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ON THE EMBEDDING PROBLEM FOR
DISCRETE-TIME MARKOV CHAINS

MARIE-ANNE GUERRY,∗ Vrije Universiteit Brussel

Abstract

When a discrete-time homogenous Markov chain is observed at time intervals that
correspond to its time unit, then the transition probabilities of the chain can be estimated
using known maximum likelihood estimators. In this paper we consider a situation when
a Markov chain is observed on time intervals with length equal to twice the time unit
of the Markov chain. The issue then arises of characterizing probability matrices whose
square root(s) are also probability matrices. This characterization is referred to in the
literature as the embedding problem for discrete time Markov chains. The probability
matrix which has probability root(s) is called embeddable.
In this paper for two-state Markov chains, necessary and sufficient conditions for
embeddability are formulated and the probability square roots of the transition matrix
are presented in analytic form. In finding conditions for the existence of probability
square roots for (k × k) transition matrices, properties of row-normalized matrices are
examined. Besides the existence of probability square roots, the uniqueness of these
solutions is discussed: In the case of nonuniqueness, a procedure is introduced to identify
a transition matrix that takes into account the specificity of the concrete context. In the
case of nonexistence of a probability root, the concept of an approximate probability root
is introduced as a solution of an optimization problem related to approximate nonnegative
matrix factorization.
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1. Introduction

A discrete-time Markov chain is considered for which the t th outcome corresponds with
the state in which the process is in at time t . The length of the time interval between two
subsequent time points t and t + 1 will be referred to as the time unit of the Markov chain.
A characterization of the Markov chain is then given by its transition matrix P = (pij ) of
transition probabilities between the states on a time interval with unit length.

Based on observations regarding the number of objects in each of the states and the number
of transitions between the states, the transition matrix of a Markov chain can be estimated. The
transition probability pij (for i, j ∈ {1, . . . , k}) from state i to state j in one period of time can
be estimated by the maximum likelihood estimator ([1, p. 113]):

p̂ij =
∑T −1

t=0 nij (t, t + 1)∑T −1
t=0 ni(t)

. (1.1)
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On the embedding problem for discrete-time Markov chains 919

The notation ni(t) refers to the number of objects in state i at time t ; and nij (t, t +1) stands for
the number of objects in state i at time t that are in state j at time t + 1 (for t = 0, . . . , T − 1).

The estimations for the transition probabilities according to (1.1) are based on data for the
observable variables regarding time intervals that correspond to the time unit of the Markov
chain. There is considered to be a lack of data in the case where there are no observations
available for some variables or where there are no observations available regarding the time
unit of the Markov chain. In previous work, the problem of a lack of observations for some
variables is dealt with by building a hidden Markov model or a Markov switching model (see [5],
[6], and [10]) that takes into account latent sources of heterogeneity [13]. A lack of observations
regarding the time unit of the Markov chain occurs when, for example, data is only available
on time intervals with length 1 and when it is preferable to have estimations for the transition
probabilities for intervals with length 0.5. In that situation there is a lack of data of the type
which is dealt with in the present paper. The approach is related to the embedding problem
as considered in [11] and for continuous time Markov models in [12]. In the present paper
embeddability is examined in more detail for discrete-time Markov chains.

An answer to problems of this kind can be useful; among other fields, one example is
manpower planning. A Markov model for manpower planning takes into account internal
transitions (e.g. promotions), outgoing flows (i.e. wastage) as well as incoming flows (i.e.
recruitments) [1]. For a company with known recruitment probabilities for each of the personnel
categories and with quantified promotion probabilities from one personnel category to another
regarding a period of one year, the expected number of members in each category can be
computed year after year. If management is interested in having an idea of the number of
members after half a year, taking into account that for motivational reasons it is preferable to
have equal promotion probabilities for each semester (i.e. under time homogeneous conditions),
then the methodology presented in this paper provides some interesting insights. Namely for
this company the promotion probabilities for a semester can be quantified, and the expected
number of members after each 6 months can be computed.

The paper is organized as follows. In Section 2 the embedding problem of the discrete-time
Markov chain is formulated in terms of probability square roots of its transition matrix. In
Section 3, for two-state Markov chains, necessary and sufficient conditions for embeddability
are formulated and the probability square roots of the transition matrix are presented in analytic
form. In finding conditions for the existence of probability square roots for (k × k) transition
matrices, properties of row-normalized matrices are examined. Based on the Jordan matrix of
a transition matrix, square roots and their properties are examined. In Section 4 the concept of
approximate probability square roots is introduced. In the case where a transition matrix has
no probability square roots, approximate probability square roots can be considered that are the
solutions of a presented optimization problem. In Section 5 the situation is discussed in which
there exists more than one probability square root for a transition matrix. In answer to the
identification problem, a desirable probability square root can be selected based on presented
criteria. Section 6 provides an illustration.

2. Transition probabilities for a time interval with length 0.5

Let us denote the matrix of the transition probabilities, for a time interval with length 1,
by P (1) = (pij (1)) and the matrix of the transition probabilities, for a time interval with
length 0.5, by P (0.5) = (pij (0.5)). Under the assumption of time homogeneity, the following
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relation holds

pij (1) =
∑
m

pim(0.5)pmj (0.5) for all i, j ∈ {1, . . . , k}.

Or in matrix notation
P (1) = P (0.5) × P (0.5).

In the case where observations are available for time intervals with length 1, the transition
probabilities pij (1) can be estimated using (1.1), resulting in the matrix P̂ (1) = (p̂ij (1)). We
could expect that the estimations for pij (0.5) then satisfy

P̂ (1) = P̂ (0.5) × P̂ (0.5).

So, in the case where no observations are available for a time interval with length 0.5, the
problem is to find a transition matrix P̂ (0.5), compatible with the matrix P̂ (1) that is estimated
based on observations for time intervals with length 1. Therefore, the goal is to find a probability
matrix A satisfying P̂ (1) = A × A, i.e. a square root A of the matrix P̂ (1) within the set of
probability matrices

� =
{
M = (mij ) ∈ R

k×k

∣∣∣∣
k∑

j=1

mij = 1 and mij ≥ 0 for all i, j ∈ {1, . . . , k}
}
.

In this way the stated question can be seen as an embedding problem. The embedding
problem for continuous time Markov processes is discussed in detail in [11] and [12]. Deciding
whether the observed matrix P̂ (1) can be represented in the form A2 for some probability
matrix A is a version of the embedding problem for discrete-time Markov chains. In this paper
the discussion of the embedding problem is focused on discrete-time Markov chains and square
roots of probability matrices. The question is whether a Markov chain with time unit 0.5 exists
that is compatible with P̂ (1). When this is the situation, further goals are to find a procedure
to determine solution(s) for the transition matrix with respect to time unit 0.5 and to identify
a unique solution taking into account the specificity of the concrete context. Those phases in
the approach are respectively called the embedding, the inverse, and the identification problem
[11].

3. Probability square roots

A square root A ∈ � of the probability matrix P̂ (1) provides a Markov chain with time unit
0.5 that is compatible with P̂ (1). In what follows, such a matrix A will be called a probability
square root of P̂ (1).

Definition 3.1. For a probability matrix P , a probability square root A of P is a probability
matrix A that is a square root of P .

For a (2 × 2) probability matrix

P =
(

c 1 − c

d 1 − d

)
,

the probability matrix A = (aij ) is a probability square root of P if and only if

a2
11 + (1 − a11)a21 = c,

a11a21 + (1 − a21)a21 = d.
(3.1)
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In Theorem 3.1 some results are formulated concerning probability square roots for the
category of (2 × 2) probability matrices. Depending on the values of the (2 × 2) probability
matrix P , there can either exist no probability square roots, exactly one probability square root,
or two probability square roots.

Theorem 3.1. Let P be a (2 × 2) probability matrix,

P =
(

c 1 − c

d 1 − d

)
.

• If c < d, there does not exist a probability square root A of P .

• If c = d , there exists exactly one probability square root A of P , namely the probability
matrix A = (aij ) with a11 = a21 = c = d.

• If c > d and 1 − c + d �= 0, there exists at least one probability square root A of P ,
namely the probability matrix A = (aij ) with

a11 =
√

c − d(1 − c) + d

1 − c + d
, a21 = d

1 − √
c − d

1 − c + d
.

Moreover, in the case where

a11 =
√

c − d(c − 1) + d

1 − c + d
, a21 = d

1 + √
c − d

1 − c + d

are both elements of [0, 1], there exists a second probability square root A = (aij ) of P .

• If c > d and 1 − c + d = 0, both(
1 0
0 1

)
and

(
0 1
1 0

)

are probability square roots of P .

For a proof of Theorem 3.1, see Appendix A.
Note that three possible situations effectively occur: a (2 × 2) probability matrix can have

no, exactly one, or two, probability square roots. For example, for the case c > d,

P =
(

5
8

3
8

1
2

1
2

)

has two probability square roots and

P =
(

11
27

16
27

1
9

8
9

)

has one probability square root.
Theorem 3.1 implicitly provides, for a (2×2) probability matrix P , a necessary and sufficient

condition for there to be a probability square root: for a (2 × 2) probability matrix

P =
(

c 1 − c

d 1 − d

)
,
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there exists a probability square root of P if and only if c ≥ d. This condition can be formulated
equivalently in terms of the trace of P = A × A : Tr(P ) = Tr(A × A) ≥ 1.

In the study of necessary conditions for a (k × k) probability matrix to have a probability
square root A, the following theorem can be useful since it formulates some properties of
Tr(A × A).

Theorem 3.2. Within the set of (k × k) probability matrices A, for a critical point the equality
Tr(A × A) = 1 holds.

Proof. For a (k × k) probability matrix A = (aij ), we have

Tr(A × A) =
∑

l

(A × A)ll

=
∑

l

[
(all)

2 +
∑
i �=l

aliail

]

=
∑

l

[(
1 −

∑
i �=l

ali

)2

+
∑
i �=l

aliail

]
.

In this way, Tr(A × A) is expressed as a function f of the (k − 1)2 elements ars , with r �=
s ∈ {1, . . . , k}, of the probability matrix A. Whereby a critical point of f satisfies, for all
s �= r ∈ {1, . . . , k},

∂f

∂ars

= −2

(
1 −

∑
i �=r

ari

)
+ asr + asr = 0.

Therefore, for a critical point of f , we have
∑

i �=r ari + asr = 1 for all s �= r ∈ {1, . . . , k}.
Consequently, for r ∈ {1, . . . , k} and s �= r , all the elements asr are equal to asr = 1 −∑

i �=r ari = arr . This results in the fact that the critical point of f corresponds with a matrix
A having all the elements of the rth column equal, let us say equal to a1r . This property gives
rise to

Tr(A × A) =
∑

l

[
(a1l )

2 +
∑
i �=l

a1ia1l

]
=
∑

l

a1l

[
a1l +

∑
i �=l

a1i

]
=
∑

l

a1l = 1,

which proves the theorem.

As specified in [7], for the specific class of (3×3) and (4×4) state-wise monotone probability
matrices A, Tr(A × A) ≥ 1 holds, resulting in the necessary condition Tr(P ) ≥ 1 for a
probability matrix P of order (3 × 3) or (4 × 4) to have a state-wise monotone probability
square root. However, without requiring any restriction on the probability root(s), Tr(P ) ≥ 1
is not a necessary condition for P to have a probability root: P can have a probability root A,
while Tr(P ) < 1, as is the case for

P =
⎛
⎝0.17 0.66 0.17

0.17 0.17 0.66
0.66 0.17 0.17

⎞
⎠ and A =

⎛
⎝0.1 0.1 0.8

0.8 0.1 0.1
0.1 0.8 0.1

⎞
⎠ .

Before examining sufficient conditions for the existence of probability square roots for a
(k × k) probability matrix, some properties are discussed for matrices of the following less
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restrictive set

� =
{
M = (mij ) ∈ R

k×k

∣∣∣∣
k∑

j=1

mij = 1 for all i ∈ {1, . . . , k}
}

⊃ �.

Definition 3.2. A row-normalized matrix is a matrix with elements in each row adding up to
one.

In what follows the notation H0 refers to the subset of vectors of R
k with elements summing

up to 0,

H0 =
{
v = (vi) ∈ R

k

∣∣∣∣
k∑

i=1

vi = 0

}
.

Lemma 3.1. For λ �= 1, u ∈ R
k , n ∈ {1, 2, 3, . . .}, and P a (k × k) row-normalized matrix,

u × (P − λI )n ∈ H0 ⇒ u ∈ H0

holds.

For a proof of Lemma 3.1, see Appendix A.
In what follows the terminology ‘eigenvector’ refers to a left eigenvector: the (1 × k) vector

E is an eigenvector of the (k × k) matrix P associated with the eigenvalue λ if and only if
E × P = λP .

Corollary 3.1. For a row-normalized matrix, all eigenvectors and generalized eigenvectors
associated with an eigenvalue λ �= 1 are elements of H0.

Proof. For the row-normalized matrix P , a (generalized) eigenvector E associated with the
eigenvalue λ satisfies E×(P −λI )n = 0 for some n ∈ {1, 2, 3, . . .}. Therefore, E×(P −λI )n

is an element of H0 and according to Lemma 3.1 the (generalized) eigenvector E itself is an
element of H0. This proves the corollary.

As examined in previous work (e.g. [4]), it has been proved, under some conditions, that for
a (k ×k) row-normalized matrix P = T −1 ×J ×T with Jordan matrix J , the transformations
fm : � → � : T −1 × J × T → T −1 × Jm × T (for m ∈ R) do not affect the row sums of the
matrix.

Lemma 3.2. For a (k × k) row-normalized matrix P = T −1 × J × T with Jordan matrix J ,
the row sums of T −1 × Jm × T (as far as this matrix is defined) do not depend on the value of
m ∈ R.

For a proof of Lemma 3.2, see Appendix A.

Lemma 3.3. For a (k × k) row-normalized matrix P = T −1 × J × T with Jordan matrix J ,
A = T −1 × J 1/2 × T (as far as this matrix is a defined element of R

k×k) is a row-normalized
matrix for which P = A × A.

Proof. It is clear that for A = T −1 × J 1/2 × T we have P = A × A.
Moreover, since P is a row-normalized matrix, the row sums of T −1 × J × T are equal

to 1. According to Lemma 3.2, the row sums of T −1 × J × T and T −1 × J 1/2 × T are equal.
Therefore, the matrix T −1 × J 1/2 × T is row-normalized as well.
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Corollary 3.2. For a (k × k) diagonalizable row-normalized matrix P = T −1 × D × T , with
all eigenvalues positive and real, A = T −1 × D1/2 × T is a row-normalized matrix for which
P = A × A.

Proof. Since, for a diagonalizable matrix P , the Jordan matrix is a diagonal matrix D with
diagonal elements that are the eigenvalues of P , Lemma 3.3 is applicable for J = D and,
therefore, this proves the corollary.

In what follows the more restrictive set � of probability matrices is examined. In particular,
properties of square roots of probability matrices are discussed.

Lemma 3.4. Each (2 × 2) probability matrix P is diagonalizable.

For a proof of Lemma 3.4, see Appendix A.

Theorem 3.3. For a (k × k) probability matrix P = T −1 × J × T , with Jordan matrix J and
with all eigenvalues positive and real, the following holds.

• In the case where k = 2, the matrix T −1 × J 1/2 × T is nonnegative.

• In the case where k > 2, the matrix T −1 × J 1/2 × T is not necessarily nonnegative.

Proof. For the case where k = 2, according to Lemma 3.4, the Jordan matrix of the (2 × 2)

probability matrix P is a diagonal matrix D. In the situation that λ1 = λ2 = 1, the diagonal
matrix D equals the identity matrix I2×2 and, consequently, T −1×D1/2×T = T −1×T = I2×2
is a nonnegative matrix.

In the situation where λ1 = 1 and λ2 �= 1, let us denote by E1 = (a b) an eigenvector
of P associated with the eigenvalue λ1 = 1. According to Corollary 3.1 it is known that
E2 = (1 − 1) is an eigenvector of P associated with the eigenvalue λ2 �= 1. Consequently,
P = T −1 × D × T with

T =
(

a b

1 −1

)
, T −1 = 1

a + b

(
1 b

1 −a

)
, D =

(
1 0
0 λ2

)
.

This results in

P = T −1 × D × T = 1

a + b

(
a + bλ2 b − bλ2
a − aλ2 b + aλ2

)
,

T −1 × D1/2 × T = 1

a + b

(
a + b

√
λ2 b − b

√
λ2

a − a
√

λ2 b + a
√

λ2

)
.

Since the eigenvalues of the probability matrix P = (pij ) are assumed to be real, according
to the Perron–Frobenius theorem, the eigenvalue λ2 is less than 1. Therefore, p12 ≥ 0 implies
that b/(a + b) ≥ 0 and from p21 ≥ 0 it is known that a/(a + b) ≥ 0. Consequently,
(T −1 × D1/2 × T )12 ≥ 0 and (T −1 × D1/2 × T )21 ≥ 0. Moreover,

√
λ2 ≥ λ2 and therefore

we have

(T −1 × D1/2 × T )11 ≥ (T −1 × D × T )11 = p11 ≥ 0,

(T −1 × D1/2 × T )22 ≥ (T −1 × D × T )22 = p22 ≥ 0,

which proves that the elements of T −1 × D1/2 × T are all nonnegative.
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In the case where k > 2, for the diagonalizable (3 × 3) probability matrix

P = T −1 × D × T

=
⎛
⎝1 0 0

1 −1 0
1 −3 1

⎞
⎠×

⎛
⎝1 0 0

0 1
4 0

0 0 1
36

⎞
⎠×

⎛
⎝1 0 0

1 −1 0
2 −3 1

⎞
⎠

=
⎛
⎜⎝

1 0 0
3
4

1
4 0

11
36

24
36

1
36

⎞
⎟⎠

with eigenvalues 1, 1
4 , and 1

36 all positive and real, it holds that the matrix

T −1 × D1/2 × T =
⎛
⎜⎝

1 0 0
1
2

1
2 0

− 1
6 1 1

6

⎞
⎟⎠

is not nonnegative. This proves that, for k > 2, there exist (k × k) probability matrices
P = T −1 × J × T with all eigenvalues positive and real and with T −1 × J 1/2 × T a matrix
that is not nonnegative.

Theorem 3.4. For a (k × k) diagonalizable probability matrix P = T −1 × D × T , with all
eigenvalues positive and real, the following holds.

• In the case where k = 2, the matrix T −1 × D1/2 × T is a probability square root of P .

• In the case where k > 2, the matrix T −1 × D1/2 × T is a row-normalized square root
of P .

Proof. According to Corollary 3.2, for a diagonalizable (k × k) probability matrix P =
T −1 × D × T , with all eigenvalues positive and real, T −1 × D1/2 × T is a row-normalized
square root of P .

Moreover, in the case where k = 2, according to Theorem 3.3, T −1 × D1/2 × T is a
nonnegative matrix. Therefore, T −1 × D1/2 × T is a probability square root of P , which
proves the theorem.

4. Approximate probability square roots

From the previous results it is clear that, depending on the elements of the probability matrix
P , there can either exist no, exactly one, or more than one, probability square root A of P .

In the case where no probability square root exists, we may ask the following question.
Based on what method can a probability matrix B be determined such that B × B results in a
‘good’ approximation of P ? In this paper, this problem will be referred to as the problem of
finding approximate probability square roots and will be tackled by an approach inspired by
nonnegative matrix factorization.

Nonnegative matrix factorisation deals in general with the following type of problem: given
a nonnegative matrix U , find nonnegative factors V and W such that U ≈ V × W (see, [3]
and [8]). The quality of the approximation is hereby expressed in terms of a cost function,
constructed by using a measure of distance between two matrices. For example, the square of
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the Euclidean distance between the matrices R = (rij ) and S = (sij ) is given by

‖R − S‖2 =
∑
i,j

(rij − sij )
2.

In the more specific context of finding approximate probability square roots, this approach
results in the following formulation: given a probability matrix P of order (k × k), find a
probability matrix B of order (k × k) such that P ≈ B × B. That is, find a (k × k) matrix
B = (bij ) solution of the following optimization problem

‖P − B × B‖2 = min ‖P − A × A‖2
A∈�

subject to the constraints∑
j

bij = 1 and bij ≥ 0, for all i, j.

This formulation gives rise to an optimization problem of the Karush–Kuhn–Tucker type, [2].
A solution B of this optimization problem results in an approximate probability square root
of P .

5. Selecting a desirable (approximate) probability square root

The concepts of probability square root and approximate probability square root are in-
troduced in order to find, based on the matrix P̂ (1), estimations for the number of objects
in each state after each time interval of length 0.5. In the case where P̂ (1) has more than
one (approximate) probability square root, the observations are consistent with more than one
discrete-time Markov chain with time unit 0.5. The problem then is how to select from within
this set of alternatives. Singer and Spilerman have dealt with this identification problem in
general, [11].

By Theorem 3.1 it is proved that there exist (2 × 2) probability matrices that have more
than one probability square root. The nonuniqueness of probability square roots is a more
general fact affecting certain probability matrices of any order (k × k), k ≥ 2: for Q a (2 × 2)

probability matrix having two probability square roots Â �= Ã and for I the identity matrix of
order ((k − 2) × (k − 2)), the block diagonal matrix P = diag(Q, I ) is a (k × k) probability
matrix having at least two probability roots, namely diag(Â, I ) and diag(Ã, I ). Since, for each
k ≥ 2, there exist (k × k) probability matrices with more than one probability square root, it is
worth dealing with the identification problem, [11].

In the context of this paper, in the case where more than one (approximate) probability
square root exists, the question is whether all the square roots result in desirable evolutions
of the expected number of objects in each of the states. The criterion for selecting the most
desirable probability square root can vary depending on the phenomenon that is modelled by
the Markov chain. We could prefer to have an evolution in time of the vector n(t) = (ni(t))

such that, for each state i, there is the smallest possible fluctuation of ni(t), or, moreover, the
evolution of ni(t) decreases or increases monotonically. It could be preferable that the expected
number of objects after half a time period, n(t)×P̂ (0.5), is ‘somewhere in between’ the starting
vector n(t) and the expected vector after one period of time n(t) × P̂ (1). This condition can
be expressed in terms of the intervals

Ii = [min{(n(t))i , (n(t) × P̂ (1))i}, max{(n(t))i , (n(t) × P̂ (1))i}]
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as follows:
(n(t) × P̂ (0.5))i ∈ Ii for all i ∈ {1, . . . , k}.

Such a formulated condition can be, for example, useful in modelling a manpower system
by a Markov chain with states corresponding to homogeneous grades in the company. It
could be preferable, for each of the grades in the organization, that the fluctuations in the
number of members are limited, or, moreover, that the number of members increases/decreases
monotonically.

In the case where there does not exist a (approximate) probability square root for which
this property holds, the criterion to select P̂ (0.5) can then be formulated in terms of an
optimization problem, namely: P̂ (0.5) is a (approximate) probability square root of P̂ (1)

minimizing the maximum value, over the different states i ∈ {1, . . . , k}, of the discrepancy
between the expected number of members (n(t)× P̂ (0.5))i and the elements of the interval Ii ,
i.e. P̂ (0.5) is a (approximate) probability square root minimizing

max
i∈{1,...,k} min

x∈Ii

|(n(t) × P̂ (0.5))i − x|.

6. Illustration

For a two-state manpower system with, at time t = 0, the number of members given by
n(0) = (60 42) and with the number of transitions from t = 0 to t = 1 equal to n11 = 45,
n12 = 15, n21 = 21, and n22 = 21, the estimated transition matrix for a time interval with
length one is

P̂ (1) =
(

3
4

1
4

1
2

1
2

)
.

According to Theorem 3.1, this transition matrix P̂ (1) has two probability square roots, namely

A1 =
(

1
2

1
2

1 0

)
and A2 =

(
5
6

1
6

1
3

2
3

)
.

For the probability square roots A1 and A2 the corresponding evolution of the expected number
of members is as follows:

n(0) = (60 42), n(0) × A1 = (72 30), n(1) = n(0) × A2
1 = (66 36), · · ·

n(0) = (60 42), n(0) × A2 = (64 38), n(1) = n(0) × A2
2 = (66 36), · · · .

The probability square root A2 results in a monotonic evolution of the expected number of
members that is, as discussed in Section 5, probably desirable in a manpower system context.

7. Generalizations

In this paper the discussion of the embedding problem for discrete-time Markov chains is
restricted to time intervals with length 0.5. For a Markov chain with time unit 1 and transition
matrix P (1), the study is focused on finding a Markov chain with time unit 0.5 that is compatible
with P (1). The stated problem and the results are therefore formulated in terms of probability
square roots P (0.5). The idea of finding a transition matrix for a Markov chain with time unit
equal to half the length of the time intervals on which there are observations available, can be
generalized to the problem of finding a transition matrix P (1/m) for m ∈ N0 of a Markov
chain with time unit 1/m and that is compatible with P (1).
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Appendix A.

Proof of Theorem 3.1. In the special case of a probability matrix

P =
(

c 1 − c

d 1 − d

)

satisfying 1 − c + d = 0, the matrix P equals(
1 0
0 1

)

and has two probability square roots, namely(
1 0
0 1

)
and

(
0 1
1 0

)
.

In the special case of a probability matrix A = (aij ) with a11 = 1, the matrix A can only
be a square root of a probability matrix of the form

P =
(

1 0
d 1 − d

)
.

Under these conditions, and according to (3.1), P has exactly one probability square root
namely the probability matrix A = (aij ) with a11 = 1 and a21 = 1 − √

1 − d.
The further reasoning can be restricted to the situation of a probability matrix

P =
(

c 1 − c

d 1 − d

)

satisfying 1 − c + d �= 0 and a probability square root A = (aij ) with a11 �= 1: the system
(3.1) results in the following quadratic equation in a11

(1 − c + d)a2
11 − (2d)a11 + c2 − c + d = 0 (A.1)

with discriminant D = 4(1 − c)2(c − d).
Therefore, in the case where c < d, no probability square root exists for the matrix P . In

the case where c = d , the matrix P has exactly one probability square root A. According to
(3.1), this matrix A satisfies a11 = a21 = c = d. In the case where c > d, the equation (A.1)
results in the following solutions for a11:

a11 =
√

c − d(1 − c) + d

1 − c + d
and a11 =

√
c − d(c − 1) + d

1 − c + d
.

According to (3.1), a21 can be expressed as a21 = (c − a2
11)/(1 − a11) resulting respectively in

a21 = d
1 − √

c − d

1 − c + d
and a21 = d

1 + √
c − d

1 − c + d
.

Since both a11 = (
√

c − d(1 − c) + d)/(1 − c + d) and a21 = d(1 − √
c − d)/(1 − c + d)

are elements of [0, 1] there exists at least one probability square root A = (aij ) of P , which
proves the theorem.
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Proof of Lemma 3.1. The property formulated in Lemma 3.1 can be proved by induction.
For a row-normalized matrix P and u ∈ R

k satisfying u × (P − λI ) ∈ H0, we have∑
j

[u × (P − λI )]j =
∑
j

∑
i

uipij − λ
∑
j

uj

=
∑

i

ui

∑
j

pij − λ
∑

i

ui

=
∑

i

ui(1 − λ)

= 0,

which implies that
∑

i ui = 0 in the case where λ �= 1 and proves the property for n = 1.
Let us now assume that the property holds for n − 1. If u × (P − λI )n ∈ H0 then also

u× (P −λI )n−1 × (P −λI ) ∈ H0. Consequently u× (P −λI )n−1 ∈ H0 (since the property
holds for n = 1) and therefore u ∈ H0 (since the property holds for n − 1). This proves the
lemma.

Proof of Lemma 3.2. For a probability matrix P the eigenvalue λ = 1 is a semisimple
eigenvalue, i.e. the Jordan blocks are of order (1 × 1) [9]. Therefore, the Jordan blocks
corresponding to λ = 1 result in the (r × r) identity matrix when the algebraic multiplicity
of λ = 1 equals r . Let us consider the order of the Jordan blocks such that the first r blocks
correspond to λ = 1. In this way the Jordan matrix, as well as its powers, satisfies Jls = δls

(for all s ∈ {1, . . . , r} and l ∈ {1, . . . , k}), where the notation δ stands for the Kronecker delta.
The matrix T is then a matrix with, in the first r rows, eigenvectors associated with λ = 1 and
in each other row a (generalized) eigenvector associated with an eigenvalue different from 1.
Therefore, for all i ∈ {1, . . . , k}, we have∑

j

(T −1 × Jm × T )ij =
∑
j

∑
l

∑
s

(T −1)il(J
m)lsTsj

=
∑

l

(T −1)il

[s=r∑
s=1

(Jm)ls
∑
j

Tsj +
s=k∑

s=r+1

(Jm)ls
∑
j

Tsj

]

=
∑

l

(T −1)il

s=r∑
s=1

δls

∑
j

Tsj + 0,

according to Corollary 3.1, which proves the lemma.

Proof of Lemma 3.4. For a (2 × 2) probability matrix

P =
(

c 1 − c

d 1 − d

)
,

the discriminant of the characteristic equation can be expressed as � = (1 − c + d)2. In the
case where � > 0, the matrix P has two different eigenvalues λ1 = 1 and λ2 �= 1 so that
P = T −1 × D × T with

D =
(

1 0
0 λ2

)
.
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In the case where � = 0, c − d = 1 holds. This condition is only fulfilled for the probability
matrix

P =
(

1 0
0 1

)
,

which is diagonalizable. This proves the lemma.
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