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This study examines the flow of dense granular materials under external shear stress
and pressure using discrete element method simulations. In this method, the material
is allowed to strain along all periodic directions and adapt its solid volume fraction
in response to an imbalance between the internal state of stress and the external
applied stress. By systematically varying the external shear stress and pressure, the
steady rheological response is simulated for: (1) rate-independent quasi-static flow; and
(2) rate-dependent inertial flow. The simulated flow is viscometric with non-negligible
first and second normal stress differences. While both normal stress differences are
negative in inertial flows, the first normal stress difference switches from negative to
slightly positive, and second normal stress difference tends to zero in quasi-static flows.
The first normal stress difference emerges from a lack of coaxiality between a second-rank
contact fabric tensor and strain rate tensor in the flow plane, while the second normal
stress difference is linked to an excess of contacts in the shear plane compared with the
vorticity direction. A general rheological model of second order (in terms of strain rate
tensor) is proposed to describe the two types of flow, and the model is calibrated for
various values of interparticle friction from simulations on nearly monodisperse spheres.
The model incorporates normal stress differences in both regimes of flow and provides a
complete viscometric description of steady dense granular flows.

Key words: granular media, rheology

1. Introduction

Granular flows exhibit several intriguing phenomena that distinguish them from
Newtonian fluids, such as the presence of pressure-dependent arrest and flow onset
(yield) criteria leading to rate-independent and rate-dependent flows, and a dilute gas-like

† Email addresses for correspondence: isriva@lbl.gov, jblechm@sandia.gov

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

81
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4754-3232
mailto:isriva@lbl.gov
mailto:jblechm@sandia.gov
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.811&domain=pdf
https://doi.org/10.1017/jfm.2020.811


907 A18-2 I. Srivastava, L. E. Silbert, G. S. Grest and J. B. Lechman

flow dominated by inelastic particle collisions. A convenient classification defines three
distinct types of granular flows (Forterre & Pouliquen 2008): (1) quasi-static flows;
(2) dense inertial flows; and (3) gas-like collisional flows. The behaviour of the three
types of granular flows is quite diverse and several constitutive models have been proposed
for their description; however, a general constitutive model applicable across all flow
types remains elusive. In this work we focus our attention on the rate-independent and
rate-dependent flows, where the particle contact lifetimes are relatively long, inertia is
important and the material is predominantly dense.

The rate-independent flow regime has been described by various constitutive models,
largely inspired by the principles of solid mechanics and plasticity. Beginning with the
incipient failure hypothesis of the Coulomb yield criterion (Sokolovskii 1965), further
observations of critical state deformation in soils led to the development of several
rigid-plastic and elasto-plastic models based on critical state theory and associated
plasticity (Schofield & Wroth 1968). Recent developments have attempted to include
material anisotropy in granular plasticity by introducing state-dependence of material
stress, often characterized via material texture or fabric (Sun & Sundaresan 2011; Li
& Dafalias 2012; Gao et al. 2014). The rate-independent granular plasticity has also
been characterized by double shearing models (Spencer 1964) that relax the assumption
of homogeneous deformations to explain shear banding along slip planes in granular
materials. Further advances on these models have introduced the concepts of dilatancy
(Mehrabadi & Cowin 1978), work hardening (Anand & Gu 2000) and more recently
fabric anisotropy (Nemat-Nasser 2000; Zhu, Mehrabadi & Massoudi 2006). The reader
is referred to a recent review of various constitutive models of rate-independent regime in
granular flows (Radjai, Roux & Daouadji 2017).

Rate-dependent granular flows were first observed to exhibit quadratic scaling of shear
and normal stress with strain rate at a constant volume (Bagnold 1954), which was later
verified in several experiments and simulations (Pouliquen 1999; Silbert et al. 2001;
Da Cruz et al. 2005; Lois, Lemaître & Carlson 2005). Recently, a Bingham-type μ(I)
rheological model for granular materials at moderate shear rates has been proposed
(Jop, Forterre & Pouliquen 2006), which attempts to connect the rate-independent and
rate-dependent granular flow regimes by introducing pressure as a control variable instead
of volume, although the two can be interchanged based on the one-to-one relationship
between μ and I at moderate shear rates. Here μ is the dimensionless shear stress ratio, and
I is the dimensionless inertial number (described later in the text). A detailed discussion
of such viscoplastic models can be found in a recent review (Goddard 2014).

Although these rheological models have successfully predicted granular flow profiles
in a remarkable number of geometries (MiDi 2004), several rheological effects remain
unexplained, such as surface curvature in free-surface flows (Couturier et al. 2011;
McElwaine, Takagi & Huppert 2012), negative rod climbing effects (Boyer, Pouliquen
& Guazzelli 2011b), anomalous stress profile in Couette flows (Mehandia, Gutam & Nott
2012), and the observation of shear-free sheets in split-bottom Couette flows (Depken et al.
2007). Many of these effects arise from a lack of coaxiality between principal directions
of stress and strain rate tensors in viscometric flows (Alam & Luding 2003, 2005; Rycroft,
Kamrin & Bazant 2009; Weinhart et al. 2013; Saha & Alam 2016; Bhateja & Khakhar
2018; Seto & Giusteri 2018), which is the operating assumption in several constitutive
models. As such, there is a need for higher-order constitutive models that incorporate these
effects to provide better predictions of granular rheology. Furthermore, microstructural
origins of these rheological effects, especially in the dense and quasi-static flow regimes,
remain unclear.
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In this paper, we describe fully stress-controlled discrete element method (DEM)
simulations in both rate-independent and rate-dependent regimes. This simulation method
enables the evolution of all strain degrees of freedom of a fully periodic representative
volume element of granular material in response to external applied shear stress
and pressure. The novelty of this simulation method is fourfold: (1) it naturally captures the
pressure-dependent flow-onset (yield) and flow-arrest phenomena (Srivastava et al. 2019);
(2) by prescribing shear stress rather than shear rate, this method can seamlessly traverse
across rate-dependent and rate-independent regimes of granular flow; (3) by prescribing
pressure rather than solid volume fraction, shear-induced dilation of granular materials
is fully captured; and (4) the fully periodic nature of the simulations is devoid of any
boundary effects, and thus represents the true bulk response of granular materials to
applied stresses. The stress-controlled method is used to simulate shear flows of nearly
monodisperse spheres. A second-order rheological model that does not assume coaxiality
of stress and strain rate tensors is proposed, and the model is calibrated for various values
of interparticle friction from the simulation data. For viscometric flows, the second-order
rheological effects result in non-negligible first and normal stress differences. We provide
microstructural insights into the origin of normal stress differences by analysing a
second-rank contact fabric tensor.

The paper is organized as follows. Section 2 on model and methods describes the
second-order rheological model, introduces the stress-controlled DEM simulation method,
and provides details on the sphere–sphere contact mechanics model and general simulation
parameters. Section 3 provides evidence that the steady flow generated in these simulations
by applying shear stress and pressure is viscometric in nature. Section 4 describes
the calibration of the rheological model based on the viscometric flow data from
DEM simulations. Section 5 describes the normal stress differences measured in these
simulations and their microstructural origins.

2. Model and methods

2.1. Rheological model
In anticipation of the results presented below, we introduce a purely dissipative rheological
framework proposed by Goddard (1984), which was utilized to formulate constitutive laws
for rate-independent and rate-dependent flow in granular materials (Goddard 1986, 2014).
In this framework, stress emerges from dissipation through macroscopic bulk deformation,
which dominates over grain-scale inertial relaxation. This is similar to the dense flow of
granular materials at low inertial numbers, which is of interest here. Furthermore, elastic
effects are ignored, and non-hydrostatic stress components emerge entirely from granular
flow, and are zero when there is no flow. In this framework, the Cauchy stress tensor σ is
given by

σ = η{H} : D, (2.1)

where D is the symmetric strain rate tensor, and η{H} is a positive-definite fourth-rank
tensor adhering to the constraints of a purely dissipative material, i.e. D : η{H} : D > 0,
and is dependent upon the history H of flow, which can be conveniently represented
through a deformation gradient F relative to a reference state. For the specific case of

|D| → 0 corresponding to rate-independent plastic deformation (here, |D| =
√

1
2 D : D),

the stress is given as

σ = μ0{H} : D
|D| , (2.2)
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where μ0{H} is a fourth-rank yield modulus. Therefore, the total stress can be partitioned
into its rate-independent and rate-dependent components as

σ = μ0{H} : D
|D| + η0{H} : D, (2.3)

where η0{H} is a fourth-rank viscosity tensor.
We adapt this rheological framework to model granular rheology through the following

assumptions that will be demonstrated to hold true in the present simulations: (1) the
flow is homogeneous with a constant stretch history (Noll 1962); and (2) the flow
is planar and isochoric, i.e. D is characterized by two dominant eigenvalues and
tr(D) = 0. This dependence is introduced in a frame-indifferent manner to produce a
second-order rheological model that well-describes non-isotropic flow effects observed
in our simulations. With these simplifications, σ can be represented as

σ = pI + η1D + η2

[
D2 − tr

(
D2)
3

I

]
+ η3

[
Ḋ − W D + DW

]

+ κ1
D
|D| + κ2

[
D2

|D|2 − tr
(
D2)

3|D|2 I

]
, (2.4)

where

Ḋ = ∂D
∂t

+ v · ∇D (2.5)

is the material derivative of D, v is the material velocity, and
◦

D = Ḋ − W D + DW
represents the frame-indifferent corotational derivative of D (Bird & Hassager 1987). The
isotropic pressure is defined as p = 1

3 tr(σ ), and I is the unit tensor. The deviatoric stress,
σ − pI , depends on D = 1/2(∇v + ∇vT) and a vorticity tensor W = 1/2(∇v − ∇vT).
Here, γ̇ = |D| is the magnitude of the strain-rate tensor. The second, third and fourth terms
in (2.4) represent rate-dependent contributions to the total stress that are characterized
by the flow functions η1(γ̇ , p) and η2(γ̇ , p) and η3(γ̇ , p), and are similar in form to a
second-order description of non-Newtonian fluids using Rivlin–Erickson tensors (Rivlin
1955). The fifth and sixth terms in (2.4) represent rate-independent contributions to the
total stress that are characterized by plastic yield-like functions κ1( p) and κ2( p), which
generally depend on the flow history. The pressure dependence of the flow functions is
similar in spirit to the implicit constitutive theory of Rajagopal (2006). In this work we
focus on simple shear flows, but in general, the coefficients η1, η2 and η3 depend on tr(D2)

and tr(
◦

D
2
), which is important when modelling non-viscometric flows (Giusteri & Seto

2018). Similarly, the coefficients κ1 and κ2 depend on tr(D2)/|D|2, which can be calibrated
from anisotropic models of granular yield criterion. Such anisotropy was demonstrated in
simulations (Thornton & Zhang 2010; Li & Dafalias 2012), resulting in deviations from
the Drucker–Prager-like isotropic yield criterion that is implicit in the μ(I) rheology (Jop
et al. 2006). Furthermore, the rheological model can be extended to multiaxial flows that
are observed in practice (Cortet et al. 2009) by introducing additional dependence of flow
functions on tr(D3) and tr(

◦
D

3
) (Wang 1965; Larson 1985).

In this paper, we will consider steady homogeneous planar shear flow of granular
materials resulting from a constant applied external shear stress and pressure, in which
the memory of the flow has decayed and the deformation history is unimportant. In such
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steady homogeneous flows Ḋ = 0, indicating that the eigenvectors of D are uniform in
space and time, and local material rotation arises entirely from flow vorticity (Schunk &
Scriven 1990; Giusteri & Seto 2018). Consider a uniform velocity gradient ∇v with the
following viscometric form:

∇v =
⎡
⎣0 2γ̇ 0

0 0 0
0 0 0

⎤
⎦ , (2.6)

for flow along x direction, velocity gradient along y direction and vorticity along z
direction, and where tr(D3) = 0. In such viscometric flows, η1, η2 and η3 represent the
standard viscometric flow functions for non-Newtonian fluids (Coleman, Markovitz &
Noll 1966) corresponding to shear stress, second normal stress difference and first normal
difference, respectively. Similarly, κ1 and κ2 represent the analogous rate-independent
flow functions. Correspondingly, for such viscometric flows, the stress tensor takes the
following general form:

σ =
⎡
⎣σxx σxy 0

σxy σyy 0
0 0 σzz

⎤
⎦ , (2.7)

where σxx /= σyy /= σzz. Previous simulations on sheared granular flows have proposed
a similar form for the stress tensor, such as in granular flows down an incline (Silbert
et al. 2001; Weinhart et al. 2013), free surface flows (McElwaine et al. 2012) and in
the shear-free sheets model (Depken, Van Saarloos & Van Hecke 2006) that proposed
σxx = σyy /= σzz for quasi-static granular flows in a split-bottom Couette cell (Depken et al.
2007).

The rheological model reduces to the well known μ(I) relationship (Jop et al. 2006)
for sheared granular flows when the second-order coefficients η2,3 = 0 and κ2 = 0. In this
case, the stress tensor is assumed to be coaxial with the strain rate tensor, and the two are
related to each other by a scalar relationship,

σ = pI + μ(I)p
D
|D| , (2.8)

where the stress ratio μ = |σ − pI|/p and the inertial number I = |D|a/( p/ρ)0.5, for an
average particle diameter a and material density ρ. The μ(I) function is related to the flow
coefficients of the rheological model in (2.4) through

μ(I) = 1
p

(η1|D| + κ1) . (2.9)

2.2. Constant stress simulations
Steady sheared flows can be simulated by applying a constant strain rate or a constant stress
on the granular material. Previous simulations on granular flows have imposed a constant
strain rate either through a solid wall-driven flow (Da Cruz et al. 2005; Koval et al. 2009;
Kamrin & Koval 2014; Salerno et al. 2018) or by shearing the periodic simulation domain
(Campbell 2002, 2005; Otsuki & Hayakawa 2011; Sun & Sundaresan 2011; Srivastava
et al. 2019). Wall-driven granular flows often result in flow localization near the walls
(Shojaaee et al. 2012b), which requires careful calibration of wall properties to extract the
bulk rheological properties (Shojaaee et al. 2012a; Schuhmacher, Radjai & Roux 2017).
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While a constant strain rate at the periodic boundaries can produce a viscometric flow field
without walls (Campbell 2002, 2005; Peyneau & Roux 2008; Sun & Sundaresan 2011),
it often results in large shear stress fluctuations (Peyneau & Roux 2008), especially in
the quasi-static flow regime, which makes it challenging to calibrate the rate-independent
part of granular rheology. Additionally, it was recently demonstrated that near the critical
yield stress, granular flows are highly intermittent with a stochastic flow-arrest transition
behaviour (Srivastava et al. 2019). As such, a constant stress boundary condition is able to
provide an accurate prediction of the rheology near the yield stress (Srivastava et al. 2019).
In this work, we simulate granular flows by applying a constant shear stress at the periodic
boundaries, in which material is allowed to flow or not depending on the magnitude of
applied stress. We will demonstrate that this boundary condition results in a well-defined
viscometric flow.

Granular flows can also be simulated either at constant volume (isochoric) (Campbell
2002; Otsuki & Hayakawa 2011; Sun & Sundaresan 2011) or by imposing a constant
normal stress (Campbell 2005; Sun & Sundaresan 2011; de Coulomb et al. 2017;
Srivastava et al. 2019). Granular materials dilate upon shearing, resulting in significant
differences in the rheology between the two conditions (Campbell 2005). When the
applied normal stress is constant, the material can dilate or compact upon shearing
(depending on the initial condition) towards a ‘critical state’ solid volume fraction in
the quasi-static regime (Schofield & Wroth 1968; Srivastava et al. 2019). Furthermore,
granular materials exhibit shear-induced dilation in the inertial regime. Isochoric granular
flows are not commonly observed in practice, and various experiments often naturally
correspond to a constant normal stress condition, such as in free surface flows (Jop et al.
2006; McElwaine et al. 2012) or flows in Couette cells (Lu, Brodsky & Kavehpour 2007;
Dijksman et al. 2011). Furthermore, a constant volume condition precludes the possibility
of simulating granular flows near the yield stress in the quasi-static regime. If the solid
volume fraction is set lower than the critical solid volume fraction at the onset of flow, then
a μ(I) frictional rheology cannot be extracted as the shear stress will go to zero (rather than
its yield threshold value) as the strain rate goes to zero. Similarly, if the volume fraction is
set greater than its critical value, the flow is prohibited for any applied stress in the limit of
rigid grains. In this work, we simulate granular flows at a constant applied pressure where
the material is free to adapt its volume. A constant pressure condition is different from the
case where all the normal stress components are specified equal to each other, as simulated
previously in Peyneau & Roux (2008). This allows an efficient estimation of normal stress
differences that will be described later in the text.

To simulate the evolution of a granular system under constant external stress and
pressure, we utilize a modularly invariant adaptation (Shinoda, Shiga & Mikami 2004)
of the Parrinello–Rahman method (Parrinello & Rahman 1981) for molecular dynamics.
This method was originally introduced to simulate the bulk properties of molecular
systems in an isoenthalpic–isotension ensemble, including any phase transitions induced
by the applied external stress (Parrinello & Rahman 1981). Such stress-controlled
simulation methods adapted from molecular dynamics were previously implemented to
study jamming (Smith et al. 2014) and creep (Srivastava & Fisher 2017) in granular
packings, and recently to analyse flow-arrest transition in granular flows (Srivastava et al.
2019). However, this is the first study that utilizes these methods to simulate steady
frictional granular flows under external shear stress in order to extract their constitutive
rheological behaviour. Simplified versions of such methods were also previously reported
in simulations of non-equilibrium simple shear flows of Lennard-Jones fluids at a constant
pressure and temperature to estimate their viscosity (Evans & Ely 1986; Hood, Evans
& Morriss 1987), and recently for simulating the rheology of colloidal suspensions
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H0 H1 H2

pext x y

z

τext

FIGURE 1. Schematic of the simulation method: from left to right, the three images represent
the configurations of a granular system at three consecutive simulation times during steady flow,
while subjected to an external pressure pex t and shear stress τex t. The triclinic periodic cell
boundaries (in black) at three times are, respectively, represented by matrices H0, H1 and H2.
The triclinic periodic cell volume is almost equal at all three times in steady flow. The dotted
lines in the global coordinate system represent directions into the plane.

(Wang & Brady 2015). The simulation framework described here can robustly simulate
more complex flows beyond simple shear.

In the present simulations, a collection of particles contained within a three-dimensional
triclinic periodic cell is allowed to evolve under the application of a constant external
stress tensor σ ex t, which is constrained by (i) (1/3)

∑
σex t,ii = pex t; (ii) σex t,ij = τex t for

i, j = 1, 2 and 2, 1; and (iii) σex t,ij = 0 for all other Einstein indices i /= j, as shown in
the schematic in figure 1. Because the traction at the boundaries of the periodic cell is
prescribed, the periodic cell itself is allowed to dilate (or compact) and deform its shape
in all possible ways, thus simulating the true bulk response of the granular material under
external stress and pressure. The triclinic periodic cell is represented by a cell matrix H
which is a concatenation of the three lattice cell vectors that define the periodicity of the
system. The cell matrix is constrained to be upper-triangular and the internal stress tensor
is symmetrized to prevent any spurious cell rotations, which was a problem in the original
Parrinello–Rahman method. This was achieved differently using a positive-definite metric
tensor in another variant of this method reported previously by Souza & Martins (1997).
Upon the application of σ ex t, the equations of motion for N particle positions and momenta
{ri, pi}, and the periodic cell matrix and its associated momentum tensor {H, Pg} are given
by

ṙi = pi

mi
+ Pg

Wg
ri, (2.10a)

ṗi = f i −
Pg

Wg
pi −

1
3N

Tr
[
Pg
]

Wg
pi, (2.10b)

Ḣ = Pg

Wg
H, (2.10c)

Ṗg = V (σ int − Ipex t) − HΣHT, (2.10d)

where f i is the net force on a particle i, V is the variable volume of the periodic cell, I is
the identity tensor and Wg is a ‘fictitious’ mass associated with the inertia of the periodic
cell. The stress quantities σ int and Σ are defined below.
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In the original Parrinello–Rahman method for molecular systems, the fictitious
mass is suggested to be set as Wg = NkBT/ω2

g for an efficient sampling of the
isoenthalpic–isotension ensemble (Martyna et al. 1996). Here, kB is the Boltzmann
constant, T is intended temperature of the ensemble and ωg is the characteristic phonon
frequency of the system. Such suggestions do not apply to the athermal flow simulations
considered here. Analogously, the fictitious mass in the present case can be set as
Wg = Nkna2/ω2

g, where kn is the elastic constant associated with particle contacts (see
§ 2.4), a is the mean particle diameter and kna2 set the energy scale of system. The choice
of ωg controls the magnitude of stress fluctuations during steady granular flow, but it
does not affect the rheology of flow within some upper and lower bounds of ωg, as was
established by testing various values of ωg. A convenient value is ωg = 2.2

√
m/kn , where

m is the mean particle mass. Smaller values of ωg resulted in larger stress fluctuations,
whereas larger values of ωg took longer simulation times to achieve steady flow. Similar
analyses of the effect on ωg on stress-controlled simulations were previously presented
for non-equilibrium flow of Lennard-Jones fluids (Evans & Ely 1986; Hood et al. 1987).
A comprehensive numerical analysis of the effect of ωg on stress-controlled simulations
of granular flows is a part of our ongoing work.

The first two terms of the right-hand side of (2.10d), respectively, represent the
imbalance between bulk internal stress of the granular system σ int and external applied
stress, which drives the motion of the periodic cell. The components of the bulk internal
stress σ int are calculated as (Walton & Braun 1986; Da Cruz et al. 2005)

σαβ,int = 1
V

∑
i

[∑
j /= i

1
2

rα,ij fβ,ij + miv
′
α,iv

′
β,i

]
, (2.11)

where rij and f ij are the branch vector and the force between two contacting particles i
and j. The fluctuating velocity v

′
i of particle i is defined as the difference between velocity

vi of particle i and mean shearing field velocity, such that v
′
i = vi − (∇v)x i, where ∇v

is bulk velocity gradient, and x i is the position of particle i. Hereafter, the subscript ‘int’
will be dropped while referring to the internal state of the stress of the granular system. In
(2.10d), the tensor Σ is defined as (Shinoda et al. 2004)

Σ = H−1
0 (σ ex t − Ipex t) H T−1

0 , (2.12)

where H 0 is some reference state of the periodic cell, and J−1HΣHT represents the ‘true’
measure of the external deviatoric stress, which is defined with respect to the reference
state (Souza & Martins 1997). Here J = det[F ] is the Jacobian of the deformation gradient
F , which is defined as

F = HH−1
0 . (2.13)

It is evident from (2.10d) that a difference between the internal stress and external
applied stress drives the perpetual motion of the periodic cell during steady flow. In the
case where the internal and external stress balance each other, the motion of the cell
eventually stops because the external stress is not sufficient to continually drive the motion
of the cell, thus enabling the precise identification of the yield stress of the granular
system (Srivastava et al. 2019). As a result, this implementation of a constant external
stress on the granular system prescribes the second Piola–Kirchoff measure of the external
stress, or equivalently the thermodynamic tension (Souza & Martins 1997). In the present
simulations, the reference state is updated to the current state at the end of every time step
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of integration of the equations of motion, in order to minimize the deviation of internal
strain energy from work done by the external stress. All the simulations are performed
using the large-scale molecular dynamics software LAMMPS (Plimpton 1995).

2.3. Bulk deformation
Upon applying an external pressure pex t and shear stress τex t to a granular system, all the
components of the macroscopic internal stress tensor σ evolve independently with time.
Correspondingly, the triclinic periodic cell, represented by the matrix H , also evolves
with time from bulk volumetric and shear deformation. Figure 1 shows a schematic of the
evolution of deformation of a triclinic periodic cell in steady flow as it is subjected to a
constant external shear stress and pressure. The states of the triclinic periodic cell H are
stored at every simulation time step (such as H 0, H 1 and H 2 shown in figure 1), and are
used to compute the bulk velocity gradient in the periodic system, as described below.

Consider the position r(t) of a particle at a simulation time t within the periodic cell,
defined with respect to an origin (typically, one of the corners of the periodic cell). Its
reduced coordinates s(t) can be defined by

r(t) = H(t)s(t), (2.14)

such that 0 < s(t) < 1. The periodic tiling of the space by the triclinic cell H(t) implies
that a spatial coordinate r

′
(t) = H(t)[s(t) + Δ] represents the periodic image of r, where

Δ is a vector of integers. The velocity v(t) = ṙ(t) of the particle is defined such that

v(t) = Ḣ(t)s(t) + H(t)ṡ(t), (2.15)

where the first term represents the contribution from the bulk periodic cell deformation
and the second term represents the fluctuating non-affine velocity. Consequently, a bulk
velocity gradient can be defined as ∇v(t) = ∇r(Ḣ(t)s(t)). Upon substituting (2.14) we get

∇v(t) = Ḣ(t)H−1(t). (2.16)

2.4. Contact mechanics
In the present simulations, frictional spherical particles interact only upon contact. The
contact forces are modelled using a spring and a dashpot along with a static yield criterion
to model contact friction. This model was first developed by Cundall & Strack (1979),
and since has been tested and implemented in various granular flow simulations (Silbert
et al. 2001; Campbell 2005; Rycroft et al. 2009; Sun & Sundaresan 2011). Two contacting
particles {i, j} of diameters {ai, aj}, masses {mi, mj}, at positions {ri, rj} with velocities
{vi, vj} and angular velocities {ωi,ωj} are considered to be in contact if δij = 1

2(ai + aj) −
|rij| > 0, where rij = ri − ri is the vector connecting their centroids; these quantities are
tracked at every time step as they evolve from particle collisions or affine particle motion
caused by triclinic cell deformation, as described in (2.10a). The contact normal force f nij

and tangential force f tij on particle i are given by

f nij = knδijnij − γnmevnij, (2.17a)

f tij = −ktutij − γtmevtij, (2.17b)

where kn,t and γn,t are contact stiffness and damping constants, and me = mimj/(mi + mj)
is the effective mass. The corresponding force on particle j is given by Newton’s third law
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such that f ji = f ij. The unit normal along the axis of contact is given by nij = rij/|rij|, and
vnij and vtij are, respectively, the normal and tangential components of the relative velocity
vij = vi − vj given by

vnij = (
vij · nij

)
nij, (2.18a)

vtij = vij − vnij − 1
2

(
ωi + ωj

)× rij. (2.18b)

An elastic displacement utij representing shear in the tangential direction is tracked during
the lifetime of a contact, and it evolves according to the following ordinary differential
equation:

dutij

dt
= vtij −

(
utij · vij

)
rij

|rij|2 , (2.19)

with utij = 0 at the initiation of the contact.
Tangential friction between two contacting particles is modelled by a static yield

criterion | f tij| < μs| f nij|, which is always satisfied by limiting the tangential shear
displacement utij. The particle coefficient of sliding friction μs is a measure of its surface
roughness, and significantly impacts the rheology of granular flow. The normal and
tangential viscous damping at a contact are controlled by the coefficients of restitution
en,t = exp(−γn,ttc/2), where tc = π(2kn/me − γ 2

n /4)−1/2 is the collision time between two
contacting particles (Silbert et al. 2001).

2.5. Simulation details
The contact stiffness between particles kn and kt is set equal to each other. The normal
damping constant γn = 0.5/tc and the tangential damping constant γt = 0.5γn . Initially,
dilute configurations of granular systems at a solid volume fraction φ = 0.05 are subjected
to a constant external shear stress and hydrostatic pressure. We simulate granular flow at
three external pressures pex ta/kn = 10−4, 10−5, 10−6, all in the limit of the rigid particle
regime where the rheology is unaffected by the applied pressure and particle stiffness
(Da Cruz et al. 2005; de Coulomb et al. 2017). The external shear stress τex t is varied
from τex t/pex t = 0.0 to τex t/pex t = 1.2 to simulate flows at various shear rates, and three
different realizations are simulated for each shear rate. Each simulation consists of
N ∼ 104 frictional particles whose diameters are uniformly distributed between 0.9a and
1.1a. Several particle coefficients of sliding friction ranging from μs = 0.0 to μs = 0.3
are analysed to study the effect of friction on stress-controlled granular rheology. Contact
mechanics between two particles is resolved by setting the simulation time step to 0.02tc.
In the results presented below, time is scaled by tc, length is scaled by a, energy is scaled
by kna2 and stress is scaled by kn/a.

3. Evolution towards viscometric flow

When the external shear stress τex t and pressure pex t are switched on at t = 0, a dilute
assembly of particles at an initial solid volume fraction φ = 0.05 responds with rapid
volumetric compaction, as shown by the evolution of φ in figure 2(a) for a particular case
of interparticle friction μs = 0.3, pex t = 10−4 and τex t = 5 × 10−5. To estimate the total
deformation accumulated by the material beyond isotropic compaction, we calculate the
deformation gradient F (t) = H(t)H−1

0 as defined in (2.13), where H 0 is the periodic cell at
t = 0. The rapid volumetric compaction at early times is seen by an equivalent decrease in
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FIGURE 2. Evolution with time t of (a) solid volume fraction φ, (b) components of the
deformation gradient tensor Fij, (c) di/d1, where di are the eigenvalues of D, (d) vorticity
parameter β for a particular case of interparticle friction μs = 0.3, applied pressure pex t = 10−4

and applied shear stress τex t = 5 × 10−5.

Fii in figure 2(b) for i = x, y, z. The shear component Fxy exhibits a super-linear increase
at early times as a result shear deformation at low solid volume fractions in the absence
of any significant resistance to the applied shear. At long times, Fxy increases linearly
with time, while Fii is constant and the other two shear components are negligible, thus
indicating the achievement of steady incompressible viscometric flow, i.e. F (t) = I + tM
(Coleman et al. 1966), where M is a constant tensor, and which is a special case of motion
with constant stretch history (Noll 1962) where the deviatoric stress depends on the form
of M (Coleman et al. 1966). Several important and well-studied flows such as Couette
flow, Poiseuille flow, simple shearing flow and some specific cases of torsional flows can
be categorized as viscometric flows (Coleman et al. 1966). Although our focus here is on
steady flows, the simulation method and rheological analysis described above provide the
capability to calibrate a general history-dependent rheological model defined in (2.4) for
transient granular flows under constant or time-varying applied stresses.

Further insight into the nature of viscometric flow is given by the eigenvalue
decomposition of the symmetric tensor D(t). We use the convention that the three
orthonormal eigenvectors of D: d̂1, d̂2 and d̂3 are ordered in decreasing order of signed
eigenvalues d1, d2 and d3. Figure 2(c) shows the evolution of d2/d1 and d3/d1 as a
function of time. At early times, the sum of eigenvalues is positive, which corresponds
with rapid volumetric compaction as described above. The long-time steady-state flow is
characterized by d3 = −d1 and d2 = 0, which is a signature of planar flow, where the flow
plane is spanned by d̂1 and d̂3. To further ascertain the nature of planar flow, we calculate
a vorticity parameter β defined as

β = 1
γ̇

W : G
G : G

, (3.1)
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where G = d̂3d̂1 − d̂1d̂3. Figure 2(d) shows the evolution of β with time. When the system
transition into steady state flow at long times, β = 1, indicating simple shear deformation
in the flow plane, thus confirming the viscometric nature of flow. During the transient
evolution at early times, 0 < β < 1, indicating a complex flow behaviour that is a mixture
of vorticity-free elongational flow (β = 0) and simple shear flow (β = 1) (Wagner &
Mckinley 2016; Giusteri & Seto 2018). However, the flow is homogeneous at all times
within the periodic cell during steady state, with no spatial gradients of the local strain
rate.

We emphasize that the steady homogeneous shear flow states achieved in the present
simulations considerably simplify the rheological model in (2.4). Because the eigenvectors
of D are uniform in space and time, the material derivative Ḋ = 0, and the local material
rotation is equivalent to flow vorticity. In this particular case of steady homogeneous flow
with constant stretch history, the rheology is equally well-represented by the following
form of (2.4) (Larson 1985; Brunn & Asoud 2003; Giusteri & Seto 2018):

σ = pI + η1D + η2

[
D2 − tr

(
D2)
3

I

]
+ η3 [DW − W D]

+ κ1
D
|D| + κ2

[
D2

|D|2 − tr
(
D2)

3|D|2 I

]
. (3.2)

We emphasize that in unsteady or inhomogeneous flows where the material rate of rotation
can differ from flow vorticity, several criteria for classifying local flow kinematics have
been prescribed (Schunk & Scriven 1990; Thompson & Mendes 2005), and they can be
incorporated in the current rheological model.

In steady state, the bulk rheological quantities fluctuate around their mean values,
as seen in figure 2(a–d). In order to achieve robust statistics, every simulation is run
for at least 107 time steps to guarantee the achievement of steady state flow. This is
especially necessary near the critical yield stress, where steady state equilibration takes
a long time. Upon achieving steady state, each simulation is continued to run for at least
another 106 time steps, during which the all data of interest are recorded at every 10
time steps and averaged to estimate their steady mean value. The statistical uncertainty
associated with mean estimation is measured by its standard error using a block averaging
method (Flyvbjerg & Petersen 1989). This method not only provides robust estimates
of uncertainty around a mean value, but also indicates if the data has any long-time
correlations, which would necessitate longer simulation runs for meaningful averaging.

4. Model calibration

In this section, friction-dependent functional forms of all flow coefficients in (3.2)
will be described. The material constants associated with these flow coefficients are
extracted from the DEM simulation data by utilizing the fact that the four tensors I , D,
(D2 − (tr(D2)/3)I) and (DW − W D) are orthogonal to each other in viscometric flows.

4.1. Flow functions: η1 and κ1

The two flow coefficients η1 and κ1 have a first-order contribution (in terms of D) to
the total stress σ , and they provide a measure of the shear stress in viscometric flow.
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These coefficients are estimated by

η1γ̇ + κ1 = 1
2γ̇

σ : D, (4.1)

where τ = (1/2γ̇ )σ : D is the total flow-induced shear stress in the system.
Previous research has shown that shear flow of granular materials can be well-described

by a local rheological relationship between a stress ratio μ and an inertial number I (Jop
et al. 2006). In the present model, the stress ratio (hereby written with a subscript 1)
is μ1 = (η1γ̇ + κ1)/p, where η1γ̇ /p is the rate-dependent contribution and κ1/p is
the rate-independent contribution. As such, η1 represents the effective shear viscosity
and κ1/p represents the yield coefficient as I → 0, which is associated with a critical
volume fraction discussed in § 4.4. Figure 3(a) shows the variation of μ1 with I for five
interparticle frictions μs at three pex t. All the curves at various pressures collapse onto a
master curve for each μs, which can be approximated by a power law for dense granular
flows described in several previous studies (DeGiuli et al. 2015; DeGiuli, McElwaine &
Wyart 2016; de Coulomb et al. 2017; Salerno et al. 2018),

μ1 = μ0
1 + A1Iα1, (4.2)

where, μ0
1, A1 and α1 are fitting parameters. In the quasi-static, rate-independent regime

where I → 0, the stress ratio reaches a constant value μ1 → μ0
1, which is equivalent to

κ1/p in the rheological model. In this regime shear stress saturates towards a threshold
value, while the pressure is well-controlled at its prescribed value, thus indicating the
approach towards a yield stress. Although the rheology is unaffected by the applied
pressure, as also observed in de Coulomb et al. (2017), lower values of inertial numbers
are achieved when the confining pressure is low, as seen by the variation of μ1 − μ0

1 with
I for three pressures and two μs in figure 3(b). Previous pressure and shear rate controlled
simulations had demonstrated that the transition from quasi-static to inertial flow regimes
occurs at lower inertial number for lower confining pressure (de Coulomb et al. 2017),
thus confirming the current observations. However, the present simulations produce highly
stochastic flows in the quasi-static regime, which often arrest in the vicinity of the static
yield coefficient (Srivastava et al. 2019). Therefore, the rheology at low inertial numbers
is not well-resolved for low pressures, especially for intermediate interparticle friction,
as seen in figure 3(a). Recent experiments (Perrin et al. 2019) and simulations (Degiuli &
Wyart 2017) have indicated that the local rheology of frictional granular materials possibly
exhibits hysteresis at very low inertial numbers, which would also prohibit very slow flows
in the present stress-controlled simulations.

The quasi-static stress ratio increases with friction from μ0
1 = 0.09 for frictionless

particles to μ0
1 = 0.33 for particles with high friction, as shown in figure 3(c). The

non-zero value of μ0
1 for frictionless particles is consistent with previous simulations

(Peyneau & Roux 2008) and experiments (Clavaud et al. 2017; Perrin et al. 2019) that
demonstrated a non-zero internal friction angle for frictionless granular material. The
value of μ0

1 at high friction is consistent with previous simulations and experiments (Boyer,
Guazzelli & Pouliquen 2011a; Salerno et al. 2018; Srivastava et al. 2019), and is also
similar to the critical stress ratio from the critical state theory (Schofield & Wroth 1968).
The power-law exponent varies monotonically between α1 = 0.37 for frictionless particles
to α1 = 0.7 for particles with high friction, as seen in figure 3(d). Although the exponent
for frictionless particles corresponds well with prior theoretical predictions (DeGiuli
et al. 2015, 2016), the exponent at high friction is smaller than theoretical predictions
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FIGURE 3. (a) Stress ratio μ1 as a function of inertial number I for five interparticle frictions
μs (see legend) at three applied pressures: pex t = 10−4, 10−5, 10−6. The vertical and horizontal
error bars represent the standard error in the calculation of μ1 and I, respectively. The black
dashed lines represent fits for each μs given in (4.2). (b) Variation of μ1 − μ0

1 with I at
three applied pressures (see legend) for particles with μs = 0.0 (red) and μs = 0.3 (black).
The dotted lines represent power-law fits from (4.2). (c) Variation of μ0

1 and (d) α1 with μs.
The open symbols in panel (c) and panel (d) indicate the values for zero friction.

of α1 = 1.0 (DeGiuli et al. 2015, 2016). This could be attributed to a lack of data at low
inertial numbers and the associated sensitivity of power-law fitting.

4.2. Flow functions: η2 and κ2

In addition to the shear stress contribution to the total internal stress, there are
non-negligible second-order contributions that are typically observed in the flow of
non-Newtonian fluids. In a viscometric description of such fluids, these effects are
characterized by normal stress difference functions (Guazzelli & Pouliquen 2018). In
the present rheological model, η2 and κ2 represent one set of such rate-dependent and
rate-independent contributions. These coefficients are estimated by

η2γ̇
2 + κ2 = 3

2γ̇ 2
σ :

(
D2 − tr

(
D2)
3

I

)
, (4.3)
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FIGURE 4. (a) Second stress ratio μ2 as a function of inertial number I2 for five interparticle
frictions μs (see legend) at three applied pressures: pex t = 10−4, 10−5, 10−6. The vertical and
horizontal error bars represent the standard error in the calculation of μ2 and I2, respectively.
The black dashed lines represent fits for each μs given in (4.4). (b) Variation of μ2 − μ0

2 with
I2 at three applied pressures (see legend) for particles with μs = 0.0 (red) and μs = 0.3 (black).
The dotted lines represent power-law fits from (4.4). (c) Variation of μ0

2 and (d) α2 with μs. The
open symbols in panel (c) and panel (d) indicate the values for zero friction.

and they represent the difference between mean normal stress in the flow plane and
normal stress in the vorticity direction. A second stress ratio similar to μ1 is defined
as μ2 = (η2γ̇

2 + κ2)/p, where η2γ̇
2/p is the rate-dependent contribution and κ2/p is

the rate-independent contribution. As such, η2 represents a normal viscosity and κ2/p
represents the threshold value as I → 0. Figure 4(a) shows the variation of μ2 with the
square of inertial number I for five μs and three pex t. All the curves at various pressures
collapse onto a master curve for each μs, which can be approximated by a power law,

μ2 = μ0
2 + A2

(
I2)α2

, (4.4)

where, μ0
2, A2 and α2 are fitting parameters. In a manner similar to μ1, the quasi-static

values of μ2 at low inertial numbers are accessed for low confining pressures, as shown by
the variation of μ2 − μ0

2 with I2 in figure 4(b) for two different μs that appear to collapse
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onto a single curve. However, the data at low inertial numbers is also noisy, resulting from
the stochastic nature of slow granular flows, and increased noise in the measured data.

In the quasi-static regime, μ2 tends towards a constant value μ2 → μ0
2, which is

equivalent to κ2/p in the rheological model. Its value varies monotonically from μ0
2 =

0.01 for frictionless particles to μ0
2 = 0.1 for particles with high friction, as shown in

figure 4(c). The non-zero value of μ0
2 for particles with high friction indicates that normal

stress effects are present even in the quasi-static regime of flow, thus indicating a mild
anisotropic nature of the yield surface that is commonly assumed to be isotropic (in the
Drucker–Prager sense) within the μ(I) rheology (Jop et al. 2006), but has been shown
to be anisotropic in recent simulations (Thornton & Zhang 2010; Li & Dafalias 2012).
The power-law exponent varies monotonically between α2 = 0.28 for frictionless particles
to α2 = 0.44 for particles with high friction, as shown in figure 4(d).

4.3. Flow function: η3

An additional second-order contribution to the total stress emerges through the
rate-dependent flow coefficient η3, which is estimated by

η3γ̇
2 = 1

8γ̇ 2
σ : (DW − W D) , (4.5)

and for viscometric flows it represents the difference between the two normal stresses in
the flow plane. A third stress ratio μ3 is defined as μ3 = η3γ̇

2/p, where η3 represents an
additional normal viscosity. Figure 5(a) shows the variation of μ3 as a decreasing function
of I2 for five μs at three pex t. All the curves at various pressures collapse onto a master
curve for each μs, which can be approximated by the following power law:

μ3 = −A3
(
I2)α3

, (4.6)

where A3 and α3 are fitting parameters.
The stress ratio μ3 exhibits a transition from negative values at high inertial numbers to

small positive values in the quasi-static regime for all μs, as seen in figure 5(a). Although
the small positive value of μ3 in the quasi-static regime is intriguing, its existence is
debated (see § 5.2 below) and this effect is not included in our rheological model. As
such, a simple power law in (4.6) well-predicts the variation of μ3 with I, as also seen
by the variation of −μ3 with I2 in figure 5(b). The power-law exponent α3 varies slightly
between 0.85 and 0.75 from low to high friction, as shown in figure 5(c).

For steady homogeneous simple shear flows simulated in this work, the constitutive
model for viscometric flows in (3.2) reduces to the following relationships between the
components of symmetric stress tensor σ and the three stress ratios, in the case of a shear
flow along the x direction and flow gradient along the y direction:

σxx = p
(

1 + μ2

3
− 2μ3

)
, (4.7a)

σyy = p
(

1 + μ2

3
+ 2μ3

)
, (4.7b)

σzz = p
(

1 − 2μ2

3

)
, (4.7c)

σxy = pμ1, (4.7d)

σyz = σxz = 0. (4.7e)
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FIGURE 5. (a) Third stress ratio μ3 as a function of inertial number I2 for five interparticle
frictions μs (see legend) at three applied pressures: pex t = 10−4, 10−5, 10−6. The vertical and
horizontal error bars represent the standard error in the calculation of μ3 and I2, respectively.
The black dashed lines represent fits for each μs given in (4.6). (b) Variation of −μ3 with I2 at
three applied pressures (see legend) for particles with μs = 0.0 (red) and μs = 0.3 (black). The
dotted lines represent power-law fits from (4.6). (c) Variation of α3 with μs. The open symbol in
panel (c) indicates the value for zero friction.

4.4. Granular flow-induced dilation
The solid volume fraction φ of granular materials is highly sensitive to pressure and the
rate of shear flow. These materials compact ( jam) under the action of external pressure.
However, under the action of external shear stress they dilate in order to flow, and the extent
of dilation is higher for faster flows. In the present simulations, φ is not prescribed, and the
system is allowed to freely attain its steady state solid volume fraction in response to the
external stress and pressure. As such, we extract a dilatancy law relating the steady-state
φ with the inertial number I of the flow. Figure 6(a) shows the variation of φ with I
for five μs at three pex t. All the curves at various pressures collapse onto a master curve
for each μs, which can be approximated by a power law as described in several previous
studies (DeGiuli et al. 2015, 2016; de Coulomb et al. 2017),

φ = φ0 − A4Iα4, (4.8)
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FIGURE 6. (a) Solid volume fraction φ as a function of inertial number I for five interparticle
frictions μs (see legend) at three applied pressures: pex t = 10−4, 10−5, 10−6. The vertical and
horizontal error bars represent the standard error in the calculation of φ and I, respectively.
The black dashed lines represent fits for each μs given in (4.8). The black crosses represent the
data from Peyneau & Roux (2008). (b) Variation of φ0 − φ with I at three applied pressures
(see legend) for particles with μs = 0.0 (red) and μs = 0.3 (black). The dotted lines represent
power-law fits from (4.8). (c) Variation of φ0 and (d) α4 with μs. The open symbols in panel (c)
and panel (d) indicate the values for zero friction.

where φ0, A4 and α4 are fitting parameters. The applied pressure moderately affects the
volume fraction φ, with lower φ at lower pressures, as seen in figure 6(b). It has been
previously demonstrated that for sufficiently rigid particles (or equivalently, low enough
applied pressures) in the hard particle limit, the effect of pressure is negligible on the
volume fraction of granular material at onset of flow (de Coulomb et al. 2017).

The quasi-static solid volume fraction φ0 varies significantly with μs ranging from
φ0 = 0.63 for frictionless particles to φ0 = 0.59 for particles with high friction, as shown
in figure 6(c). Such a dependence of φ0 on friction has been previously demonstrated
in two-dimensional (Da Cruz et al. 2005) and three-dimensional simulations (Sun &
Sundaresan 2011), and confirmed in recent experiments (Tapia, Pouliquen & Guazzelli
2019). The similarity between φ0 = 0.63 for frictionless particles and the solid volume
fraction of random close packing of monodisperse spheres indicates that frictionless
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particles do not dilate at the onset of flow, which is consistent with prior simulations
(Peyneau & Roux 2008) and experiments (Clavaud et al. 2017). For particles with high
friction, φ0 is consistent with the critical state solid volume fraction from the critical state
theory (Schofield & Wroth 1968), and previous simulations (Sun & Sundaresan 2011;
de Coulomb et al. 2017; Srivastava et al. 2019) and experiments (Boyer et al. 2011a; Tapia
et al. 2019).

The power-law exponent varies between α4 = 0.82 for frictionless particles and α4 =
0.92 for high friction particles, as shown in figure 6(d). The value of this exponent at
high friction is similar to previous theoretical predictions of a unity exponent (DeGiuli
et al. 2015, 2016). For frictionless particles, our prediction of α4 does not correspond well
with the theoretical prediction (DeGiuli et al. 2015, 2016) of α4 = 0.35, and a previous
simulation study (Peyneau & Roux 2008) that demonstrated α4 = 0.39. However, as shown
in figure 6(a), our data corresponds well with the simulations of Peyneau & Roux (2008)
at low and moderate inertial numbers, but deviates slightly at higher inertial numbers,
resulting in large changes to the power-law exponent.

5. Normal stress differences and their microstructural origins

The non-negligible second-order contributions to stress in viscometric granular flows
indicate the presence of normal stress differences. Previous research on sheared granular
and suspension flows has demonstrated the existence of normal stress differences (Silbert
et al. 2001; Alam & Luding 2005; Rycroft et al. 2009; Boyer et al. 2011b; Couturier et al.
2011; Sun & Sundaresan 2011; Weinhart et al. 2013; Saha & Alam 2016; Guazzelli &
Pouliquen 2018; Seto & Giusteri 2018), and these differences have been attributed to
flow-induced fluctuating velocity effects in dilute granular flows (Saha & Alam 2016)
and microstructural effects in dense suspension flows (Seto & Giusteri 2018). Particularly,
normal stress differences can arise either from: (1) a misalignment of σ and D in the flow
plane, known as the first normal stress difference; or (2) from the anisotropy of normal
stress between the flow plane and the vorticity direction, known as the second normal
stress difference.

In this section, we describe normal stress differences and their microstructural origins in
dense viscometric granular flows. The microstructure of a granular material is quantified
through a second-rank contact fabric tensor A, which provides a convenient description
of the directional distribution of the particle contact network and inherent structural
anisotropy (Oda 1982; Kanatani 1984). The orientational distribution P(n) of contact
normal unit vectors n can be expanded to the second order in Fourier series as (Rothenburg
& Bathurst 1989; Bathurst & Rothenburg 1990)

P(n) = 1
4π

[1 + A : (n ⊗ n)] , (5.1)

where A is trace free and symmetric. For dense granular materials where internal stress
σ is dominated by particle contacts, it can be expressed as the following integral in
the orientational space Ω (Rothenburg & Bathurst 1989; Bathurst & Rothenburg 1990;
Srivastava et al. 2020):

σij = Nc〈l0〉〈 fi〉
V

∫
Ω

P(n)nj dn, (5.2)

where 〈l0〉 and 〈 fi〉 are the average magnitudes of the branch vector and the ith component
of the normal force between two contacting particles, respectively. This representation of
the stress tensor ensures that σ and A have the same structure.
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5.1. Second normal stress difference
Significant normal stress anisotropy emerges from the difference between the mean normal
stress in the flow plane and normal stress in the vorticity direction, and is represented
by the viscometric flow function N0/τ = (2σzz − σxx − σyy)/2τ (Seto & Giusteri 2018),
where x is the flow direction, y is the flow gradient direction and z is the vorticity
direction, and the stresses are defined positive in the compressive sense, since the forces
are all repulsive. In the present simulations, N0/τ is computed by

N0

τ
=

−3σ :
(

D2 − tr(D2)
3 I

)
γ̇σ : D

, (5.3)

which is equivalent to N0/τ = −μ2/μ1. In figure 7(b), N0/τ is plotted as a function of the
distance to quasi-static solid volume fraction φ − φ0 for five μs. The negative value of N0
implies that there is more normal stress in the flow plane than in the vorticity direction, as
seen in figure 7(a,b), and the ratio of the two normal stresses is consistent with previous
simulations on dry granular flows (c.f. figure 7c) (Silbert et al. 2001; Weinhart et al. 2013).
In present simulations, an imbalance between the external applied pressure and the internal
pressure drives isochoric periodic cell deformation, as shown by the equal values of Fii(t)
in figure 2(b). In another scenario where each σii is individually balanced, we observed
a rapid compaction of the cell in the vorticity direction leading to simulation instability
arising from the second normal stress difference. The magnitude of second normal stress
difference is larger for frictional particles than for frictionless particles; however, even
frictionless particles exhibit non-zero second normal stress difference during flow at finite
inertial numbers, as seen in figure 7(a). As the solid volume fraction increases towards
quasi-static φ0, the anisotropy consistently decreases for all μs. For frictionless particles,
N0 appears to tend to zero in the quasi-static limit corresponding to φ0 = 0.63, which is
similar to the random close packing density for monodisperse spheres. However, the out
of flow plane stress anisotropy is demonstrably non-zero for frictional particles even in the
quasi-static limit, as also observed previously by Seto & Giusteri (2018). The notion of
non-zero anisotropy in the quasi-static regime is also consistent with recent observations
of an anisotropic yield surface in frictional granular materials (Thornton & Zhang 2010;
Li & Dafalias 2012).

An implication of these findings is that the flow of frictional granular materials is
not codirectional, i.e. the hypothesis σ ∝ D, which has been assumed within the μ(I)
rheological model is not accurate. Here, N0/τ increases with I for all μs, as seen in
figure 7(a), and remains measurably non-zero for frictional particles even at low I. Prior
simulations on quasi-static simple shear granular flows (Sun & Sundaresan 2011), granular
flows down an incline (Silbert et al. 2001; Weinhart et al. 2013), gravity-driven granular
flows through an orifice (Rycroft et al. 2009) and granular flows in a split-bottom Couette
cell (Depken et al. 2007) have questioned the codirectionality hypothesis. Two previously
proposed theoretical models – double shearing (Spencer 1964) and shear-free sheets
(Depken et al. 2007) – have also incorporated these effects for quasi-static and dense
granular flows.

The second normal stress difference results from an excess of contacts oriented in
the flow plane rather than those oriented in the vorticity direction. Figure 8(b) shows
the variation of Na

0/Z2 with φ − φ0 for various interparticle friction. Here, Na
0 = (Azz −

(Axx + Ayy)/2) is the contact fabric ‘second normal difference’, which represents the
anisotropy in average orientation of contacts between the flow plane and the vorticity
direction. The rattler-free coordination number is computed as Z2 = 2Nc/(N − Nr),
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FIGURE 7. Variation of scaled second normal stress difference N0/τ with inertial number
(a) I and (b) distance to quasi-static solid volume fraction φ − φ0, for five interparticle frictions
μs (see legend) at applied pressure pex t = 10−4. (c) Variation of 2σzz/(σxx + σyy) with I for
five interparticle frictions. Variation of scaled first normal stress difference N1/τ with inertial
number (d) I and (e) distance to quasi-static solid volume fraction φ − φ0, for five interparticle
frictions μs (see legend) at applied pressure pex t = 10−4. ( f ) Variation of σyy/σxx with I for five
interparticle frictions.

where Nr is the number of rattler particles with fewer than two contacts, and Nc is the
total number of contacts with non-zero normal force belonging to non-rattler particles
(Sun & Sundaresan 2011). At high I corresponding to low φ, a higher fraction of contacts
are oriented in the flow plane, which results in a large normal stress difference, as shown
figure 8(a). Furthermore, all the data collapses onto a single curve for all interparticle
friction. Upon approach to the quasi-static regime at high φ, the contact distribution
becomes more isotropic, resulting in reduced normal stress difference. For frictionless
particles, the orientational distribution of contacts expectedly becomes isotropic in the
quasi-static regime at random close packing volume fraction, as seen by Na

0 → 0.

5.2. First normal stress difference
The first normal stress difference, which characterizes the anisotropy between σ and D
in the flow plane, is represented by the viscometric flow function N1/τ = (σyy − σxx)/τ
(Guazzelli & Pouliquen 2018). In the present simulations, this is estimated from

N1

τ
= σ : (DW − W D)

γ̇σ : D
, (5.4)

which is equivalent to N1/τ = 4μ3/μ1. The variation of N1/τ with φ − φ0 for five μs is
displayed in figure 7(e). At low φ, N1 is negative for all μs, and its magnitude increases
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FIGURE 8. Variation of contact fabric ‘second normal difference’ Na
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coordination Z2 with (a) inertial number I and (b) distance to quasi-static solid volume fraction
φ − φ0 for the five μs (see legend) at applied pressure pex t = 10−4. (c) A schematic depicting
the misalignment angle θc between the principal directions of D and A in the flow plane (shown
in red). Variation of θc with (d) N1/τ and (e) inertial number I for the five μs (see legend) at
applied pressure pex t = 10−4. The vertical and horizontal error bars in panel (a,b) and panel (d,e)
represent the standard error in the calculations.

with increasing μs for a given distance from the quasi-static solid volume fraction φ − φ0.
At low φ, the ratio of N0/N1 is approximately 3–4 for all interparticle friction, consistent
with previous findings (Gallier et al. 2014). The stress anisotropy in the flow plane
increases with inertial number, as shown in figure 7(d), and also by the ratio of the
two normal stresses in the flow plane, as shown in figure 7( f ). The value of this ratio
is consistent with previous simulations (c.f. figure 7f ) on granular flows down an incline
(Silbert et al. 2001; Weinhart et al. 2013).

When the flow becomes dense, N1 increases towards zero and becomes slightly positive
for highly dense flows in the quasi-static regime. The change of sign of N1 at high φ has
been previously observed in simulations (Alam & Luding 2005; Weinhart et al. 2013; Seto
& Giusteri 2018) and experiments (Couturier et al. 2011), but its existence is debated, and
has been attributed to interparticle friction (Dbouk, Lobry & Lemaire 2013) and boundary
wall effects in experiments (Gallier et al. 2014). In the present simulations, we observe
slightly positive N1 for all values of μs at large φ, and there are no boundary effects
in these bulk simulations. Recently it was demonstrated that finite particle stiffness –
which is often used as numerical regularization in hard particle simulations – causes N1
to become positive at large φ in simulations on inertialess frictional suspensions (Seto &
Giusteri 2018). However, our granular simulations do not provide any conclusive evidence
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of vanishing positive N1 as a result of increasing particle stiffness. A careful analysis about
this effect constitutes a part of our future work.

The first normal stress difference is related to the angular misalignment θc between the
principal directions of D (d̂1 and d̂3) and A (â1 and â3) in the flow plane, as described
in the schematic in figure 8(c). Here, d̂1 and d̂3 represent the compression and expansion
directions of shear flow, respectively, and θc represents the angle between d̂1 and the major
principal direction â1 of A. The misalignment angle θc and N1/τ are strongly correlated, as
depicted in figure 8(d) for various μs that largely collapse onto a single curve, indicating
a one-to-one correspondence between stress anisotropy and the misalignment (Seto &
Giusteri 2018). The misalignment between A and D results in excess stress along the flow
direction as compared with the gradient direction, which sets the negative sign of first
normal stress difference, similar to previous observations in dry granular flows (Silbert
et al. 2001; Weinhart et al. 2013). Such microstructural origins of N1 arising from a
misalignment between the projected contact vectors and principal flow direction in the
flow plane were previously demonstrated for inertialess frictional suspensions (Seto &
Giusteri 2018), and in the case of dilute granular flows through a similar misalignment
between fluctuating velocity moment tensor and principal flow direction in the flow
plane (Saha & Alam 2016). Remarkably, θc → 0 as N1 → 0, indicating a vanishing
misalignment between D and A at high solid volume fractions. This is also seen by the
variation of θc with I in figure 8(e), where the data for all μs collapse onto a single curve.
A small positive first normal stress difference exists at high solid volume fractions in the
vicinity of yield stress despite a near-complete alignment of D and A in the flow plane,
thus indicating that either a different underlying physical phenomenon is responsible for
positive N1, or it is possibly a consequence of finite system size.

The observations of microstructure-induced normal stress differences in dense granular
flows, especially the collapse of Na

0/Z2 and θc with I in figure 8(a,e), indicate that a fabric
tensor is an appropriate internal state variable that can be used to construct a rheological
model with evolution equations for the microstructure, as was done for quasi-static
granular flows (Sun & Sundaresan 2011; Parra & Kamrin 2019). Such an approach has
been previously used in modelling suspension rheology (Goddard 2006; Stickel, Phillips &
Powell 2006), and a general framework adaptable to dry granular flows has been provided
by Goddard (2014).

6. Conclusions

In this paper, we described a discrete element method to simulate dense granular flows
under external applied stress in a fully periodic representative volume element. Rather
than prescribing solid volume fraction and/or strain rate, this method enables independent
evolution of a solid volume fraction and three-dimensional strain rate tensor in response
to an imbalance between internal state of stress and external applied stress. Using this
method, bulk viscometric granular flows were simulated under external pressure and
shear stress, which was devoid of any boundary effects, and thus closely represented the
boundary conditions often found in practice.

We developed a second-order rheological model to relate the internal Cauchy stress σ
with the strain rate tensor D for various interparticle friction. The model considers both
rate-dependent and rate-independent contributions to the total stress, where the latter is
often described using models of granular plasticity. The rheological model well-predicts
the μ(I) rheology of granular materials. Additionally, it also predicts normal stress
differences in steady viscometric granular flows, which have often been observed in
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simulations and experiments, but have not been well-characterized. A major implication of
this model is that it does not impose coaxiality between σ and D in dense granular flows,
which is often assumed in several other constitutive models.

A major focus of this work has been to highlight the role of interparticle friction
on viscometric granular rheology in the dense flowing regime, particularly on the two
normal stress differences. We found that friction not only increases the quasi-static shear
stress ratio, but also the quasi-static value of the second normal stress difference, thus
indicating the presence of an anisotropic yield stress, whereas frictionless particles do
not exhibit such anisotropy in the quasi-static regime at solid volume fraction similar to
the random close packing of monodisperse spheres. At higher flow rates in the inertial
regime, friction consistently increases the magnitude of both normal stress differences,
indicating an increasing departure from the coaxiality of σ and D. Although the second
normal stress difference is always negative, the first normal stress difference changes sign
from negative to positive at high solid volume fractions in the quasi-static regime. Further
microstructural investigations highlighted that negative first normal stress difference
results from a misalignment between D and a second-rank contact fabric tensor A in the
flow plane, which describes the orientational distribution of sphere–sphere contacts in
granular flows. Furthermore, the magnitude of misalignment increases with the inertial
number similarly for all interparticle frictions. The second normal stress difference results
from an excess of contacts oriented in the flow plane rather than in the vorticity direction,
which is also observed from the anisotropy in the normal components of the fabric tensor.
Upon appropriate normalization with friction-dependent coordination number, the fabric
tensor anisotropy was shown to collapse onto a single curve for all interparticle frictions.

These results demonstrate the importance of developing rheological models beyond
simple scalar models to predict granular rheology in even simple shear flows, and certainly
for complex and heterogeneous flow fields that are observed in practice. The breakdown of
coaxiality of stress and strain rate tensors highlights the need for an anisotropic rheological
model that includes a contact fabric tensor as an internal variable. A general form of
such anisotropic models σ = F(D, A) was recently proposed for granular materials and
suspensions (Goddard 2006; Stickel et al. 2006; Goddard 2014), and was calibrated
for rate-independent granular flows (Sun & Sundaresan 2011; Parra & Kamrin 2019).
The calibration of these models in rate-dependent flows is required, along with other
non-viscometric flows such as uniaxial or triaxial compression, as well as transient
evolving inertial granular flows. These topics are currently a subject of our ongoing study.
Lastly, the constitutive model described here could also be extended to include other
important granular flow phenomena such as hysteresis (Degiuli & Wyart 2017; Perrin et al.
2019) and non-locality (Henann & Kamrin 2013) at low inertial numbers.
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μs A1 A2 A3 A4

0.0 0.530 0.240 0.098 0.272
0.001 0.530 0.243 0.098 0.274
0.003 0.528 0.247 0.102 0.276
0.01 0.522 0.252 0.107 0.274
0.03 0.516 0.270 0.113 0.263
0.04 0.516 0.274 0.116 0.259
0.05 0.520 0.284 0.118 0.254
0.06 0.518 0.290 0.128 0.251
0.08 0.531 0.322 0.127 0.247
0.1 0.526 0.303 0.141 0.246
0.14 0.545 0.330 0.140 0.243
0.18 0.554 0.360 0.153 0.241
0.23 0.562 0.366 0.151 0.238
0.3 0.573 0.398 0.151 0.230

TABLE 1. Fitting parameters corresponding to (4.2), (4.4), (4.6) and (4.8), as a function of
interparticle friction μs.
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Appendix. Fitting parameters of the rheological model

In this Appendix, Table 1 provides the fitting parameters A1, A2, A3 and A4 of the
rheological model, defined in (4.2), (4.4), (4.6) and (4.8), respectively, as a function of
interparticle friction μs.
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