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Duality in finite dimensional
complex space

C.H. Scott and T.R. Jefferson

The idea of duality is now a widely accepted and useful idea in

the analysis of optimization problems posed in real finite

dimensional vector spaces. Although similar ideas have filtered

over to the analysis of optimization problems in complex space,

these have mainly been concerned with problems of the linear and

quadratic programming variety. In this paper we present a

general duality theory for convex mathematical programs in finite

dimensional complex space, and, by means of an example, show that

this formulation captures all previous results in the area.

1 . Introduction

Over the last decade, considerable effort has been directed towards

optimization problems over a complex space. This work was initiated by

Levinson [7] who extended some basic theorems of linear inequalities to

complex space and derived a duality theory for complex linear programs.

Subsequently, these results were extended to polyhedral cones in complex

space by Ben-Israel [3] and Abrams and Ben-Israel [2]. Hanson and Mond

[5], Mond [8], and Jain and Saxena [6] have analysed complex programs

involving quadratic and square root functions. A general theory of

duality, in the sense of Wolfe [77], has been given by Abrams [7].

Another approach to duality in mathematical programming based on the

conjugate transform [4] has become established in the past few years. This

has been exhaustively pursued in finite dimensional real space by

Rockafellar [70] and Peterson [9]. Our purpose is to extend duality theory
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in the sense of Peterson to complex space. We obtain a completely

symmetric duality theory for convex programs in complex space. This

duality theory has a great advantage over that of Wolfe in that the primal

variables do not appear in the dual. As an example of the theory we

consider a convex program with an objective function containing both

differentiable and non differentiable parts subject to quadratic

constraints. All previously studied programs in complex space as listed

above are particular cases of this theory.

2. Convexity

DEFINITION 1. S <=. Cn is a convex set if for all x , xg € S and

for all X with 0 5 X £ 1 ,

Xx + (l-X)x2 € S .

DEFINITION 2. S c C* is a convex cone if for all x±, x^ € S and

for all X > 0 , X2 2 0 ,

^ l + X ^ 2 € S •

DEFINITION 3 . S* , the polar of a convex cone S , i s

{y € Cn | Re<#, x> > 0, for a l l x € S\ .

DEFINITION 4. A pair of function g and convex set G c C231, [g, G],

i s convex with respect to the closed convex cone S i f for any z and

s 2 , and 0 5 X 5 1 ,

Xgiz1, I1) + (l-\)g{z2, z2) - g\\zX+{\-\)zZ, Xi^i-X)!2) € S ,

where G c Q = {(u 1 , w2) € C2"} , w2 = w1 , g : G •+ (f , and S c <f .

DEFINITION 5. The pair [Re g, G] i s convex with respect to a closed

convex cone T in if if , for any z and z , and 0 5 X 5 l ,

X Re g{zl, z1) + (l-X)Re g{z2, z2) - Re ^ ( X s ^ d - X ) ^ 2 , X^+d-XJS2) € T ,

where G c Q c C and Be g : G •*• if .
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For the remainder of the paper we will consider g such that

Re g : G •* R and T = R+ .

DEFINITION 6. The convex function [g{z, z), G] convex with respect

to convex cone S is called closed if the set

{(s, 3, a) | a = g{z, i)+6, 6 S-S, (s, I) € G}

is closed. We shall assume all functions are closed.

If g is convex with respect to S and Re 5 = R , then we can

associate a set of dual points with each pair (sn, zA € G and convex

function \_g : G •* C ] , called the subgradient.

DEFINITION 7. The subgradient set of g{z, z) at [z , i j is

defined by

{(y, ̂ ) | Re ^(3Q, iQ]-Re<j/, 3Q-3> S Re g(z, z), for all (s, i) E c) .

We denote this by ^d^r,, *J

Moreover if g is convex with respect to S and Re S = R we have

the following definition of a convex conjugate transform for complex

spaces. We will assume the condition that Re S = R for the remainder of

the paper.

DEFINITION 8. The conjugate transform of a function g(z, z)

defined on (s, I) € G , [g{z, z) : G] is [h(y, y) : Hi , where

Re h{y, y) = sup [Re<t/, z>-Re g(z, z)] .
i

Im h(y, y) is the complex conjugate function of Re 7i(j/, y) . Thus

My, y) is analytic in (y, y) . The complex conjugate is known up to a

constant. For uniqueness choose some (z, z) € G and {y, y) * ^9(z, z)

and set

, y) = <J/, 2> - ?(3,

and

B = {(£/, y) I sup Re<J/, 3>-Re
5€

https://doi.org/10.1017/S0004972700007814 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007814


68 C . H . S c o t t and T . R . J e f f e r s o n

The above gives rise to the conjugate inequality-

Re g(z, z) + Re My, y) 2 Re<y , z) for (z, z) i G , (y, y) S H .

This is satisfied at equality for

(y, y) * 93(3, 5) ,

or equivalently

(z, z) € TtMy, y) .

DEFINITION 9. The positive homogeneous extension of a convex

function h is [h (y, y, X), H ] where

sup Re<j/, z) if X = 0 and sup Re<J/, z) < <*> ,

Re ft (#, y, X) = ^ '

Re Xh(y/X, y/X) if X 6 S*\{0} and (y/X, y/X) € E ,

H = {(y, y, X) | sup Re<#, 2> < °°, X = 0}

u {(j/» ̂ , ̂ ) I (i/A, ̂ /^) 5 H , H 5*\{0}} ,

S* is the polar of 5 , the set with respect to which g is convex.

The conjugate transform and its positive homogeneous extension are

both closed convex functions by construction and the properties of analytic

functions.

If [Re g(z, i ) , G] and [Re h(y, y), H] are closed conjugate

functions, we have by construction that

Re g(z, I) + Re h(y, y) 2 Re<J/, z)

for (z, z) f G , (y, y) t H .

The following two lemmas are generalisations of Peterson's work [9] to

complex space.

LEMMA 1. The conjugate transform of [Ee j ( s , i , K) : <ff] for

fixed K € £/*\{0} is [Re <h(y, y) : H] ,where g takes values over U .

Proof. By defini t ion, the conjugate transform of

[Re g (z, z, K) : KG] for fixed K 6 U*\{0] i s given by

(1) s_up [Rety, s>-Re g+(z, z, K) ]

sup [Re<#, 3>-Re <g(z/tc, Z/K)] , since K
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Substituting for the inner product and using Definition 8, equation (l)

gives

1 Re Kh{y, y) with (y, y) € H .

LEMMA 2. The conjugate transform of [Re g {z, z, K) : G+] is the

identically zero function on

Uy, y) I («/. y) t H and My, y)+v € U} .

Proof. The conjugate t ransform of [Re g ( s , 5 , K) : G ] i s given by

(2) sup {Re<v, K>+Re<i/, 2>-Re g {z, i , K ) }

sup [Re<v, K> + sup (Re<i/, s>-Re g ( s , I , K ) } ] .

Explicit evaluation of equation (2) using Definitions 8 and 9, and

Lemma 1, gives a finite value of zero if

My, y) + v € -U .

The primal formulation of a convex mathematical program in complex

space is given below as Program A.

PROGRAM A. $ = inf Re £n(.3n, i j + £ Re g*.[z., i., < .) subject to

v v u • 3 0 3 3

the explicit constraints

g.[z., z.) f -W. , i i I ,

the implicit constraints

{z., z k ) I G . , i l l ,

^r'z3^3] *G+J > d'J -

and the cone condition

U , 2) € X ,

where
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z = z X z X a . ,U % °
G. = [[z .9 i . , K .1 I K . = 0 and s u p Re<w . , z .> < « }

v v v t/ c/ . , £17 xj t/

u {(a., I . , K.) | K € £/*\{0} and (a./K., I . /
v v d v d O d d

a n d

R e g . [ z . , z . , K . ) =

sup Re<i/., z.> i f K . = 0 and

sup Re <!/., 3 .) < <» ,

if K^ € V*\{0) and

In Section 3, we show that the dual problem, Program B, corresponding to

Program A is given by

PROGRAM B. >? = inf Re hQ{yQ, yQ) + £ Re fet^, ^ , X )̂ subject to

the expl ic i t constraints

d d d

the implicit constraints

. , for a l l
f

and the cone condition

where

(y, y) « x* ,

and su]
^ ^

a n d

a n d
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Re h.\y ., y ., X.) =

sup Re<z/., 2.) if X. = 0

and

i f

sup Re <z/., 3 . > <

and

and x* is *^e polar cone of x •

We note that Programs A and B are completely symmetric.

The primal and dual solutions are related toy

z_.,E.)

and

Alternatively we have

In addition, the primal and dual objective functions sum to zero (see

Section 3 for the proof). Hence

$ + ¥ = 0 .

These optimality conditions combined with feasibility conditions on

the primal variables provide us with sufficient information to determine a

primal optimal point from a dual optimal point.

3. Duality theory

From the construction of the conjugate transform and the lemmas of the

previous section we have

Re *0(v
 5 o ) + Re ^ o - v> - R e < v V
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for feasible [zQ, zQ) and {yQ, yQ) ;

z.,y.

f o r f e a s i b l e [z., z . ) , [y y } , and f o r j € J ;

0 + Re hl{yv yit Xi) > Re<z., y.)

for f eas ib le [z^, z^) , {y^, y^\ , and for i € I .

Summing the equal i t ies we get

(3) negQ[z0, i0) + Z^eg+{z.,zd,Kj)

+ Re h [y , y ) + £ Re h.[y., y . , X.) 5 R e < s , y) = 0 ,
i € J ^ t l v

s i n c e ( s , i ) € x a n d ( y , ^ ) € x •

THEOREM. Given Programs A and B are i>o#i consistent and the functions

are closed convex, then

for optimal {z, K) and (y, X) .

P r o o f . By c o n s t r u c t i o n Re g.{zn, i n ) + Y Re g .{z ., I . , K .) i s
U ° ° jTj 0 3 3 3

convex in (z, i, ic) and Re ̂ 0(j/0> yQj + Z
 R e h.\y., y., X.) is convex

in (y, ̂ , A) . Suppose Program B attains its minimum at a point

(j/\ y', X') .

Consider the subgradient of Re hQ[yQ, yQ) + Y,
 R e \^i> ^ » \) a t

t h e p o i n t ( t / 1 , y ' , X') and c a l l i t dh(y', y ' , X') . Now

3 f t ( j / ' , y ' , X1) c Cn X G. X G*. . I f t h e r e e x i s t s
0 i € J l j € J 3

(z, z , K) 6 2h{y', y ' , X') which i s f e a s i b l e ( U , i ) € x) , t h e n t h e l e f t

hand s i d e o f (3 ) i s e q u a l t o z e r o .
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Suppose there does not exist (z, i, K) € dh{y', y' , X') such that

(z, I) € x • Let P(i/', y', X') be the closed convex cone of feasible

directions at («/',£',X'). How 3fc(2/ ', y' , X ') n P(y ', y' , X1) is a

compact convex set and x is a subspace. By the Hahn-Banach Theorem,

there exists a function y such that Re<s, y) = 0 for (3, i) € x and

Re<3, y) < 0 for (2, I, K ) € 3/z(j/\ ̂ ', X') n P{y', y> , X') .

This implies that

Continuity tells us that there exists a small positive a such that

He hQ{yQ, yQ) + Y Re fc+fc, y X )

a t {y'-Hxy, y ' - K x y , X ' + a X ) i s l e s s t h a n a t (y', y ' , X 1 ) , w h i c h c o n t r a d i c t s

t h e o p t i m a l i t y o f ( t / 1 , y ' , X ' ) . T h e r e s u l t f o l l o w s .

4 . Example

Consider the following problem:

( - j

minimize Re y$zHQz+hQz+b+CzAz)
sub jec t t o %I# .3 + h.z + b. € -W. , for a l l i € I ,

•J- ^ "Z* 1,

where H. , i € J u {0} , and /4 are positive semidefinite hermitian

m x m matrices, h. , t E I u (Ol , and b. , t € X u {0} are fixed

column vectors in C and scalars respectively, and W. , i € I , are

convex polyhedral cones. Hence we are minimizing an objective which is

part differentiable and part nondifferentiable subject to a finite number

of quadratic constraints.

Since H. , £ € I u {0} , and A are positive semidefinite hermitian

matrices, they may be decomposed into the product form

H. = D.D. , i € I u {0} ,

^ Is If

and

4 = SB .
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With th i s decomposition, our problem may be cast in the separable form

of Program A as

minimize

subject to %5. z. + 3 . + b. € -W. , for a l l i € I and (2, a) € x ,

rp

where a = [BQ1, ZQ2'
 z

Qy z-[j> •••> s
12' ' ' ' ) a n d 3 t > e l o n g s t o t h e

column space of the n * m matrix [D
Q

h
0
BD-Jl-J)Jl2 " ' • ' ' w n e r e

T denotes the transpose.

For the dual program, Program B, we require the conjugate transform of

quadratic functions, l inear functions, and the nondifferentiable form

(as) . We also require the dual space X* ° f X •

Since a t optimality we have (y, z) = 0 , the polar cone is

X* = { (* , V)

We can now determine the dual program from the detailed prescription

given in Program B. This i s found to be:

minimize M^01V01

subject to A. € W* for a l l i ,

u._ = X.e , for a l l i ,
v-1,2 ^ '

where e is a vector with components of unity.

It is now straightforward to generate the results of previous

researchers by appropriate specification of given matrices B. , A

vectors h. , and scalars b. , i € I u {0} .
1 *•
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