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Abstract

We show that the growth function of a finitely generated linear semigroup S c Mn{K) is controlled
by its behaviour on finitely many cancellative subsemigroups of S. If the growth of S is polynomially
bounded, then every cancellative subsemigroup T of S has a group of fractions G c Mn(K) which is
nilpotent-by-finite and of finite rank. We prove that the latter condition, strengthened by the hypothesis
that every such G has a finite unipotent radical, is sufficient for S to have a polynomial growth. Moreover,
the degree of growth of S is then bounded by a polynomial f(n,r) in n and the maximal degree r of
growth of finitely generated cancellative T c S.

1991 Mathematics subject classification (Amer. Math. Soc): 20M20, 16P90.

1. Introduction

It is known that certain classes of finitely generated semigroups have polynomial
growth. In particular, this holds for semigroups with the so called permutation property
[10]. (Linear semigroups of this type even yield semigroup algebras satisfying a
polynomial identity [15].) If 5 is linear and the semigroup algebra K[S] is semiprime
right Goldie, then the growth of S is equal to that of a cancellative subsemigroup of
S [13], so it can be determined by Bass's formula via the recent result of Grigorchuk
[2] (cf. [10]). The latter states that a finitely generated cancellative semigroup T has
polynomial growth if and only if it has a group of fractions G which is nilpotent-by-
finite. Moreover, the degrees of growth of S and G are then equal.

The aim of the present paper is to study the growth of arbitrary finitely generated
linear semigroups S c Mn(K) over a fields. The local structure of linear semigroups
of polynomial growth has been studied in [14]. In particular, every maximal cancellat-
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[2] Growth of linear semigroups 19

ive subsemigroup T of such a semigroup S c Mn(K) has a nilpotent-by-finite group
of fractions isomorphic to a subgroup G of Mn(K). In fact, G is the group generated
by the intersection of T with a maximal subgroup of Mn(K). Therefore, speaking of
groups generated by subsemigroups of S, we can assume that they lie in Mn (K).

The structure theorem for linear semigroups contained in [11] implies there are at
most 2" linear groups and as many sandwich matrices over these groups associated to
each 5 c Mn{K). The result of Grigorchuk, together with the philosophy of studying
S via its cancellative subsemigroups (and the associated groups) and their interactions
(via the group action and the action on the sandwich matrices) makes it possible to
attack the growth problem for 5.

We show that the growth function of a finitely generated linear semigroup S c
Mn(K) is controlled by its behaviour on the cancellative subsemigroups of S. If
the associated groups of fractions are nilpotent-by-finite, have finite rank and finite
unipotent radicals (they are abelian-by-finite in this case), then S has polynomial
growth of degree bounded by a polynomial f{n,r) in n and the maximal degree
r of growth of cancellative T c S. We note that, if the unipotent radicals of the
associated linear groups are not finite, this is no longer true. Namely, there exist
semigroups S c Mn (K) all of whose cancellative subsemigroups are almost nilpotent
(even commutative), but the growth of 5 is not polynomial [14].

Let 5 = {s\,..., sr) be a semigroup. For any subset A of S let fA(m) denote the
cardinality of the set {s,, •••*,-, 6 A | t < m, ij e { 1 , . . . , r}}. Then ds(m) = /s(w)
is called the growth function of S with respect to the generating set {si , . . . , sr}. We
say that S has polynomial growth if ds (m) is bounded by a polynomial in m. We refer
to [6] for basic results on the growth and the Gelfand-Kirillov dimension. By \s\ we
mean the minimal length of s e S in the generators su ... ,sr. For a e Mn(K) we
denote its rank by rk(a).

2- fT(m) controls ds(m)

A semigroup U of a completely 0-simple semigroup Z will be called uniform if it
intersects all non-zero ^-classes of Z.

Let Mj = {a e Mn(K)\rk(a) < j], j = 0, 1,... ,«. Every semigroup S c
Mn(K) has a chain S = /„ 2 /«-i 2 • • • 2 h where /, = 5 n Mj are ideals of
S, if non-empty. Let Nj = [a e /,<|rk(a) < j or SlaSl does not intersect the
maximal subgroups of Mj \ M;_i}. Then /,_! c Nj c /; and Nj are ideals of S, if
non-empty. It was shown in [11] that Nj/7y-_i is nilpotent of index < (") and Ij/Nj
is a O-disjoint union of at most (") ideals, each being a uniform subsemigroup of
a completely 0-simple subsemigroup of My/Af,-_i. Therefore, S has an ideal chain
5 = So 2 Si 2 • • • 2 S, with all factors being nilpotent or uniform. Such a chain

https://doi.org/10.1017/S1446788700037368 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037368


20 Jan Okniriski [3]

will be called a structural chain of 5.
It is well-known that the y'th exterior power, j = 1 , . . . , n, can be treated as a

semigroup homomorphism Aj : Mn(K) -> M/»\(K). Moreover, rk(Aj(a)) = (*jo))
if rk(a) > j and 0 otherwise. We claim that for a, b € Mn (K) of rank > j one has

a Jfb if and only if Aj (a)Jt?Aj (b)

where jtf1 is the Green relation on Mn(K), M/»\(K) respectively. We know that
Aj(a)Jt?Aj(b) implies that rk(a) = rk(b), so that aJ?b. Suppose that a, b are not
_£f -related. Then there exists c e Mn(K) such that rk(ac) = rk(a) andrk(ftc) < rk(a)
(since a, b have different kernels, when treated as endomorphisms of K"). Then
0 = A'(be) = Aj(b)AJ(c), but Aj(a)AJ(c) ^ 0. This contradicts the fact that
Aj(a), AJ(b) are ££-related. Hence a&b, and similarly a@b, so that aJt?b. The
converse is clear.

LEMMA 1. Let S c Mn{K) and let S — So 2 St 2 • • • 2 S, be a structural chain
for S. Assume that S,/S,+i is a uniform factor and let s be the common rank of
matrices in 5, \ 5,+i. Then 5, \ Si+i contains elementsxu ... ,xr, r < ("), such that
for every y € Sj\ S,-+i there exists j with Xj-y & 5,+i.

PROOF. From the above remarks and from [11] it follows that U = As(5,\5,+i)U{0}
is a subsemigroup in the matrices of dimension t = (") over K. Moreover, every non-
zero matrix of U has rank 1 and U is uniform in a completely 0-simple subsemigroup

Let W = Pl Wu C K' where Wu — ker(w) and the intersection runs over all
w e t / , « ^ 0 . There exists wu...,wr eU, r <t, such that W = WWl D • • • n WWr.
Suppose that wtv = 0, i = 1 , . . . , r, for some v e U, v ^ 0. Then Im(u) c ker(u>,),
so that Im(v) c WWl n • • • n WWr = W. Thus, Im(u) c Wu for every 0 # u e U.
This means that Uv = 0, contradicting the fact that U is uniform. Hence, for each
0 T̂  v e U there exists j such that WjV e U \ {0}. The inverse images of w{,..., wr

in 5 then satisfy the assertion for 5, \ 5,+i.

REMARK. A dual argument allows us to find elements zu . . . , zq, q < ("), such
that for every y 6 S, \ Si+\ there exists k such that yzk & Si+1. Therefore, for each
y e S, \ Si+U we have x,yzk <£ 5,-+i for some ;, k. Let T = H n (S, \ 5,+1) ^ 0
for a maximal subgroup H in Mn(K). It is easy to see that there exists a uniform
subsemigroup A of S,/5,+1 whose inverse image B in S intersects finitely many Jff-
classes of Mn(K) and contains T and all z\,..., zq, x\,..., xr. Since A is uniform,
there exists a finite collection V of elements of B such that for every 0 ̂  b e B there
exist Vi,v2 € V with Vi6i>2 e T. Hence, we have shown that:

there exists a finite subset Z c S, \ 5,+1 such that for every x € 5,• \ 5,+i,

e T for some zx,z2 6 Z.
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Let / be an ideal of a finitely generated semigroup S = (su ... ,sr) and J c /
for a completely 0-simple semigroup / . Let h(m) denote the number of Jf-classes
of / that contain elements of S that are words of length < m in si,..., sr. We call
h(m) the growth function for the number of Jf -classes of / with respect to / and the
generators s\,..., sr.

LEMMA 2. Let I be a completely 0-simple ideal of a semigroup U and S =
(s i , . . . , sr) a subsemigroup ofU. Let J = S C\ I and suppose that S / J has polynomial
growth of degree < d. Then the growth function of the number ofJtf'-classes of I with
respect to J and the generators su ..., sr is polynomial of degree not exceeding Ad.

PROOF. Let Dn = {w — stl • • • sik e / | k < n, the proper subwords of w are not
in / } . Then \Dn\ < r(dS/j(n)) since every w e Dn is of the form w = stz where
i e { l , . . . , r}andz $ J.

L e t 0 ^ w — s h • • • s i t e J. T h e n w = wxv, w h e r e W\ — s h • • • s i l , v = s i l + 1 • • • s i t

and Wi is the shortest initial segment of w that lies in / . Write if = X\ y^ where y\ is the
shortest terminal segment of wx (treated as the word s,, • • • s,,) that lies in / . Note that
v, Xi can be empty words. Then w = XiyiV, so that w&x\yt in / . Moreover, xx g J
and yi e Dn. Hence such an element w can lie in at most dS/j(n)\Dn | ̂ -classes of / .
A symmetric argument shows that w can lie in at most dSIJ{ri)\Dn\ ££-classes of / .
Hence h(n) < dS/j(n)2\Dn\

2 < r2dS/j(n)4. The assertion follows.

COROLLARY. Let I be a completely 0-simple ideal of a semigroup U and S =
{si,..., sr) C U, J = Sni.IfS/J has polynomial growth and for every Jf-class
H in I we have /snwC'") 5 cmd for some c,d > 0, independent ofm and H, then S
has polynomial growth.

PROOF. fj(jn) < cmdh(m) has polynomial growth by Lemma 2. Hence, the
assertion follows from the fact that d{m) < fj(m) + dS/j{m).

Our first aim is to show that the growth of a linear semigroup 5 is in some sense
determined by the cancellative subsemigroups of 5.

THEOREM 1. Let S = (su ... ,sr) c Mn(K) be a semigroup. For each uniform
factor Sj/Sj+i of a structural chain S = So ^> Sx 2 • • • 2 S, ofS choose a cancellative
subsemigroup Tt which is of the form S fl H for a maximal subgroup H of Mn(K).
Then the following conditions are equivalent:

(1) 5 has polynomial growth;
(2) fr(M) has polynomial growth for every cancellative subsemigroup T ofS which

is of the form T = S n H for a maximal subgroup H of Mn(K);
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(3) fT. (m) has polynomial growth for every 7}.

Moreover, in this case, GK(S) < g(n, d), where g is a function ofn and the maximal
degree d of polynomials bounding the growth of the functions fTj.

PROOF. The implications (1) implies (2) and (2) implies (3) are obvious. Thus
assume that (3) holds. We will inductively show that GK(S/Sj) < oo.

(i) If S/Si is nilpotent, then it is finite and GK(S/Si) = 0. If S/Si is uniform, then
from [13] it follows that GK(S/Si) = GK(TX).

(ii) Suppose we know that GK{S/St) < oo. Again consider two cases. If S,/5,+1

is nilpotent, then (S,/S,+1)* = 0 where k < ("), j denoting the rank of matrices in
S, \ S.-+, [11]. Hence G/sT(5,/S,+1) < kGK(S/S,) < oo by [6, Corollary 5.10].

Assume now that 5,/S,+i is uniform. From the remark following Lemma 1 we
know that for every Jf'-class H in Mn{K) such that T = H n (S,• \ Si+l) ^ 0 there
exist x, y e 5, \ 5,+i (chosen from a finite set Z) such that 0 / xTy c 7J. Since
z i->- xzy, z 6 T, is a one-to-one mapping, it follows that fT (m) < fTi (m + N) where
N = 2{max \w\; w € Z}. Hence fr(m) is bounded by a polynomial independent of
the choice of H. The corollary implies that GK(S/Si+l) < oo. This establishes (1).

Existence of the function g follows from the above proof and the fact that the
structural chain must satisfy t < 2n+1 (cf. [11]).

We note that there exist finitely generated semigroups 5 c Mn(K), all of whose
maximal cancellative subsemigroups have finite GK -dimension, but where the growth
of 5 is not polynomially bounded. Such an example is 5 = (e, g) c A/3(Z), where

/ I 0 0\ / I 1 1\
e = 0 0 0 I , g = 0 b 1 j for b > 2 (cf. [14]). (In fact, S = (g) U / ,

\0 0 1/ \p 0 1/
for a uniform ideal J consisting of matrices of rank 2, and the maximal cancellative
subsemigroups of S embed into the infinite cyclic group.) Thus, the growth of S
cannot be in general determined locally - just by looking at the cancellative pieces
of 5. This is in contrast with various results connected to the Burnside theorem for
linear semigroups (that is, the case of Gelfand-Kirillov dimension 0) and some of
their generalizations. Namely, it is known that certain finiteness conditions for an
arbitrary S c Mn{K) can be decided by studying the corresponding properties of the
intersections S n H with the maximal subgroups of Mn(K) (cf. [4, 7]).

3. Main result

From [14] we know that whenever a finitely generated 5 c Mn(K) has polynomial
growth, then every maximal cancellative subsemigroup T of S has a nilpotent-by-finite
group of fractions G c Mn{K). Moreover, this local condition on S is equivalent to
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the existence of an identity that is satisfied in 5. If GK(S) < oo, we also know that
each such G is finitely generated modulo its unipotent radical.

Our main goal is to show that the problem (as occurs in the above example) can
only come from the unipotent radical of the groups of fractions H of the maximal
cancellative subsemigroups of 5. We will prove that for a class of S c Mn(K), the
polynomiality of the growth of S can be decided by measuring the GK -dimension of
all (in fact, of finitely many) such H. We will need preparatory lemmas.

LEMMA 3. Let su ..., sr e Mn(K), e = I I e Mn(K) be the idempotent of

rankone, andletO ^ es,, • • • sime = for some ij e { 1 , . . . , r}, m > 1, x € K.

Then
(i) If A is the set of entries of the matrices S\,..., sr, then x is a sum of nm~l

elements of the form at • • -am, at e A.
(ii) Let Ebea subfield of K with [K : E] = k < oo, and </> : Mn{K) -+ Mnk(E)

the embedding coming from the regular representation K i-> Mk{E). If B is the set
of entries of(f>(si),..., <p(sr) and ifx e E, then x is a sum of{nk)m~x elements of the
formbi •••bm, bt e B.

(iii) Assume that E c K is Galois and NK/E{x) = 1. Let a be the natural extension
ofae G(K/E) to an automorphism of Mn(K). Let C be the set of entries of the
matrices a(Sj), a e G(K/E), j — 1 , . . . , r. Then x~x is a sum ofn(m~l)l elements
of the form cx • • • cml where ct 6 C and \G(K/E)\ =1 + 1.

(iv) Let v be a discrete valuation of rank one on K. Then v(x) > mv(a)for a e A
with minimal valuation and, if (iii) holds, then \v(x)\ < mN for some N dependent
on A,C and I only.

PROOF, (i) is clear, (ii) follows from (i) and the fact that x can be viewed as a scalar
k x k submatrix of Mnk(E).

(iii) The hypothesis implies that x~l = criQt) • • a/(x), where a, € G(K/E). Thus,
x~x is the non-zero entry of the product of eai{sil) • • • dj(sin)e, j = 1 , . . . , / . The
assertion then follows as in (i).

(iv) By (i) we have v(x) > min{v(ai • • -am)} > mv(a). But (iii) implies that
v(x~l) > mlv(c) for some c e C. Hence (iv) follows.

LEMMA 4. Let X — (*l7), / = 1 , . . . , « , j = \,...,t, be a matrix with real

coefficients such that

\axxn H \-atxu\ < M,

4 (-a,xn,( < M
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for some au ..., a,, M e K. If X has rank t, then there exists a e 1 such that
\dj\ <aMforj — l,...,t.

PROOF. If t = 1, then \aixki I < M for every k and xt\ =fi 0 for some / because X
has rank 1. Hence we can put a = \xn \~lM.

Let t > 1. Let for example xn be a non-zero element of the first column of X. For
y = 2 , . . . , n we have

< \a1xjl + a2xj2 H h a,xjt \ + \a^xnxnx^ + a2xnXjiX~l
l H h

< M + M [ |

This yields a system of inequalities with an(« — I) x (t — 1) matrix 7 that has rank
t — \. (We performed elementary row operations on X eliminating the non-zero entries
below xu.) This allows us to complete the proof by induction on t.

LEMMA 5. Let L 2 D = F(tu ..., tu) 2 F be field extensions such that [L : D] =
p < oo and tu ... ,tu is a transcendence basis of D over F. Let S = (si,..., sr) c
Mn(L), a e Aut(F). Assume that e € Mn{L) is a diagonal idempotent of rank 1
and esit • • • sime has the only non-zero entry x G F. There exists afield isomorphism
x : L ->• L' such that the only non-zero entry ofef(sh) • • • r(siin)e e Mn{L') is equal
to (J(X), where i : Mn(L) —> Mn(L') is the natural extension oft.

PROOF. Extend a to D, sending each t{ to tt, and then to a' : MP(D) ->• MP(D).
Let L be embedded into MP(D) via the regular representation. Put L' = cr'(L) and
extend x = a'\L to x : Mn(L) -> Mn{L'). All these mappings agree with a when
restricted to F. Hence

ex(sh) • • • x(sim)e - x{esh • • • sime)

has the non-zero entry equal to CT(JC).

PROPOSITION 1. Let S = (su ...,sr) c Mn(K) be a finitely generated semigroup.

Lete G Mn(K) be a diagonal idempotent of rank one and zu . . . , z, free generators of a

subgroup H ofK*. Suppose that A is a subset of S such that for each a = sjt •••Sjm € A

with 0 ^ s = eae, j k G { 1 , . . . , r}, m > 1, the non-zero entry of the matrix s is of

the form x = z\' • • • z',' for some i-s G 1. Then there exists a constant M (independent

of a, m and j u ..., jm) such that | / ; | < Mm for j = I,... ,t.

PROOF. We shall proceed by induction on t. However, the case t = 1 will be dealt
with later. Firstly, we show how to proceed with the induction step.

https://doi.org/10.1017/S1446788700037368 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037368


[8] Growth of linear semigroups 25

Let L be a finitely generated subfield of K such that 5 c Mn(L) and let Ko c
Ko(ti,..., ts) c L for the prime subfield Ko of K and a transcendence basis ^ , . . . , ts

of L over £„. It is known that this can be chosen so that E — K0(ti,..., ts) c L is a
separable field extension (cf. [19, Theorems 11.13.30 and 11.13.31]), so that extending
L we can assume that E c L is a finite Galois extension. Let Af = NL/E be the
corresponding norm. Then for G = G(L/E) we have

aeC

and N(x), N(ZJ) e E. Moreover, the non-zero entry of the matrix ea^sj,) • • • d(sjm)e
is equal to a(x), where a is the natural extension of a to an automorphism of Mn{L).
We consider two cases:

Case 1. NL/E(x) is not a root of unity.
Then let for example iV(zi),..., N(zp), 1 < p < t, be a maximal subset of [N(zj)\i =
I,... ,t] that freely generates a subgroup of L*. If p < t then there exists k e N
such that N(zj)k = N{zi)ai' • • • N{zp)

a" for j = p + 1 , . . . , t and some au e Z.
Hence N(x)k = N(zi)b' • • • N{zp)

b" where bq = kiq + ip+laq,p+l + h i,aq,, for
q = 1 , . . . , p. Moreover, the matrix in eMn{L)e with the only non-zero entry
equal to N(x)k is a word of length (m + 2)&|G| in the generators of the semigroup
5' = {e,d(Si)\<T e G, i = l , . . . , r ) c Mn(L). If G = {*„ . . . , cr|G|}, let A' =
{(edl(a)ea2(a)e • • • ed\G\{a)e)k \ a e A). Then A' c 5' satisfy the hypotheses of the
proposition with respect to the free generators Nfa),..., N(zp) of a subgroup of L*.

Since p < t, we have performed an induction step, so the induction hypothesis
shows that \bq\ < M(m + 2)k\G\, q - 1, ...,p, for a constant M. Note that M
is independent of (m + 2)A:|G|, and so of m, because k depends on z , , . . . , z, only,
and M is independent of the choice of a e A and j \ , . . . , j m . Thus |fc,| < M'm
where M' = 3A#Jk|G|. Now xkz;b' = y2

2 • • • y\' where v; = z* for j = 2 , . . . , /?,
and y; = zkzx

a'' for 7 = p + I, ...,t. But yi, ...,yt are free generators of a
subgroup of L*. Hence the above equality fulfills the hypotheses of the proposition
with respect to S" = (S, u, v) where u, v e Mn(L) are such that the non-zero entries
of u = eue, v = eve are z\, zj"1 respectively, and the subset A" = {{eae)kubi \a e
A, bx < 0} U {{eae)kvbl \a G A, bx > 0}. (Note that bx depends on s.) Consequently
the induction hypothesis implies that

\ij I < M"((m + 2)k + \bt |) < (3* + M')M"m for j = 2 , . . . , t

for some M" (independent of a € A, m, j \ , . . . , jm) because xkz1~
bl is the non-zero

entry of ewe for a word w of length (m+2)k + \b\\ in 5". In view of the definition of b\
and, again, the bound |6i | < M'm, this completes the inductive argument, establishing
a linear bound also for |i 11.
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Assume now that p = t. Then we replace*, zu ..., z, by N(x), N(zx),..., N(z,)e
E. Thus, passing to the semigroup S' and its subset {eal(a)ea2(a)e • • • ea^(a)e\a e
A} we can assume that x, zx,..., z, e E. If Ko = E, and ch(X) = p > 0, all z, e frp

have finite order, a contradiction. Otherwise we treat E as the field of fractions of the
polynomial ring R = ¥p[tt,..., ts] or of R = Z[t, , . . . , * , ] . Let q be a prime element
of /?. From Lemma 3(ii) it follows easily that \i\cx + • • • + i,c,\ < Nm for some N
(dependent on sx,..., sr only), where c, = <5(z,) is the <?-adic valuation of z,. Suppose
Ci = •• • = c, = 0 for every such q. Then Z|, . . . , z, lie in the group of units of R
(cf. [19, Corollary VI. 10.3]). Since the latter is finite, this is a contradiction. Thus,
for some such S one of the c,, say cx, is non-zero. Let ix = ctfi + d, 0 < d < C\.
Then xz^d = (z[')/] Zj2 • • • z,'' and z\\ z2,..., z, still are free generators of a subgroup
of L*. If we show that the absolute values of fx, i2,. • •, i, are linearly bounded with
respect to m, the same is true for ix and we are finished. But the elements xz[d

inherit the hypotheses of the proposition with respect to the semigroup (5, v), where
v = eve has the non-zero entry zj"1, and the set A U Av U • • • U Avc'~K As above,
this allows us to assume that cx = 1 and / i = i\. Now x = zf' (z2z,~C2)'2 • • • (z,z,~~c')''
where k\ = ix + c2t2 + \- c,i, and _y, = z,zj"c', / = 2 , . . . ,t, are free generators of
a subgroup of L*. Then xz^k' = y2

2 • • • y',' and the left side is the non-zero entry of
ewe for a word w of length < m + Nm in st,..., sr, eue, eve, the latter two defined
as above. Induction shows that \ij\ < M(N + \)m for j = 2,..., t, for some M
(independent of m), so that we also get a desired bound on \it\. This completes the
inductive argument in Case 1.

Case 2. NL/E(x) is a root of unity.
As above, passing to xk = (zk)'' • • • (z*)1' for some k > 1, we can assume that
NL/E{X) = 1- Then Lemma 3(iv) shows that \v{x)\ < Nm for some N (independent
of m) and every valuation with value group Z of L. If for some such v one of
u ( z i ) , . . . , u(z,) is non-zero, we can decrease t as in Case 1, performing the inductive
step. Therefore we need to consider only the case where v{zi) = • • • = v(z,) — 0
for every such v. It is well-known that this implies that each z,, z,"1 is integral over
C = J. or C — Fp, depending on the characteristic of K. (In fact, if a e L is not
integral, then v(a) ^ 0 for the a- 1C[a"']-adic valuation v on C[a~1]. Then v can
be extended to a valuation on L that is again discrete of rank one - cf. [19, Lemma
VI.11.1 and p. 85].) If C = Fp, we have (z,) c Fp[z,] is finite, contradicting the
assumption on z,. Thus, assume that ch(AT) = 0. Let F be a finite Galois extension
of Q containing z 1 ; . . . , z,. Extending L we can assume that F c L. We know
that the integral closure B of Z in F contains the group H generated by zx,..., z,.
Let u = Mi + M2, where CT, e G(F/Q), i = 1 , . . . , «i, are such that CT,^/7) C [R
and a,, a/ e G(F/Q), i = ut + 1 , . . . , u, are the conjugate pairs of the remaining
automorphisms of F. It is known that there exists k > 1 such that the u x t matrix
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(In \(Ji(zj)\)ij has rank / (cf. [9, §47.2]). As before, using the presentation

xk = (z\f • • • (zf)''

and the fact that z\,..., z* freely generate a subgroup of L*, we can reduce our
problem to the case where k = 1. Now for every a = a, G G(F/Q)

and am > \a(x)\ > bm for some positive a, b e R, by Lemma 3(i),(iii) and Lemma 5.
Therefore

| | Mm

for some M (not dependent on m). Lemma 4 yields \ij \ < Nm for ; = 1 , . . . , t, and
some N independent of m. This completes the inductive argument in Case 2.

It remains to check the validity of the assertion in case t = 1, that is, x = zj1.
However, it is clear that the above reasoning takes care of this case, too. This
completes the proof of the proposition.

We are now in a position to prove the first main result of this section. Recall that the
unipotent radical of a linear group G is the largest normal subgroup of G consisting
of unipotent elements.

THEOREM 2. Let S — {su ..., sr) c Mn(K) be a finitely generated semigroup such
that every non-empty intersection T = S n F with a maximal subgroup F of Mn(K)
has a group of fractions G c F that is nilpotent-by-finite and finitely generated
modulo its unipotent radical U. Then the number of cosets in G/U that contain
elements of T that are words of length < m in sx,... ,sr is bounded by a polynomial
in m, depending on the torsion-free rank of G/U and on the rank of matrices in T.

PROOF. From [14, Proposition 1], we know that the group G of fractions of T has
a nilpotent normal subgroup D of finite index that is triangularizable in /Mn (K)f =
MMf){K), where / = f2 e D. We can assume that / is diagonal and D is triangular
in Mn(K). Note that U contains the unipotent radical of D, that is, the kernel of
the projection D -> diag(£>). Then diag(D) has a subgroup B of finite index with
all rank one diagonal projections being torsion-free subgroups of K* (D/(D C\U) =
diag(D) c (K*)1*^ is finitely generated since it has finite index in the finitely
generated group G/U). Thus, there is a finite set Z c G such that for every
g G G there exists z e Z with zg e D and diag(zg) G B. Let e < f be a
diagonal idempotent of rank one. From Proposition 1 it follows that for each non-zero
a = ezsix • • • sike, k < m, z e Z, such that diag(zs,, • • • sik) G B, the power of each
generator of the projection eBe of B appearing in the presentation of a has absolute
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value < N(m + 1) where A' is independent of m and i\,..., ik. Hence, the set
{ezse\z e Z, diag(zs) e B, length of s <m} has at most (2N(m +1) + 1)' elements,
where t is the rank of eBe. Since this argument works for every diagonal of rank one
e < f,we get a polynomial bound on qm = |{diag(zs,-, • • • sik) e B\z e Z, k < m}\.
Now, the number of cosets inG/U that contain elements of T that are words of length
< minsu • • • ,sr does not exceed qm\Z\. This proves the theorem.

For any semigroup S we define the rank of S by RK(5) = sup{r |5 has a free com-
mutative subsemigroup on t generators }. It is known that, for S c M„ (K), RK(5) =
RK(T) for a cancellative subsemigroup T of S contained in a maximal subgroup of
Mn(K). If T has a group of fractions that is finite-by-abelian-finite, then RK(r) =
RK(G) and it is equal to the Gelfand-Kirillov dimension of G [10]. In particular, this
applies to the case described in Theorem 3 below. (Note that such groups are in fact
finitely generated and abelian-by-finite; cf. [14].)

The above result leads naturally to a condition under which we are able to prove the
finitenessof GK(S). Namely, assume that there exists q e N such that l^fVrCOl < <?
for every t e T, where 4>T : T —>• G/ U is the natural homomorphism. Then Theorem
2 yields a polynomial bound on frim). Suppose that at,..., ar € G are in the same
coset of U. Since G is the group of fractions of T, a{ = WjV~l for some «;,-, v € T.
Then wt = a,u e 7 are in the same coset of U, so that r < q. It follows that the
above condition is equivalent to saying that U is a finite group.

THEOREM 3. Let S c Mn(K) be a finitely generated semigroup of finite rank r
such that every non-empty intersection T = S n F with a maximal subgroup F of
Mn{K) has a group of fractions G c F that is nilpotent-by-finite; equivalently, S has
finite rank and satisfies an identity. If each G has finite unipotent radical, then S has
polynomial growth of degree bounded by f(n,r), where f is a function ofn and r.

PROOF. In view of Theorem 1 we need to show that fT(m)is polynomially bounded
for every cancellative subsemigroup of 5 of the form T — S n F. This is a direct
consequence of Theorem 2.

The existence of the function f(n,r) follows from the proof.

REMARK. (1) From the remark preceding Theorem 3 and the proof it follows that
S c Mn(K) has polynomial growth if and only if the associated groups G = TT~X are
nilpotent-by-finite and for each t e T which is a word of length < m in the generators
of 5 we have |0f'0r(f )I < ^(m) for a fixed polynomial q. In fact, in this case fT(m)
also is polynomially bounded.

(2) The hypotheses of the theorem are satisfied if each G is a diagonalizable-by-
finite group of finite rank.
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(3) Assume that ch(K) = 0. Then, by [18, Lemma 7.1], an abelian subgroup D
of finite index in a linear group G is diagonalizable if and only if each g e G is
a diagonalizable element. However, if each t e T is diagonalizable, then TDD
is a diagonalizable semigroup, so that D = (D D T)(D D T)"1 is diagonalizable.
Therefore, the hypotheses of the theorem are met if each G is abelian-by-finite, has
finite rank and a power of each s e 5 is a diagonalizable element.

Clearly, S n Gln{K) is finitely generated (if non-empty) whenever S is. Note also
that a nilpotent subgroup of G12(K) is abelian-by-finite (cf. [18, Chapter 7]). Thus,
the following is an immediate consequence of Remark (1) and the results of [14].

COROLLARY. LetS c M2(K) be a finitely generated semigroup. Then the following
conditions are equivalent:

(i) S has polynomial growth;
(ii) S satisfies an identity and has finite rank;
(iii) each cancellative subsemigroup of S embeds into a finitely generated linear

group of polynomial growth;
(iv) S n G12(K) is an almost-nilpotent semigroup, if non-empty, and every non-

empty intersection S P\ H with a maximal subgroup H ^ G12{K) of M2(K) lies in a
finitely generated subgroup of H.

We conclude with a comment on the growth rate of two other classes of linear
semigroups, admitting in general big unipotent components, but having finite GK-
dimension. Assume that 5 = {sit..., sr) is a Malcev nilpotent semigroup of class t
(cf. [8, 10]). A linear semigroup S of this type has a very special structure. Namely,
S intersects only finitely many maximal subgroups of Mn{K) ([5]). Therefore, the
sandwich matrices corresponding to the uniform pieces of S have finitely many rows
and columns. As in [13] one then shows that GK(S) < 2pks, where p = \{j '• S
has a uniform factor consisting of matrices of rank j}\, k = the product of the
nilpotency indices of the nilpotent factors of the structural chain of S, and s =
the maximal GK -dimension of the cancellative subsemigroups of S, (we know that
k < Y\"j=i (")' P 2: n). The connection between the nilpotency classes of S and of
the maximal cancellative subsemigroups of S is not straightforward since the class of
Malcev nilpotent semigroups is not closed under ideal extensions.

Another special class is that consisting of finitely generated semigroups with the
following permutation property: there exists m > 1 such that for every a\,..., am e S
one has a\ • • • am = aam • • • aa(m) for a non-trivial permutation a. Here, the finiteness
of GK(S), and a bound in terms of r and m, come from the Shirshov height theorem
(cf. [17],[10, Theorem 19.4]). Linear semigroups of this type have been described
in [15]. The maximal cancellative subsemigroups have abelian-by-finite groups of
fractions, and the associated sandwich matrices can be infinite; but they have a very
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strong 'finiteness of rank' property.
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