
tions h;: X — C, set Y =J;V; and let N be a Dx,g/5(xY)-module. We regard N as an
Oxxs(xY)-module with flat relative connection V, and for a tuple a = (o, ..., ap) of holomor-
phic functions ¢; : S — C, we denote by Nh® the O x «g-module N, endowed with the flat relative
connection V + > . a;Id ®dh;/h;. The functor N — Nh* is an auto-equivalence of the cate-
gory Mod(Dxs/5(*Y)), as well as of Modeon(D x x5/5(*¥Y')). We have a functorial isomorphism
Nh® ~ Oxxs(*Y)h* @0y, s N~ Oxxs(*Y)R* @5 N.

Oxxs

COROLLARY 4.35. Assume that M is a regular holonomic D x  g/g-module. Then so is M(*Y )h".

Sketch of proof. One checks that the coherent Dy, g/g(¥Y)-module Oxys(*Y)h" is of D-type
along Y by using that Oy (*Y)h®(*) is regular holonomic for each s € S. Hence O xyg(*Y)h® is
regular holonomic by Corollary 4.33. Then, on noting that M(xY )h* ~ Oxxs(*Y)h* ®o,, ¢ M,
we conclude by applying Proposition 4.34. g

Ezxample 4.36 (Generalized Mellin transform). Let fi,..., f, be meromorphic functions on X,
i.e., locally each f; is the quotient of two holomorphic functions h;, g; without common factor.
Let Y be the union of the divisors of zeros and poles of the functions f;, i.e., locally the
divisors of zeros of h;,g;. We also set S =CP with its analytic topology. It is usual to
denote by Oxxs(xY)f® the Oxxs-module Oxxs(xY) equipped with the twisted connection
d+ >, sidfi/fi. The same argument as in Corollary 4.35 shows that Oxyxg(*Y)f® is regu-
lar holonomic and that, if M is a regular holonomic D x-module, then the Dx, 5/5-module
CMHY)) P =M R0y, s Oxxs(xY)f* (where ¢ : X x .S — X denotes the projection) is also
regular holonomic.

Furthermore, the D x , g/g-submodule of ¢*(M(*Y)) f* generated by the image of M ® 1 - f*
is also regular holonomic, according to Proposition 3.2(iii), as it is clearly coherent (being locally
of finite type in a coherent Dy g/s-module). This property is the S-analytic variant of [Mai23,
Proposition 13], with the regularity assumption however.

As M is regular holonomic, it is good, and so is ¢*(M(xY")) f5. Therefore, if X is compact,
the D-module pushforward pp.[¢* (M (xY))f*] is an object of D", (Og). This is the generalized
Mellin transform of M with respect to (f1,..., fp)-
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4.f Another characterization of regular holonomicity

For a closed analytic subset Y of X, we denote by Ofx\s = liinkez Oxxs/ J* the formal completion

of Oxxg along Y x S, where J denotes the defining ideal of Y x S'in X x S. Let i: Y — X
denote the inclusion. We consider the exact sequence of sheaves supported on Y x S:

0 — isi 'Oxxg — Ofx\s — Qywg — 0.
COROLLARY 4.37. If M € DE’hOl(@XXS/S), then the complexes
Rﬂ'fomDXXs/s(M, Ofx\s) and Rf}(om@XXS/S(M, Qyxs)
belong to D2 .(p~'0g).

Proof. If follows from Corollary 4.32 that we have RI'y1M € DE’hOl(D Xx5/s), 80 that the com-
plex RHomp, o s (RTy|M, Oxxs) belongs to D2_.(p~'0Og), according to [MFS13, Theorem 3.7].
On the one hand, by mimicking the proof when S is reduced to a point (cf., e.g., [Meb04,
Corollary 2.7-2]), one finds a natural isomorphism

RHomp, o, (RUyM; Oxxs) = RHomp, oo (M, Op).

hence the S-C-constructibility of the latter complex. On the other hand, we have natural
isomorphisms

Rii'RHomp, (M, Oxxs) — Ri.RHomp, (i7" M,i 'Oxxs)
~ R¥Homp, (M, Rivi~'Oxxs),
showing S-C-constructibility of the latter complex, and therefore that of RHomop, /s
(M7 QYXS)' O

THEOREM 4.38. Let M belong to DEOl(DXXS/S). Then M is regular holonomic if and only if for
any germ of closed analytic subset Y C X, RHomp, 4 ¢ (M, Qy xs) is isomorphic to zero.

LEMMA 4.39. For any closed analytic subset Y C X we have

Llﬁ@m ~ Of, and Li:nyg ~ Qy.

Proof. Thanks to the properties of Li¥ (cf. Proposition 3.1) the result follows from Mittag-
Leffler’s condition because the morphisms OXXS/HI‘“‘H — OXXg/Hk are surjective. ]

Proof of Theorem 4.38. We first remark that the theorem holds if S is reduced to a point,
according to [KK81, (6.4.6) and (6.4.7)].
If Rﬂ{om@XXS/S(M, Qy«s) =0 for all germ Y C X, then for any s € S

Rf}fomgjx (LZ:M, Qy) ~ Rj‘COTn@X (LZ:M, LZ: nys)
~ Li:Rg‘fom@XXS/s (M, Qyxs) = 0. (4.40)

From the preliminary remark. we conclude that Li*M € D5 (Dx) for any s € S, hence M €

DEhol(gXxS/S)‘

Conversely, if M is regular holonomic, then RHomqp, /S(M, Qy«g) is S-C-constructible,
and by the variant of Nakayama’s lemma (cf. [MFS13, Proposition 2.2)), it is zero if (and only if)
Li;RHomp, 5 ,o(M,Qyxs) =0 for any s € S. Reading (4.40) backwards and according to the
preliminary remark, we find that the latter property is satisfied, hence

RJ’COmDXXS/S(M, nys) =0. ]
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5. Construction of the relative Riemann—Hilbert functor RH*;

In this section, we extend the definition of the functor RHY introduced in [MFS19] when
dim S = 1 to the case dim S > 2. We check that it satisfies properties similar to those explained
in [MFS19, FMFS21].

5.a Reminder on the subanalytic site and complements
We first recall the main results in [MFP21]. We consider the site in the real analytic manifold Sg
given by the usual topology, that is, where the family Op(S) consisting of all open sets. On the
other hand, we have the subanalytic site Xg, underlying the real analytic manifold Xg for which
the family of open subsets Op(Xg,) consists of subanalytic open subsets in Xg. Lastly, we let
Xga X S be the subanalytic site underlying the real analytic manifold Xg x Sg, for which the
family of open sets Op(Xg, X S) consists of those which are finite unions of products U x V
with U € Op(Xs,) and V is open in S. A subset T' C Op(Xga X S) is a coveringof W =U x V €
Op(Xsa x 9) if and only if it admits a refinement {U; x V; }ier jes such that {U;}ic 1 is a covering
of U (in Xs,) and {V}};cs is a covering of V' (in .S). In particular, when U is relatively compact I
is finite but J needs not to be so even if V is relatively compact.

We have the following commutative diagram, where the arrows are natural morphisms of
sites induced by the inclusion of families of open subsets.

Xga X S

o

EaRe
X xS Xsa X Ssa (5.1)
N~
(X x Y)sa
We recall that

(5.2) pg' commutes with tensor products (cf. [KS06, Lemma 18.3.1(ii)(c)]) and pg'ps. ~ 1d.
Furthermore, pgl admits a left adjoint psy which is exact and commutes with tensor

products (cf. [MFP21, §3]).

The following proposition generalizes [MFS19, Proposition 3.3]. Its proof is completely
similar.

PROPOSITION 5.3. The category ModR_C(p)_(l(‘)s) is acyclic for pg:
VF € Modg(px'0s), Yk >1, H'Rpg.F = 0.
In particular, pg. is exact on Modp_. (p}l(DS).
The next statement corrects [MFS19, Proposition 3.5]. Its proof is given in the appendix.

PROPOSITION 5.4. Let F'* be a bounded complex of p)_(l(f)g—modules with S-R-constructible
cohomology. Then there exists an isomorphism K* — F* in D_(p)}l(‘)g), where K* is a complex
in C*(p}IOS) whose terms are locally finite sums @4 Cu,xv, ®p;{105, where the U, are
open subanalytic relatively compact in X and the V,, are open relatively compact in S.

Remark 5.5. Recall the diagram (5.1). From the fact that a, is fully faithful and that ata, =1d,
we have pg. = a~!pl (thus, Rps. = a ' Rp’.) as explained in [MFP21] before Proposition 3.1, we
deduce that, for any open subset U x V' € Op®(Xs, X 5), the constant sheaf Cyryy on the site
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Xsa X S coincides with pgCpxy. Similarly,

Rps.(Cuxv @ px 0s) = psi(Cuxv) ® pss(px 0) = ps«(Cuxy @ px Os)
because the isomorphisms hold true with p’ instead of pg (cf. [MFP14, Lemma 3.6(2)]).

Remark 5.6. For any .S, the site Xg, X S is a ringed site both relatively to the sheaf pg, (p;(los)
and to the sheaf pg1Ox«g (cf. [KS06, p. 449]), and pg is a morphism of ringed sites in both cases.
Thus, according to [KS06, Lemma 18.3.1, Theorem 18.6.9], pgl commutes with ®, ®psw}1@s’

D ps10x x5 R and ®F . We recall that Rpg*p)_(l(‘)szps!p;(l(‘)g (cf. [MFP21,

ps«px Os ps10xxs
Proposition 3.16]). Let 7 : S’ — S be a morphism of complex manifolds. As Og is a 7 1Og-
module, psr*(p;(l(f)sx) is a psf*(p;(lwfl(f)s)—module, hence a wilps*(p;{l(f)g)—module. Similarly,
psnOxxs is a 71 psiOxxs-module. In other words, 7 induces a morphism of ringed sites with
respect to both sheaves of rings. Consequently, according to [KS06, Theorem 18.6.9(i)], the
derived functors L™ : D(ps*p;(log) — D(pg/*p)}l(‘)gx) respectively, (keeping the same notation
7 for the morphism Id x7), L7* : D(ps10xxs) — D(ps1Oxxs/) are well-defined.

We recall that pglRpg* ~ Id, that Rpg, commutes with Rm, and pgl commutes with 7!
according to [KS06, Proposition 17.5.3]. Furthermore, (77!, 7,) is a pair of adjoint functors
according to [KS06, Theorem 17.5.2(i)] and pgl commutes with Rm,, which follows by copying the
proof of [Pre08, Proposition 2.2.1(ii)] because pgl admits an exact left adjoint (pg;), hence takes
injective sheaves to injective sheaves. (Note that, in general, we do not have 7' Rpg. = Rpgrsm
whereas we have 7~ !pg1 = pgnm~!.) We thus have isomorphisms of functors

pg,lﬂ'_lRps* ~ 7r_1, R,osx*pg/lﬂ'_lRps* ~ R,ogz*w_l

and, composing with the natural morphism Id — Rpg/, pg/l, we deduce a natural morphism
7 'Rpss. — Rpgrem L. (5.6 %)
We have
7 pse(Cuxv) =7 H(Cuxv) = Cuxn—ty = p5r«(Cuxn—tv) = psin (Cuxv).

LEMMA 5.7. Let w:S"— S be a morphism. Then we have an isomorphism of functors on
D2 .(p~10g) with values in DB__(pssp' ' Ogr):

LW*RpS*(O) =~ RpS/*Lﬂ* (0) .

Proof. Let F € DX (p7'0g). By (5.6%) we have a morphism (recalling that Rpg.p 'Og ~
—1
ps«p~ Os)

psp” 0 @ 1pep-10g T "RpsF — psnp '0g ® _1p5 p—10g BPsT 'F

—>RpS/ (p OS’ a=1p— IOS 71F>.

This gives the desired morphism 77 : L7*Rpg.(F) — RpgL7*(F). By Proposition A.6,
[FMFS21, Remark 1.8] and Remark A.8 we may assume that F = Cyxy ® p~'0Og, for some
relatively compact open subsets of X and S, respectively, with U subanalytic. We have

Lr*psu(F) = psn(p ' Og/) ®L—1 o105 T Ps«(Cuxy @p~10g)

= psrx 105’ ©r 1ps (p-105) T 'pse(Cuxv) @7 psc(p™' Os)

/—

v
~ pgr(p 1 05) @7 psu(Cuxv) = psre(p' ™ 05) ® psnm™ (Cuxy)
~ pgie(p' 105 @ Cyyn-rv) = psru(LT*F). .
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5.b The construction of RH; and behavior under pushforward
For this section, we refer to the notation introduced in [FMFS21, §2.2]. However, instead of
making use of the morphism p’ of (5.1) as in [FMFS21, §2.2], we replace it with pg. Most proofs
do not require any change.

We define the triangulated functor THY : DP(p~10g)P — Db(DXXS/S) by

THX (F) = pg' RHom,,.., 104 (Rps:F, D65 ),
_ S
RHS, (F) == pg' RHom,, ,-104(RpsiF, 0%, )ldx].
If dim S = 1, we recover the definitions of [MFS19] (where we restricted to DB_.(p~*O05)°P):
THS (F) := p'~" R¥om,y 104 (P, F, D5,

_ S.
RHS (F) = p/~! RHom,, 10, (pL F, 0555)dx].

This can be seen as follows: noting that (cf. (5.1)) p. = ax o pss, a la, =Id and a_l(‘)g’fx’ﬂs =

O?(st (cf. [MFP21, §§3.1 and 3.2]), for F' € DR_.(p~*Og), one finds a natural morphism
Pt RHomy 104 (PLF, og,{sx,ﬁs) — pg' RHom,,g p104(psiF, 0% %s)-

Let us check that is an isomorphism. The question being local, we can reduce, according to
Proposition 5.4, to proving the isomorphism for sheaves of the form F = Cyyy ® p~10g, for
some open subanalytic relatively compact subset U of X and V open in S. Both objects become
then isomorphic to RI'x xyTHom(Cyxs, Oxxs), as follows from [MFP14, Propsositions 4.1 and
4.7] and [MFP21, Proposition 3.24].

Let U be a subanalytic open subset in X and let us denote the inclusion by j:U x § —
X xS.

LEMMA 5.8 (Extension in the case of an open subanalytic set). Let F € DR (p;;'Os). Then
there are natural isomorphisms in DP(D y s/s)

. g _ S
THS (jiF) ~ pisj*R}CompS*palos(RpS*F,j 90 o), (5.8 %)
. _ . .—1:qt,S
RHY, (jiF)[~dx] =~ pg' Rj. R¥tom, 10, (Rps:F. j Lo o). (5.8 %%)
Proof. This lemma is a variant of [MFS19, Lemma 3.25] and its proof is similar. g

We have the following variant of [FMFS21, Proposition 2.1] using [MFP21, Proposition 3.30].
PROPOSITION 5.9. For each s € S, we have an isomorphism of functors
L3t RS (+) [dx] ~ THom(Li%(+), Ox).
We have the following relative version of [Kas84, Theorem 4.1].

THEOREM 5.10. Let f: X — Y be a morphism of real analytic manifolds, let F' € Dﬁ_c(p;,l(‘_)s).
Then we have a canonical morphism in D(Dy , g/5), functorial with respect to F' and compatible
in a natural way with the composition of morphisms

ofi THX (f 7' F) — THY(F).

The proof is stepwise similar to that with dimS =1 in [FMFS21, Lemma 2.5] using
Proposition A.6. We omit it here and the detailed proof can be found in the arXiv version
of this paper. Proposition 7.1 of [Kas84] (see also [KS96, Theorem 5.7 (5.12)]) has a relative
version already used in [MFS19], the proof of which is given in the following.
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THEOREM 5.11. Let f: X — Y be a morphism of complex analytic manifolds, let F €
DE_C(p}loS), and assume that f is proper on SuppF. Then there is a canonical iso-
morphism in DP(Dy s/s) which is compatible in a natural way with the composition of

morphisms:
of« RHY (F)[dx]— RHS (Rf. F)[dy]. (5.11 %)
Proof. We recall (cf. [FMFS21, (4)]) that
RHY(F) ~ RIomop, (O, THY(F))[dx]. (5.12)

In view of Theorem 5.10, where we replace F' by Rf.F', and by adjunction, we derive a natural
morphism

pr : o fs THY (F) — THy (RS, F). (5.13)

LEMMA 5.14. The morphism pp is an isomorphism.

The proof of this lemma, which is a relative version of [KS96, Theorem 4.4], is
given in the appendix and some more details are also given in the arXiv version of this
article.

Applying RHomop_ _ _(Oy,g,¢)[dy] to both terms of (5.13) the right term becomes

Y xS/S

RH{ (Rf.F). For the left-hand side of (5.13) we obtain
Rf}com@?xé/g(o?xﬁv o fe THY (F))[dy]

~ RMHomop_ - _(Oy, 35 Rfi(Dyyxz/ss ®%XRX5R/SRTH§(F)))WY]

Y xS/S

~ Rf.(RHoms-1p_ _ _(f 'Oy, 5. Dy, xu/s0 ®%XRX5R/SRTH§<(F)))WY]

Y xS/S
- S
(3) Rf*(Rj-Comffli)?Xg/g(f 107><§7 DYRHXR/SR) ®%YR><SR/S]RTHX(F))[CIY]
S
(%) Rf*(DY\—X/S ®%X><S/S (Rg{om'Dyxg/g(OYXgﬂ DXRXSR/SR) ®%XRXSR/SRTHX(F)))[dY]
= Rf*(‘DY<—X/S ®%X><S/S (Rj{om%xg/g(OYXE’TH?((F)[CZX]))'

Here part (a) follows from [Kas03, (A10)] and part (b) follows from the relative version of [Kas84,
Lemma 7.2] which asserts that

R%m%xg/g(c)?x?’ ‘DYR‘*X]R/SR)
= D1/'<—)(/AS' ®%X><S/S Rf}com@}xg/g(OYX§7 DXRXSR/SR)[dX - dY]
Therefore, by applying Rﬂfom%xg/g((‘)?xg, ¢)[dy] to the left-hand side of (5.13) we obtain

an isomorphism with p, fi RH3-(F) which concludes the construction of the morphism (5.11 ).
Lemma 5.14 shows that it is an isomorphism. ]

5.c Riemann—Hilbert correspondence for Deligne’s extensions
We recall that, for F € D’(p~'Og) one defines D'F := RHom,,—19,(F,p~*O0g) and DF :=
RHom,,~10,(F,p~*0g)[2dx].

Let L be a coherent S-locally constant sheaf on X* x S. We consider the setting of
Notation 4.5 and assume that Y = D has normal crossings in X.
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PROPOSITION 5.15. Let L be a coherent S-locally constant sheaf on X* x S and let E; be the
associated Deligne extension. Then:

e the complex of Dy g/g-modules RHY-(jiD'L)|—dx] is isomorphic to Ey, and thus it is regular
holonomic;

e PSolE; ~ jiD'L.

Proof. We adapt the idea of the proof of [MFS19, Lemma 4.2]. Let us prove the second statement
assuming the first one holds true. First, the following lemma is similar to [MFS19, Lemma 3.19].

LEMMA 5.16. There exists an isomorphism of functors in DY .(p~'0g):
PDRx (RH%(+)) — D(e).
As RH%, (j!D'L)[—dx] is holonomic by the first point, we have

(*)

PSolx RHY (j1D'L)[—dx] ~ DPDRRH% (jiD'L)[-dx] ~ DD(;#D'L) = jD'L,

where (x) follows from Lemma 5.16.
Let us now prove the first statement. We set

Ef = RHX (jD'L)[~dx].
Then, according to (5.8#x*) and to [MFS19, Lemma 3.22], we have

~ A 1at.S
IR 1 t,S
~ pisj*(ps*L ®£S*p)_(1* 0sJ IO;XS). (5.17)

We make use of the following result of [MFP21], the proof of which we recall with details as
it is used in an essential way in the following.

LEMMA 5.18 [MFP21, Proposition 3.32]. The complex Ef is concentrated in degree zero.

Proof. Assume first that L is the constant local system p}iG with G being Og-coherent. As the
question is local on X x S, we can assume that G admits a finite resolution Oy — G by free
Og-modules of finite rank. Then we have

1 1 L .—1.qt,S
Ps R]*(pS*pX*G(X)p;(io J 1OX><S)

S

~ _ . —1 e .—1t,S
A pis]*(pS*pxioS ®p}i g J 1OX><S)

. A p. —1@qhS
:pXIOS(X)p;OS pg Rjj 0% 6. (5.19)

We recall that, according to [KS01, Proposition 2.4.4 (2.4.4)], we have isomorphisms of functors
on Db(CXsaXS)

RHom(psjiCx+xs, (+)) — RjxRHom(ps:Cxexs,i " (+)) = Rjuj ™" (s).
As a consequence, we obtain an isomorphism
_ .o S — S
Pis]*] 10?(x5 = PSIR‘{HOW(CX*XS, Og}xs)'

It follows then from [MFP21, Proposition 3.24(1)] applied to Cx+xg = Cx+ K Cg, that the latter
complex is isomorphic to THom(Cx+xs, Oxxs), so that, according to [Kas84, Lemma 7.5],

ps Rjej T 0% s = Oxxs(+D). (5.20)
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We thus deduce from (5.19) and (5.20):
ps Ris(psspxtG @)1 o 510%5) = 05" Ri(psapxh 0% @1 0, 510K s)
~ px 0% ®, 10, 5 Rini O ks

NpXIOS ®, os Oxxs(xD)

o~ leG ®p}105 OXXS(*D)a (5.21)
where the latter isomorphism follows from the p)_(l(‘)s—ﬁatness of Oxxs(*D). We conclude that
ES | . is concentrated in degree zero.

Px+G

Let us now consider the case of a possibly non-constant S-local system L locally isomorphic
to p~'G, with G being Og-coherent. According to Remark 4.18, locally on X x S we have an
isomorphism of O x+«g-modules

L®,-10, Oxexs px:G @)1 05 Ox xS, (5.22)

and by the flatness of Ox«xg over p)_(1 Og, the same equality holds with the derived tensor prod-
uct ®%. According to Proposition 5.3, the natural morphism ps,L — Rpg.L is an isomorphism
and [MFP21, Proposition 3.16] implies that pgiL ~ Rpg.L. Recall also that, by [MFP21,
Proposition 3.13|, the functor pg; is exact and commutes with ®. From (5.22) we then derive
O x+xg-linear isomorphisms (they are a priori not D x«y s/s-linear because we use a tensor
product over O x+xg):

,1 71
ps«L ®ps Px.0Os OXXS ~ (ps1L ® 1 9g ps10x+xs) ®p5|(‘)X*XS OX><S

L —
~ (PS'(L® 710 OX*XS)) ®p5gox*xs IOXXS
(PS'(px*G ® 71 L 9g OX*XS)) ®£/S!OX*><S _1OX><S
(pS'pX*G ® )_(}f(‘) pS!OX*XS) ®£S!OX*><S OXXS

~ JGet _1(9
5Py, ®Ps*pX£ 0s J XxS

Then, due to (5.17), we deduce an O x xg-linear isomorphism

Ef ~ EE;G ~ piG @105 Oxxs(*D). (5.23)

By the first part of the proof, we deduce that Ef is concentrated in degree zero. This concludes
the proof of Proposition 5.18. ([l

LEMMA 5.24. Both Ej, and Ef are naturally Dx, 5/5-submodules of j.Ep.

Proof. First, applying the commutation of pS with j~! together with the analogue of [MFS19,
Corollary 3.24] entails that ES and EL coincide with Ej, when restricted to X™* x S.

On the one hand, by construction, EL is naturally a Dy g/g-submodule of j.Er. Let us
check, on the other hand, that E’f is also naturally a Dy g/s-submodule of j.Er. From the
natural morphism of functors Id — Rps*pg1 on Mod(Cx_, xs) we derive a natural morphism
pgle* — Rj*p§1: denoting for a moment by j° the morphism in the subanalytic site, we
have an isomorphism of functors Rj2 o Rpg« — Rps« o Rj. (cf. [Pre08, Proposition 2.2.1(i)],
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by replacing there p by ps and using the same argument), hence a morphism
Rjy — Rj? o Rps.pg' — Rps.Rjlpg’,

and, by applying pgl on the left, we obtain the desired morphism. Recall also, as already used,
that pssL — RpgsL. We then deduce a Dx x5s-linear morphism

S — . L —1/t,S
Vi Ep =~ pg' Rj(ps.L ®ps*p}i(‘)s 710X s)
A —1t,S
— R]*Psl(pS*L ®£S*p§ios 1OX><S)

(a) _
= R]*(L® Pk Os PSIJ loxxs)

~ Rj.(L ®p;(£ Og Ox+xs)

® Rj(L®, “los Ox+xs) = Rj.EL © J«Er,
where part (a) follows from (5.2), part (b) follows from the py.Og-flatness of Oy«xg, and part
(c) follows from the Steinness of j.

In order to check that W is injective, it is enough to consider it as an O x « g-linear morphism,
and by (5.23), it is enough to check injectivity when L = p;ﬁG. Furthermore, the question is
local on S.

In such a case, we consider a resolution Oy — G as in the proof of Proposition 5.18. Then,
locally on S, (5.21) identifies ES ,  with Py G ®ptog Oxxs(xD) and the morphism ¥ with the

natural morphism

,1G

Px' G @19, Oxxs(+D) — ju(px-G Dyt og Oxxs),
which is injective because G is Og-coherent, as desired. ([l

End of the proof of Proposition 5.15. By Lemma 5.24, we are reduced to showing that
both Dx 5/5-submodules ES and Ej, of JxEr coincide, and because the Dy, g g-structure is
induced by that j,Fy for both it is enough to check that they coincide as O xxg-submodules.
The question is local on X x 5. By Remark 4.18, there ex1sts a local Oxxg-linear isomorphism
jx B, =~ j*E pilG under which Fy, is identified with EG =Dy lq ®, o Oxxs(*D). In addition,
(5.23) also identifies Ef with ple ®,=1¢ Oxxs(*D) as an O xxs-module under the same local

~ Os

isomorphism, so the O x«g-submodules E 1, and Ef of j.Ep, locally coincide, as desired. O

6. Proof of Theorem 2

The proof of Theorem 2 is similar to that of [FMFS21, Theorem 1] where dim .S = 1. However,
various improvements are necessary in order to handle the case dim S > 2.

6.a First part of the proof of Theorem 2
We prove that RHY, is a right quasi-inverse of the functor PSoly : D?hol(DXXS/S) — DR (p~10s)

by exhibiting an isomorphism of functors « : IdDg (p-103) =, PSoly o RH}q(. This is the analogue
in possibly higher dimension for S of [MFS19, Theorem 3]:

(6.1) For F inD&_(p~'Og), RHY (F) is an object of Drbhol(DXXS/S) and there exists a functorial
isomorphism ap : F ~ PSolx (RH5(F)) in D2 .(p~'0g).
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Proof of (6.1). We recall the notation for the duality functor (cf. [MFS13, Proposition 2.23]):
for F in DR (p~'0s), we set D'F = RHom, 10, (F,p~'0s) € DR (p~'0s) and DF =
D'F[2dim X]. Functoriality in (6.1) is obtained by means of Lemma 5.16: once we know that,
for F in D2_.(p~'0g), RH3-(F) belongs to D?hol(DXXS/S), we can apply [MFS13, Corollary 3.9]
together with bi-duality in D2 . (p~'Og) (cf. [MFS13, Proposition 2.23]) to obtain a functorial
isomorphism

ap : F =5 PSolx (RHY (F)).

For the first part of (6.1), the main step is provided by Proposition 5.15, where we proved the
case F' = 5 D'L in the setting of §4.b (from which we keep the notation), that is, D is a normal
crossing divisor in X and L is a coherent S-local system on X* x S := (X \ D) x S.

We now conclude the proof of (6.1) by a standard induction on the dimension of the
X-support of F, based on Theorem 5.11, analogous to that of [Kas84, §7.3] (cf. [MFS19,
Theorem 3] for the case dim S = 1).

We thus assume that (6.1) holds if dim Suppy F' < k (k > 1) and we prove that it holds for
any F' with dim Suppy F' < k. By functoriality, it is enough to prove the first part of (6.1), so that
the question is local. By induction on the amplitude of the complex F', we can also assume that F
is an S-C-constructible sheaf. We can find a projective morphism f : X’ — X with dim X' = k,
which is biholomorphic from the complement X* of a normal crossing divisor D’ in X’ to the
smooth locus of dimension k of Suppy F, so that f~'F is a coherent S-local system on X'*.
Let 7/ : X" — X' denote the inclusion. Proposition 5.15 implies the regular holonomicity of
RH®(jiD'j'~'f~'F) and Theorem 5.11, together with [MFS19, Corollary 2.4], implies regular
holonomicity of

RHS (Rf.jiD'j "1 f1F) ~ RHY (71 D'j ' F),

where j denotes the inclusion of f(X"™*) in X. Hence, if F' is an S-C-constructible sheaf with
X-support of dimension < k, RH?}(D' F) is regular holonomic because it fits in a distinguished
triangle whose third term is regular holonomic by the induction hypothesis. The same holds for
D'F for any F € D2 .(p~'Og) with dim Suppy F < k, and replacing F with D'F, which has the
same X-support, we conclude that RH% (F) is regular holonomic. O

6.b Second part of the proof of Theorem 2
We prove that RHY is a left quasi-inverse of the functor PSoly : DFhOl(DXXS/S) — DR .(p~10Os)

by exhibiting an isomorphism of functors 3 : Idpp = RH% oPSolx.

rhol(DXXS/S)

(6.2) For each object M of thol(DXxg/g), there exists an isomorphism
Bt : M =5 RH% (PSolx (M),

functorial in M.

Proof of (6.2). As in [FMFS21, §3.b], we construct a bi-functorial isomorphism (with
respect to M, N € DEhol(DXXS/S)) which, by applying Li¥ for any s € S, yields that of [Kas84,
Corollary 8.6]:

Homp, o (M, RHZ (°Solx (N))) — Hom,,-1 0, (PSolx (N),PSoly (M)), (6.3)
that we also denote as (6.3); - We then define the morphism

Bt : M — RHY (PSolx (M))

1452

https://doi.org/10.1112/S0010437X23007224 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007224

RELATIVE REGULAR RIEMANN—HILBERT CORRESPONDENCE II

as the unique morphism such that (6.3) M’M(ﬁjv[) = Idpge(ar)- Ome classically deduces from the
full faithfulness of PSol in the absolute case (a consequence of the Riemann-Hilbert correspon-
dence of [Kas84] and [Meb84]) that, for each s € S, Brn is an isomorphism. Therefore, by a
Nakayama-type argument [MFS19, Proposition 1.9 and Corollary 1.10], (¢ is an isomorphism.

In order to check that (¢ is functorial with respect to M, that is, it defines a morphism
of functors IdDEh — RH‘;( oPSolx, we consider as in [MFS19, p. 668], for a morphism

ol(Dxxs/5)
@ : M — N, the following commutative diagram.

(6.3)y.
Homa,, .o (M, RH (PSolx (M))) ———— Hom,, 1, (°PSoLx (M), PSol(M))

RH® (PSolx (¢))oe® J{ J eoPSolx ()

(6-3) 5.
Homu, (M, RHS (PSolx (N))) ——— Hom,-10, (PSolx (N), PSolx (M)

|~
(63),
Homyp, o, (N, RH% (PSolx (N))) —————— Hom,,-1¢9,(PSolx (N), PSolx (N))

pSOlX(tp)O‘T

As Idegery () © PSolx (¢) = PSolx (¢) o Idpgel (), We obtain from the commutativity of the
diagram that

RHS, ("Solx (¢)) © Bt = B0 @,

which is the desired functoriality.
In order to obtain (6.3), it is enough to construct a bi-functorial morphism in DP(p~10g)

RHomap,y,o(M,RHX (F)) — RHom,,-104(F,Solx (M)) (6.4)

for M € D'r’hol(DXXS/S) and F € D2 (p~'0g), and to show that it is an isomorphism. Then
(6.3)5¢ v is obtained by taking global sections of 3°(6.4) applied to F = PSol(N).

Such a morphism (6.4) is given by [FMFS21, (14)]. In view of Proposition 5.9 we can argue
as in [FMFS21], where it is also shown that, for each s, € S, Li} (6.4) can be identified with the
morphism constructed in the absolute case by Kashiwara [Kas84, Corollary 8.6], hence it is an
isomorphism. To conclude that (6.4) is an isomorphism, we apply a Nakayama-type argument
[MFS13, Proposition 2.2].

To construct the morphism (6.4) we need to check a finiteness property. The proof of (6.2)
is thus concluded with the proof of the following assertion.

(6.5) For any M € Dlr?hol(DXXS/S) and for any F € DR .(p~'0g), RHomp, 5 o(M, RHY (F))
belongs to DR .(p~'0g).

We also consider the following statement.
(6.6) For any M,N € DEhol(DXXS/S)7 the complex RHomp . o (M, N) belongs to D2 (p~10Og).

We argue by induction on the pair (dim S, dim Supp y M) ordered lexicographically. For that
purpose we introduce the following notation.

e For d > 0, we denote by (6.5),, respectively, (6.6),, the corresponding statement concerning
any S satisfying dim S < d.

e For k > 0, we introduce the assertion (6.6) a4,k Py requiring that the property holds for dim S <
d—1ordimS =d and dim Suppxy M < &.
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Because of the first part of (6.1) already proved, we have
Conversely, the reverse implication also holds:
(6.5); = (6.6),.

Indeed we deduce from (6.5),; an isomorphism Gy : N —— RHY (PSolx (N)), so applying (6.5),
with F' = PSolx (N) gives (6.6) . In the following, we focus on (6.6),. As belonging to D2 .(p~*Os)
is a local property (cf. [MFS13, §2.5]), we allow restriction to an open neighborhood of a point
of X x S when needed.

Proof of (6.6),. The proof of (6.6), is done by induction on d, in order to reduce the assertion
to the particular case of Lemma, 6.15. Let us recall that (6.6), holds, according to [Kas84]. Thus,
we assume that (6.6),;_; holds (d > 1) and we consider S with dim S = d, together with any

M, N e D?hol(QXXS/S)'

Step 1: the S-torsion case.

LEMMA 6.7. Let dim S = d and let us assume that (6.6),_, holds. Let M, N € Drbhol(DXxS/S)
and assume that the cohomology of M or that of N is of S-torsion. Then (6.6), holds for M, N,
that is,

R%mDXxs/s(MvN) € D%-C(p_l(‘)g).
Proof. By the biduality isomorphism of [MFS13, (3)], we have
BRI (M) = B0, o (DN, D). 69

and we recall that both DN and DM are regular holonomic according to Corollary 3.9. It
is thus enough to prove Lemma 6.7 when the cohomology of N is of S-torsion. On the other
hand, owing to the definition of D .(p~'Og) in terms of micro-support (cf. [MFS13, §2.5]), if
two terms of a distinguished triangle in DP(p~10g) are objects of D2 .(p~'Ogs), then so does
the third. This property allows us to assume that M, N are regular holonomic D y g/g-modules
instead of complexes. Lastly, the same argument implies that belonging to Dg_c (p~10g) is a local
question on X x S.

The assumption on N entails that Suppg N is, locally with respect to X x S, contained in a
closed analytic subset T' of S such that dim 7 < dim S. We argue by induction on dim 7.

If dim T = 0, as we consider a local situation, we may assume 7' = {s,} with maximal ideal
sheaf ms,. By considering the (locally) finite filtration of N by the Dx g/s-regular holonomic
submodules m* N (k € N), we may reduce to assume mg, N = 0. We then have N ~ isoxlg, N and,
by adjunction,

RHomp, g, (M, is,xi6,N) = Risg RFomp, (Lig, M, i, N),

» Usg

so that the proof is reduced to applying (6.6), or, equivalently, the absolute case proved by
Kashiwara in [Kas84].

Assume now that dim 7T > 1 and let Ty C T be a closed analytic subset of dimension < dim T’
such that 7'~ Tp is non-singular of dimension dim 7. Let 7 : 8" — S be a projective morphism
of complex manifolds satisfying the two conditions: 7(S’) = T and, setting T}, := 7~ 1(Tp), 7’ =
LN S'\ Ty — T \ Tp is a biholomorphism. In particular, dim S’ = dim7T" < d.

Note that, according to Proposition 3.10, La*M, La*N are regular holonomic
on X xS’ and, by Theorem 3.15, Rm,L7*N belongs to DEhol('DXXS/S)' By (6.6);_q,
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RYomop . o, o (LT M, L7*N) € D2._.(p'~'Og) thus, by the properness of 7 and Lemma 2.16,

/s’
R¥omp, ;s (M, Rm Lm*N) € Do (p™ ' Os).

The cones of the natural morphisms Rm,L7*N — Rm,m*N and N — Rm,m*N are supported in
Ty, so that, by the induction hypothesis, we deduce that

R?ComDXxS/S(M, Rm,m*N) € Dg_c(p’l(‘)s),
and thus
R%mDXxS/s (M,N) € D%-c(p_lOs)- O

Step 2: induction on dim Supp y M.
LEMMA 6.9. Let dimS =d > 1 and let us assume that (6.6),_, holds. Then (6.6),, holds.

Proof. This is a consequence of Theorem 1 and adjunction. Indeed, we can assume that
Suppx M = {z}. Denoting the inclusion by i:{z} xS — X x 5, there exists a coherent
Ogs-module My such that M = ,i,My by Kashiwara’s equivalence, and we have (cf. [Kas03,
Theorem 4.33], which can be proved in a simple way in the present setting)

Ri,RHomog (Mo, pi*N) — RHompy g (M, N)[dim X].
By Theorem 1, ,i*N has Og-coherent cohomology, and the assertion follows. O
We are thus reduced to proving the following.
(6.10) Let dim S =d > 1. Assume that (6.6),,_, holds (with k >1). Then (6.6),, holds.

We can reduce to the case M, N are regular holonomic Dy, g/g-modules. Let Z denote the
X-support of M. As the assertion is local, we can assume that there exists a hypersurface Y
of X such that Y contains the singular locus of Z and dim Z NY < k. Recall that localization
along Y x S preserves regular holonomicity (cf. Corollary 4.31).

LEMMA 6.11. It is enough to prove the assertion (6.10) for M,N such that M = M(xY") and
N =N(xY).

Proof. The assertion for M follows from the property that RI'y)M belongs to D]rohol(D Xx5/S)
(Corollary 4.32) and has X-support of dimension < k.

For the assertion concerning N, we recall the argument given at the end of the proof of
[FMFS21, Theorem 3]. It is enough to prove that (6.10) holds if N = RT'yyN. We have, by
[MFS13, (3)],

R%mDXxS/s (M, N) =~ R%mQXXS/S (DN, DM).

As N has Dy g/g-coherent cohomology and is supported on ¥ x S, we have
RfJ-ComDXxS/S(DN, (DM)(xY)) = 0.

Furthermore, DM being regular holonomic, so is RI'y1(DM) by Corollary 4.32, as well as
M’ := DRI [y|(DM). Finally, applying once more [MFS13, (3) and (1)], we obtain

R}Com@XXS/S(M, N) =~ RHompy ¢ (M, N),

with dim Supp y H'M’ < k for any j, so the latter complex is S-C-constructible by (6.6)d’k71. O

1455

https://doi.org/10.1112/S0010437X23007224 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007224

L. FioroT, T. MONTEIRO FERNANDES AND C. SABBAH

Step 3: reduction to the case where M is of D-type. We take up the notation of the proof
of Proposition 4.27, so that f: X’ — X is a projective morphism inducing a biholomorphism
X'\D = Z~ZnNY, and we set § = dim X’ — dim X.

LEMMA 6.12. Let M, N be regular holonomic D x g/g-modules such that M = M(+Y"). Then
Rf*Rﬂ'fom@X,Xs/S(Df*M, pf*N) ~ RHomp, g (M, N).
Proof. There is a natural morphism of adjunction (cf. [Kas03, Theorem 4.33(1)])
Rf.RHomp,, (o f M, pf*N) — R%mDXXS/S(Df*Df*M[é]’ N).

We note that pf*M,pf*N are f-good. Therefore, this morphism is a quasi-isomorphism.
Furthermore, the natural adjunction morphism p, fip f*M[6] — M already used in the proof of
Proposition 4.27 is an isomorphism if M = M(xY). g

xS/S

Step 4: the case where M is of D-type along a normal crossing divisor. Recall Definition 4.23
and Proposition 4.26. From step 3, we are reduced to proving (6.10) in the following setting.

(6.13) We have dimS =d, dim X =k, M ~ E; is of D-type along a normal crossing divisor
D cC X, and N =N(xD).

As the assertion is local, we can assume that (Er,V) = (EG|X*xS7 @) as in (4.17) for some
Og-coherent module G. We denote by r > 0 the generic rank of G as an Og-module. The case
r = 0 means that G is a torsion Og-module.

Let us consider X, S, D with dimS =d > 1,dimX =k > 1 and D is a divisor with normal
crossings in X . We argue by induction on r. For that purpose we consider, for r > 0, the following
assertion.

(6.6)d7k774 For any such X,S, D, the property (6.6)6“6_1 holds, as well as (6.6)d7k if M is of

D-type with Ef, = qu*xs and G being Og-coherent of generic rank < r, and N being
regular holonomic satisfying N = N(xD).

Then, proving (6.13) amounts to proving (6.6),; . for any r > 0, according to Lemma 6.11.
LEMMA 6.14. If (6.6),_, holds, then:

(1) (6.6), 0 holds;
(i) ifr > 1 and if (6.6),, . holds for any G which is Og-locally free and any N = N(xD), then
(6.6) 4, holds.

Proof. The first point follows from Lemma 6.7. In order to prove the second point, we choose
(locally on S) a projective modification 7 : S” — S as in Proposition 4.16. As the cones of the
natural morphisms N — Rm,7*N and Rm,L7*N — R, m*N are S-supported in dimension < d,
Lemmas 6.7 and 2.16 imply that (6.6) holds for M, N on X x S if it holds for L7*M, L7*N on
X x §'. Furthermore, Li7*M, Li7*N are also S’-supported in dimension < d if j # 0, so, by the
same argument, (6.6) holds for M, N if it holds 7*M and 7*N. Lastly, by Lemma 6.7, we can
replace 7*M and 7*N with their quotient M', N’ by their S’-torsion subsheaves. Note that we
still have N’ = N’(xD) and M’ is of D-type with corresponding Ej, isomorphic to EG/| xS
where G’ is p'~!Ogr-locally free by the choice of m. The assumption in point (ii) therefore implies
that (6.6) holds for any G of generic rank r, as desired. O

Step 5: induction on the generic rank of M. We use the same notation as in step 4 of the
proof of Theorem 4.15.
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LEMMA 6.15. Assume that (6.6),,_, holds. Then (6.6),, , holds.

Proof. Assume M is of D-type with Fp = Eq x+xg and G being Og-coherent and of generic
rank one, and let N be regular holonomic with N = N(xD). By a projective modification we can
assume that G is Og-locally free of rank one. Then, by Proposition 4.25(i), we have M = Eg.

The matrix of the relative connection V on EG in some local Og-basis of G writes
dXXS/S®Id+Zf:1 a;(s)dz;/z; ® Id. Let us denote by Nz~% the Oxyxg-module N(xD) for
which we add to the connection the relative 1-form —Zle ai(s)dz;/z; ® Id. Then Nz™¢ is
also regular holonomic, according to Corollary 4.35. As M = M(xD) and N = N(xD), they
also are Dy, g/5(xD)-modules and, as recalled before Corollary 4.35, the functor («)z® is an
auto-equivalence of Mod(D x » 5/5(*D)). Therefore, we have

RHompy ,¢(M,N) = RHomp, o o0y (M, N)
~ RHomp, o (=p)(Mz™% Na™)
= RHomp, ¢¢(Ma™% Na™%).
Furthermore, Mz~% ~ (Oxxs(*D),dxxg/s). As DR(Nz~*) is S-C-constructible (cf. [MFS13,

Theorem 3.7]) and RJ{omQXXs/s ([Oxxs(xD)/Oxxs], Nx~%) also by (6.6)d,k_1, we conclude that
R}COmDXXs/S (M, N) belODgS to DE-c(p_loS). !

LEMMA 6.16. Let us assume that (6.6),, . ; holds (r > 2). Then (6.6),, . holds.

Proof. Let us assume that r > 2. Together with the assumptions of (6.13) in step 4, we can now
assume that G is Og-locally free of finite rank r (Lemma 6.14) and thus, by Proposition 4.25(i),
M =~ (Eg, @) We argue in a way similar to that in step 4 in the proof of Theorem 4.15(iii).

If each endomorphism A;(s) occurring in the connection matrix of V is scalar, i.e., of the
form «;(s)1d, then Lemma 6.15 allows us to conclude, by obvious reduction to rank one, the
proof of (6.6) for M = (Eg, @) and N as previously.

We can thus assume that some endomorphism A;(s), say Ai(s), is not scalar. We use the
notation of step 4 in the proof of Theorem 4.15(iii), in particular (4.21) and (4.22). Recall that
we consider the composition § —— ¥ -%» S, with ¥ := {det(a; Id —A4;(s)) =0} and 7: S’ — %
is a resolution of singularities.

Recall also that we set G’ =ker(a;Id —Ajocom) C (0 om)*G and we consider the exact
sequence 0 — G' — (o om)*G — G"” — 0. By construction and assumption, we have 1 < kG’ <
rk G and thus rkG” < rk G.

By applying the induction hypothesis (6.6),, ._; to G',G", we deduce that

RHomqp (L(oom)*™M, L(o o 7)*N)

XxS8’/s!
belongs to D}é_c(p_l(‘)g), hence so does its pushforward by o o w. Thus,

RHomp, o oM, R(oom).L(oom)™N),

belongs to D2 (p~'Og) by Lemma 2.16.
The cones of the natural morphisms

R(oom)L(com)*N — R(ocom)(com)*N, (cdom)(com)* N — R(ocom)(oconm)" N

and

00N — (0 om) (o om)* N
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are supported on X X o(Sing(X)). Therefore,
RHomn, o, s (M, (0 0m)(0 0 1)*N) € Do(p~'Os).

Recalling (cf. (4.21)) that locally 0.Oxxy is Oxxs-free of rank dego, o.0*N, which is
isomorphic to 0,0xxs ®oy,¢ N, is regular holonomic. In addition, according to (4.22), N
is a direct summand of o,0"N. Therefore, RHomo, o (M, N) is a direct summand of
RHompy ¢ (M, 0.0*N), thus again by (6.6),_,, RHomop, ¢ (M,0.0"N) is an object of
D2 .(p~'Os), hence the same holds true for RHomp, o o(MN). O

This lemma concludes step 5, therefore the proof of (6.6),;, and thereby that of Theorem 2. [
As a consequence of Theorem 2 we can now generalize Proposition 4.26.

THEOREM 6.17. Let Y be a hypersurface in X. Then the category of Dy, g/g-modules of
D-type along Y is equivalent to the category of S-locally constant sheaves on X* x S with finite
rank, under the functor £ — L = H°DR(L|x+xg) with quasi-inverse L — RHZ (jiD'L)[—dx].

Proof. Let us prove that the second functor takes values in the category of modules of
D-type along Y. Let L be an S-locally constant sheaf on X* x S of finite rank. As, by
[FMFS21, Proposition 2.6] (valid without any restriction on dim ), RHY (jiD'L) is localized
along Y, and regular holonomic by Theorem 2, hence D x , 5/5(*Y")-coherent, it remains to prove
that RHY (jiD'L)[—dx] is in degree zero and that RHY (jiD'L)[—dx]|xxs =~ Ox*xs ®plog L.
The first assertion follows by the usual Nakayama-type argument. The second assertion fol-
lows from [MFS19, Corollary 3.24] (valid without any restriction on dim.S), which shows that
RHS. (D'L)[~dx] = Ox+x5 @, 1, L.

Let L be a Dx,g/g-module of D-type along Y with the associated S-local system L,
that is DR(L)|x+xs ~ L; we have a natural morphism DR(L) — j.L. By Corollary 4.33,
L is regular holonomic. According to Lemma 5.16, DR(RH% (jiD'L)[—dx]) ~ j.L, thus, by
Theorem 2, there exists a natural morphism of localized regular holonomic Dy g/s-modules
L — RH% (jiD'L)[—dx], which has to be an isomorphism because that is the case on X* x §. [
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Appendix: Complements
The aim of this appendix is twofold:

e to prove Proposition 5.4, thus correcting the statement of [MFS19, Proposition 3.5] (namely,
in contrast to [MFS19, Proposition 3.5], the resolution in Proposition 5.4 may be not bounded
below); and

e to correct and complete the contents of [FMFS21, §1.2.2].
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Taking into account these corrections, the main results in both articles remain valid.
Furthermore, for the sake of completeness, we give a detailed proof of Lemma 5.14, by
following the same strategy as in [KS96, Theorem 4.4].
In the following, we use the notation Oy for Cy ® Og, for any open set V' C S. Recall that,
for 2, open in X and V, V’ open in S, for any Og-module G, we have:
] Hompg(los(@g X Oy, Carxyr ®p;{1G) ~ F(Q X V;p)_(lG) ifQcQandV C V/;
o if Qx VN XV =2, then Hom, 1, (Ca X Oy, Carxyr 2 pxG) = 0.

We consider the family § = Sx x 8g of open sets W =U x V of X x S, where:

(i) U is connected open subanalytic relatively compact in X;
(ii) V is open and relatively compact in S.

This family satisfies the conditions of [KS96, (A.7) and (A.8)], because each point of X x §
has a fundamental system of neighborhoods consisting of open sets in §, and the intersection of
two open sets of § is a finite union of elements in 8.

Note that for any W7 = Uy x Vi, Wy = Us X Vo € § we have

T(Wi;py Ov,) =T(Vi;0v,)  if Uy C U,

0 otherwise.

I(W1; Cw, @ px' Og) = { (A.1%)

DEFINITION A.2. In a similar way to [KS96, § A.2], we define:

o Ax = Modyrc(py Os);
e Px the category whose objects 20 = (W; = U; x V;);er consist of locally finite families of open
subsets of 8, and whose morphisms are described in a way similar to that of [KS96, § A.2],

Homp (20, 0') = [] ( @ TUx Vz';p}los)>,
i€l \ jeJ|WiDW;
where 2" = (W} = U} x V))je;
e in the following we write simply A, P in order to keep the notation clean; the additive functor
L:P — A given by

L(20) = @ Cy, KOy, = B(Cw, ® px'0g),
il il

and, for 20, W' € P, for ¢ € Homp (2, W), L(p) is given by the natural morphism
I'(U; x Vi;py'0g) — T(U; x Vi;Cy, R Oy,) = T(Wy; py' Os)
for each ¢ € I, j € J such that W; C W;; we remark that L is a faithful functor;
e the additive bi-functor H : P°? x A — Ab given, for 20 € P and F' € A, by

H(W,F) = [[ T(U; x Vi ),
el
where, following the notation of [KS96, Appendix A.1], Ab denotes the category of abelian
groups;
o agyp: H(W, F) — Homp;(los (L(20), F) given by the restrictions

HP(Ui XVi;F) — H F(Uz X V;,F) = Homp}los <®CU1 &OVZ,F>
i€l el el
For a morphism u in P let us denote by kerw (respectively, imu) the kernel (respectively,

the image) of L(u) as a morphism in A.
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An object F' of A is called P-coherent [KS96, Appendix A.1] if there exist 20 € P and an
epimorphism L(20) — F in A and if, for any f € H (20, F'), there exist 20” in P and a morphism

g: 20" — W such that W % 0 Lo F is exact; that is L9") "9 L@0) “Y) F is exact in A

(and, hence, f o g =0 because L is faithful).
PROPOSITION A.3.

(i) The objects (A,P,L,H,«) as defined previously satisfy Properties (A.1)-(A.4) of [KS96,
§A.1].
(ii) An object of A is P-coherent if and only if it is S-R-constructible.

The proof of Proposition A.3(i), which concerns the ring p)_(l(f)g, essentially reduces that of
[KS96, Proposition A.6], which concerns the ring Og. However, the new ingredient with respect
to [KS96] is the property that any S-weakly R-constructible sheaf F' admits an epimorphism
u: @, (Cy, ®Gy) — F for some locally finite family (Uy) in Sx and some Og-modules Gy,
which can be assumed to be Og-coherent if F' is S-R-constructible. Details are given in the arXiv
version of this paper.

COROLLARY A.4. The category of P-coherent objects is closed under kernels, cokernels, and
extensions in A.

Proof. This is [KS96, Proposition A.1], that we can apply according to Proposition A.3. O

As in [KS96, Appendix], we denote by D~ (P) (respectively, DP(P)) the triangulated category
obtained by taking the quotient of K~ (P) (respectively, K°(P)) with respect to the null system of
complexes 20° in P such that L(20°) is acyclic in A. We denote by D_, (P) the full subcategory
of D™ (P) of objects 20° such that L(20°) has P-coherent cohomologies.

On the other hand, we denote by D_, (A) (respectively, DY (A)) the full subcategory of
D™ (A) (respectively, DP(A)) whose objects have P-coherent cohomologies, i.e., according to

Proposition A.3(ii), are S-R-constructible. We also denote by Dy ;. (P) the full subcategory of
D~ (P) of objects 20° such that L(20°) € D2, (A).

coh

In this context, [KS90, Proposition 8.1.4] holds with a similar proof and provides functorial
isomorphisms, for any F in A, any 0 € A and any z € |o|:

GO’(F) = pU(O’)*(F|U(O')><S) = F’{x}xSa RkpU(a)*(F|U(o)><S) =0 Vk=>1 (A5)
The proofs of [KS90, Theorem 8.1.10 and 8.4.5(i)] can then be adapted to the relative setting

by replacing everywhere the functor I'(U(c),«) with py(e)«(s|(s)), yielding that the natural

inclusion functor DP(A) — DEV-R-C (p;(IO s) is an equivalence by providing an explicit quasi-inverse

denoted there by R3. We deduce an equivalence

Doyn(A) = DR (Mody.rc(px' Os)) =~ DR_.(px' Os).

The following proposition, which is a consequence of [KS96, Theorem A.5] and the properties
explained previously, corrects [FMFS21, Proposition 1.6].

PROPOSITION A.6. The natural functor
L:D_

coh

(P)— D_,

coh

(A)

is an equivalence of categories which induces an equivalence of categories (still denoted by L for
brevity)

L : Dy o, (P) = Dp.c(px'0s).
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Proof of Proposition 5.4. We identify D, (P) with its essential image in D, (A), which is

coh
thus equivalent to DH'%_C(p;(l(DS), according to Proposition A.6. By definition, the objects K* in
this essential image satisfy the property described in Proposition 5.4. ([l

Remark A.7. In (5.13) we defined the natural transformation g : pf, TH3-(s) — TH{ (Rfi(s))
between functors from Dﬂ%_c(p;(los) to Db(DyXS/S). Due to Proposition A.6 we get
(by composing with L) a natural transformation

pwolL :pfe TH?{(L(')) - TH%(RJC*(L(')))

between functors from D, . (P) to DP(Dy s/s)- We now extend it, by relaxing the coherency

condition, to a natural transformation between functors from DP(P) to D®(Dy s/s)- Recall that
we denote by f both maps X — Y and X xS =Y x 5. Let W =U x V € § and consider the
family {WW}. By adjunction we have

f_lRf*((CW) = f_lRf*((CU) X Cy,
and thus
F'RI(Cw ®px'0s) ~ (f ' Rf.(Cy) B Cy) @ px'Os.

As f7'Rf.(Cy) is a bounded complex with R-constructible cohomologies, it is quasi-isomorphic
to a bounded complex whose entries are locally finite sums €, ; Cy, where each U; € Sx
(cf. [DGS11, Proposition A.1]). Therefore, the complex f~'Rf.L({W?}) belongs to the essen-
tial image by L of a complex in Db(P). The same property then holds for any 20 € P instead of
{W} and then for any bounded complex 23° € D"(P).

It is then meaningful to define ppgpe): nfs THS (L(20%)) — THY (Rf.(L(20°)) as the
composition of

ofs THS (L(20°)) — o fu THE (f 7' R.L(20%))
and
Nrs.pert) = ofs THS (f 7' RE L)) — THY (Rf.L(2W")),
because all complexes on which TH? is applied are bounded complexes.

Proof of Lemma 5.14. The morphism pup being defined, checking that it is an isomorphism is
a local question on Y x S. If F' € D%_C(p;(IOS) has non-zero cohomologies only in the interval
[a,b], the complexes pf, TH3 (F) and TH{ (Rf.F) can have non-zero cohomologies only for
indices belonging to a finite interval I = [-b — m, —a + n] for suitable m,n € N only depending
on dim X and dim Y. Thus, it is enough to show that H/(ur) is an isomorphism for any j € I. In
view of Proposition 5.4, we can replace F with a bounded complex K’* =0 — K~ — K* with
N > —a +m + n such that K* = L(20°) for some 20°* € KP(P). Thus, we obtain a distinguished

triangle K~N[N] — L(20°) - F =5, and both #7,, f, TH5 (KN [N]) and H’ THS (KN [N))
vanish for j € I. Hence, for any j € I,

90 fo THY (F) = 9Up f, THY (L(2")),
H THY (RS F) = HI THY (Rf, L(20°)),
hence we are reduced to proving that, for any j € Z, the morphism
H (npam)) : Hp fo THY (L(2W*)) — 3 THY (Rf.L(20°))

(defined in Remark A.7) is an isomorphism.
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Let (y,s) € Y x S. Let Qy be a relatively compact subanalytic neighborhood of y. By the
assumption on f we can find an open relatively compact subanalytic neighborhood Qx of
f71Qy N Suppy F. By restricting to Qx x S, we can reduce to study the case of Cyy ®p)_(1(‘)s,
for some W = U x V € 8. By the assumption on f, we have an isomorphism of functors

Ry v (Rfs(s)) =~ Rf«(RT xxv(e)).
Thus, we have isomorphisms
Rf. THY (Cy B (Cy ® 0g)) — Rf. R xxy THY (Cy K Oy)
= RI'yyyvRf, THS (Cy X Og).
Similarly,
THY (Rf.(Cu R (Cy © O5))) — TH{ (Rf(Cy) B (Cy © 05)))
— RI'yxy THY (Rf.(Cy) ¥ O).

Therefore, we are led to proving the statement for F = Cy X Og.

We now follow the proof of [KS96, Theorem 4.4] which contains the statement in the absolute
case. We decompose f by the graph embedding so that we first assume that f : X — Y is a closed
embedding and next we treat the case of a smooth morphism.

Step 1. Let us assume that f : X — Y is the embedding of a closed manifold. As in the proof
of [FMFS21, Proposition 2.4], let us start by proving the statement for F’ = Czys ® p~'0Og,
with Z = X \ U. The conclusion for U will easily follow by functoriality, by considering the
exact sequence

0 — Cyxs — Cxxs — Czxs — 0.

We have THi(F/) ~I'zxs(Dbxxs) regarded as a Dy, »g,/s-module. We note that the local
structure of distributions supported by a submanifold entail that

Pxxs(Dyxs) = fi(Dyx/5 @Dy, /s Dbxxs).
Then

0 [l zxs(Pbxxs) = fi(Dyx/5 @Dy, 55 Tzxs(Dbxxs))
~ T yus(Dbyxs) = THom(fCxxx,Dbyxs) =~ THy (f(Czxs ® p ' Og)).

Step 2. Let us now assume that f is smooth and f x Idg is proper on the support of F.
The question being local we may assume as in part (ii) of the proof of [KS96, Theorem 3.5] that
f: X =Y xR — R is the projection. Recall that F' ~ Cyyg ®p;(1(‘)s. Let U = Z. Then Z is
closed subanalytic in X and the assumption entails that f|z is proper.

As in step 1, we prove first the statement for Cz/y g ® p)}l(f)s where Z' is an arbitrary closed
analytic subset of X such that f|z is proper. By (3.9) of Lemma 3.6 in [KS96] we may assume
that for any z € Y, Z’ N f~!(z) is a closed interval in R containing 0. With this assumption we
have

THom(RfiCyzixs, Dby xs) = THom(Cyzyxs, Dby xs) = Lpzyxs(Dbyxs).

Noting that Dy x/g is Dy yg/s-isomorphic to Dy, g/5/Dyxg/50, where t is the coordinate
in R, the result follows by the exact sequence

[ -dt

0,
0 — fl2xs(Dbxxs) —— fil7/xs(Dbxxs) ——— L piz1xs(Dbyxs) — 0
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proved in [Kas84, Lemma 4.5]. The isomorphism for U follows by functoriality considering the
exact sequence

0 — Cpyxs — Czxs — Cswpyxs — 0. O

Remark A.8. In order to prove that the morphism 7p: L7*Rpgs(F) — Rpgi L*(F) of
Lemma 5.7 is an isomorphism for any F € DF’R_C(p)}lOS), we may use the same argument of
Lemma 5.14 to reduce to the case F' = Cyyxy ®p)_(1(‘)5.
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