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We present experimental evidence of multifractality and scale-free network topology in
a noise-perturbed laminar jet operated in a globally stable regime, prior to the critical
point of a supercritical Hopf bifurcation and prior to the saddle-node point of a subcritical
Hopf bifurcation. For both types of bifurcation, we find that (i) the degree of multifractality
peaks at intermediate noise intensities, (ii) the conditions for peak multifractality produce a
complex network whose node degree distribution obeys an inverse power-law scaling with
an exponent of 2 < γ < 3, indicating scale-free topology and (iii) the Hurst exponent and
the global clustering coefficient can serve as early warning indicators of global instability
under specific operating and forcing conditions. By characterising the noise-induced
dynamics of a canonical shear flow, we demonstrate that the multifractal and scale-free
network dynamics commonly observed in turbulent flows can also be observed in laminar
flows under certain stochastic forcing conditions.
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1. Introduction

Above a critical Reynolds number, a low-density jet can become globally unstable,
transitioning from a spatial amplifier of extrinsic disturbances to a self-excited oscillator
with intrinsic dynamics prescribed by a wavemaker (Chomaz, Huerre & Redekopp 1988;
Lesshafft & Marquet 2010; Coenen et al. 2017; Chakravarthy, Lesshafft & Huerre 2018).
This transition can be viewed as a Hopf bifurcation from a fixed point perturbed by noise
to a limit cycle associated with nonlinear global oscillations (Huerre & Monkewitz 1990;
Kyle & Sreenivasan 1993; Hallberg & Strykowski 2006; Li & Juniper 2013b; Kushwaha
et al. 2022). Such oscillations can be useful in some processes (e.g. enhancing mixing
in combustion systems) but they can be damaging in other processes (e.g. triggering
vibrations in aeroelastic systems). There is thus a need to develop early warning indicators
of global instability so that preemptive action can be taken.

Noise exists in nearly all real systems but does not always act to obscure the
deterministic dynamics. For example, noise-induced phenomena, such as coherence
resonance, stochastic resonance and noise-induced synchronisation, can sometimes be
used to predict and control the stability and dynamics of nonlinear excitable systems
(Pikovsky, Rosenblum & Kurths 2003; Lindner et al. 2004; Scheffer et al. 2009; Lee
et al. 2020). This has been demonstrated in various systems ranging from optically trapped
atoms (Wilkowski et al. 2000) to schools of fish (Jhawar et al. 2020) to chemically
reacting/non-reacting flows (Noiray & Schuermans 2013; Lee et al. 2021; Sieber,
Paschereit & Oberleithner 2021). However, most studies involving fluids have focused
on turbulent flows. In the present study, we show for the first time that stochastically
forcing a laminar flow can cause it to exhibit the same type of multifractal and scale-free
network dynamics commonly seen in turbulent flows. From this, we conclude that even
when globally stable, a noise-perturbed laminar jet can behave in ways more complex
than just a noisy fixed point, leading to fresh opportunities for the development of global
instability precursors.

1.1. Multifractality in flow systems
Data collected from a complex system typically contain a wide range of spatial and
temporal scales due to the nonlinear interactions among the various subcomponents
(Coniglio, De Arcangelis & Herrmann 1989). Such data are often self-similar, with
fluctuations obeying fractal scaling, sometimes across multiple orders of magnitude
(Kantelhardt 2012). If the dynamics can be captured with a single exponent (the fractal
dimension), then the data are monofractal. If a continuous spectrum of exponents (the
singularity spectrum) is required, however, then the data are multifractal. Thus, the
fluctuations of a multifractal signal obey different scaling laws at different amplitudes.
Such behaviour has been widely observed in turbulence (Sreenivasan 1991). In seminal
experiments, Meneveau & Sreenivasan (1991) showed that the multiplicative processes
governing turbulent energy dissipation have a multifractal signature. Flohr & Olivari
(1994) analysed the passive scalar field of a turbulent jet and found a multifractal spectrum.
López et al. (2017) performed a similar analysis on a turbulent plume and found that
its spatiotemporal evolution can be described by multifractal metrics such as the width
and symmetry of the singularity spectrum. Viggiano et al. (2021) examined the dynamics
of a variable-density jet in the laminar, transitional and turbulent regimes. They found
that the degree of multifractality peaks at a transitional Reynolds number, close to the
turbulent threshold. From these and other studies, there is now compelling evidence that
multifractality is a characteristic feature of turbulent flows. However, to the best of the
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Multifractality and scale-free networks in a laminar jet

authors’ knowledge, multifractality has yet to be observed in a laminar flow, despite
its potential role in the development of early warning indicators of self-excited flow
oscillations (Nair & Sujith 2014; Sujith & Pawar 2021).

1.2. Scale-free networks in flow systems
Network analysis provides a versatile framework within which to analyse the connectivity
patterns of a complex system (Iacobello, Ridolfi & Scarsoglio 2021). Many network
properties (e.g. connectivities and scalings) are universal, appearing in many different
flow systems (Taira & Nair 2022). One such property is an inverse power-law scaling in the
node degree distribution, the defining feature of a scale-free network (Barabási & Albert
1999). Specifically, in a scale-free network, the fraction of nodes with k edges to other
nodes scales asymptotically as P(k) ∼ k−γ , with 2 < γ < 3. This power-law scaling is
thought to arise from two mechanisms: nodal growth and preferential attachment (Barabási
& Albert 1999).

Scale-free networks are ubiquitous in turbulence. For example, Liu, Zhou & Yuan
(2010) found scale-free topology in complex networks built from time traces of the
energy dissipation rate in three-dimensional fully developed turbulence. Taira, Nair &
Brunton (2016) showed that the vortical interactions in two-dimensional decaying isotropic
turbulence can be represented as a scale-free network. They also showed that the network
is only weakly sensitive to random forcing but is strongly sensitive to forcing directed
at the network hubs (vortical structures). Turning to reacting flows, Murugesan & Sujith
(2015) used the visibility algorithm to build complex networks from pressure signals
measured in a turbulent premixed combustor during its transition from a low-amplitude
aperiodic state (combustion noise) to a high-amplitude limit-cycle state (thermoacoustic
instability). They found that the former state is characterised by a scale-free network,
whose topology becomes ordered at the onset of thermoacoustic instability. Shortly
after, this loss of scale-free behaviour was used by Murugesan & Sujith (2016) as an
instability precursor. Like multifractality (§ 1.1), scale-free network topology has been
observed only in turbulent flows, leaving many open questions about its potential existence
in laminar flows and whether its destruction can be utilised as a precursor of global
instability.

1.3. Contributions of the present study
We aim to answer three research questions. (i) Can the multifractal and scale-free network
dynamics commonly seen in turbulent flows ever be seen in laminar flows? (ii) If so, under
what specific operating and forcing conditions? (iii) Can changes in multifractality and
scale-free network topology be used to forewarn of an impending critical transition, such
as a supercritical or subcritical Hopf bifurcation to a global mode?

To answer those questions, we perform laboratory experiments on a prototypical
hydrodynamic oscillator: a low-density inertial laminar jet. We examine the jet as it
transitions from a globally stable to globally unstable state via a supercritical or subcritical
Hopf bifurcation. By stochastically forcing the jet in the globally stable state, we find that
the noise-induced dynamics of this laminar flow can resemble the inherent dynamics of
turbulent flows, with regard to multifractality and scale-free network topology. We then
show how the loss of these two features en route to a Hopf bifurcation can be used for
early detection of global instability, under specific operating and forcing conditions.
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2. Experimental set-up

The experimental set-up is identical to that used in our previous work on the noise-induced
dynamics and system identification of low-density jets (Zhu, Gupta & Li 2017; Lee et al.
2019; Zhu, Gupta & Li 2019). The set-up features a round convergent nozzle with an exit
diameter of D = 6 mm and an area contraction ratio of 100:1. Upstream of the nozzle is
a settling chamber containing mesh screens and honeycomb sections as flow conditioners.
To set the jet density ratio (S ≡ ρj/ρ∞), we mix gaseous helium and air at flow rates
specified by mass flow controllers. Previous work by Zhu et al. (2017) on low-density jets
in the incompressible momentum-dominated regime has shown that S is a key parameter
controlling whether a supercritical or subcritical Hopf bifurcation occurs with increases
in the transverse curvature or the Reynolds number, Re ≡ ρjUjD/μj, where Uj is the
centreline flow velocity and μj is the dynamic viscosity of the jet fluid. We expose the
jet to external stochastic forcing, in the form of broadband acoustic waves generated by a
loudspeaker mounted at the bottom of the settling chamber. The loudspeaker is driven by
a white Gaussian noise signal (0–20 MHz bandwidth) produced by a function generator
(Keysight 33512B). We measure the jet response with a precalibrated single-normal
hot-wire probe (DANTEC 55P16) positioned at (x/D, r/D) = (1.5, 0), where x and r
are the streamwise and radial coordinates, respectively. This sensor location is within
the jet potential core, where the wavemaker resides and where the jet fluid concentration
remains constant, facilitating conversion of the hot-wire voltage (Li & Juniper 2013a).
We sample the hot-wire voltage at 32 768 Hz for 8 s using a 16-bit analogue-to-digital
converter (NI USB-6212), capturing time traces of the local streamwise velocity, u(t). We
define the noise intensity as the root-mean-square velocity fluctuation normalised by the
time-averaged velocity, σ ≡ u′

0,rms/ū0, where the subscript 0 denotes measurements taken
at the nozzle exit centreline, (x/D, r/D) = (0, 0). Further details on the experimental
set-up and measurement procedure can be found in our previous work (Zhu et al. 2017;
Lee et al. 2019; Zhu et al. 2019).

3. Results and discussion

3.1. Overview of the jet dynamics
We first consider the unforced jet dynamics. Figure 1 shows the bifurcation diagrams for a
supercritical case (S = 0.14) and a subcritical case (S = 0.18), both with the forward path
(increasing Re) and the backward path (decreasing Re) shown together. In the supercritical
case (figure 1a), the two paths overlap, with a shared Hopf point (Re = 590). In the
subcritical case (figure 1b), the two paths do not overlap because a hysteretic bistable
regime exists between the saddle-node point (Re = 760) and the Hopf point (Re = 785).

In the sections on multifractality (§ 3.2) and scale-free network topology (§ 3.3), we
apply stochastic forcing at the Hopf point itself in the supercritical case (figure 1a:
Re = 590) and near the saddle-node point in the subcritical case (figure 1b: Re = 755).
We choose these specific operating points for noise application because they are at the
edge of the unconditionally globally stable regime (Zhu et al. 2019). In the sections on
early detection of global instability (§ 3.4) and the universal scaling between fractal-based
and coherence-based precursors (§ 3.5), we apply stochastic forcing at every operating
point, including before and after the Hopf and saddle-node points as well as at those
points themselves. However, in every section of this paper, we also examine cases where
stochastic forcing is not applied at all; in these cases, the jet is subjected only to its inherent
background noise.
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Figure 1. Bifurcation diagrams of the jet undergoing (a) a supercritical Hopf bifurcation with S = 0.14 and
(b) a subcritical Hopf bifurcation with S = 0.18. In §§ 3.2 and 3.3, stochastic forcing is applied at the Hopf point
itself in the supercritical case (Re = 590) and near the saddle-node point in the subcritical case (Re = 755). In
§§ 3.4 and 3.5, stochastic forcing is applied at all the operating points shown.

3.2. Multifractality
We perform a multifractal detrended fluctuation analysis to characterise the fractal and
multifractal properties of the temporal fluctuations in the jet velocity signal u(t). As noted
by Kantelhardt et al. (2002), this involves computing the qth-order fluctuation function:

Fq ≡
⎛
⎝1/n

n∑
i=1

[
1/w

w∑
t=1

[y′
i(t) − Yi]2

]q/2
⎞
⎠

1/q

, (3.1)

where y′
i(t) consists of n non-overlapping segments of equal width w extracted from the

cumulative deviate series, y′
j ≡ ∑ j

t=1[u(t) − ū] with j = 1, 2, . . . , N and N = nw being
the total length of u(t). For the 0th-order moment (q = 0), the fluctuation function is
defined as

F0 ≡ exp

(
1/2n

n∑
i=1

log

[
1/w

w∑
t=1

[y′
i(t) − Yi]2

])
. (3.2)

For all q, we detrend each data segment by subtracting a local linear fit Yi from
y′

i(t) itself. The power-law scaling exponent in Fq ∼ wHq is known as the generalised
Hurst exponent. The Hurst exponent at q = 2, or H2, is commonly used to characterise
the long-range dependence of a time series (Hurst 1951; Kantelhardt et al. 2002). In
figure 2(a,b), we demonstrate how H2 can be extracted from the log–log plot of F2
and w via the local slope in the linear scaling regime (27 � w � 211), as per the
recommendations of Ihlen (2012).

We find that increasing σ leads to a decrease in H2 for both types of bifurcation. In the
supercritical case (figure 2c), H2 remains below 0.5 for all values of σ , indicating that the
jet dynamics are always anti-persistent, dominated by mean reversion processes that return
future values of the signal to the long-term average (Hurst 1951). This antipersistence
arises even at the lowest possible value of σ in our experimental facility (σ = 1.77 ×
10−3), which corresponds to the inherent background noise in the jet at the supercritical
Hopf point (Re = 590) without any external stochastic forcing.

In the subcritical case (figure 2d), H2 is initially greater than 0.5 for low values of
σ , indicating that the jet dynamics are persistent, dominated by long-memory trending
processes that cause future values of the signal to follow its previous values (Hurst 1951).
However, as σ increases, H2 falls below 0.5, indicating antipersistence. This transition
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Figure 2. (a,b) Fluctuation function F2 vs the segment width w on a log–log plot, (c,d) the generalised Hurst
exponent Hq, and (e,f ) the singularity spectrum, all at different values of σ . The supercritical and subcritical
cases are shown in the left and right columns, respectively. In panels (a,b), the bolded markers denote the data
used to compute H2. In panels (c,d), the error bars are the 90 % confidence intervals.

from persistence (H2 > 0.5) to antipersistence (H2 < 0.5) occurs only in the subcritical
case and can be explained as follows. When σ is low, the forcing is weak, and linear
response theory holds. Because the operating point in the subcritical case is relatively
far from the Hopf point (see the magenta marker in figure 1b), the weak forcing cannot
perturb the jet significantly away from its stable fixed point, resulting in dynamics that are
persistently dominated by the fixed point itself. When σ is high, however, the forcing is
strong enough to intermittently perturb the jet away from the stable fixed point and towards
the basin of attraction of an unstable limit cycle, producing dynamics with signatures
of both of these attractors and thus leading to antipersistence. In the supercritical case
(figure 2c), a similar transition from persistence to antipersistence is not observed because
the operating point is so close to the Hopf point (figure 1a) that the jet becomes marginally
globally unstable (Huerre & Monkewitz 1990), with even inherent background noise being
sufficient to cause antipersistent dynamics via coherence resonance (Zhu et al. 2019).

Figure 2(c,d) shows that, for both types of bifurcation and regardless of σ , Hq varies
with q, indicating that the low- and high-amplitude fluctuations in u(t) scale differently
(Kantelhardt et al. 2002). This evidence of multifractality appears even when the jet
is subjected only to its inherent background noise, without any external forcing. In the
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supercritical case, at both low and high noise intensities (figure 2c: σ = 1.77 × 10−3 and
� 1.95 × 10−3), Hq levels off at high positive q, indicating that the multifractal structures
are dominated by low-amplitude fluctuations (Ihlen 2012). Crucially, at an intermediate
noise intensity (figure 2c: σ = 1.82 × 10−3), Hq does not level off, indicating that the
multifractal structures consist of both low- and high-amplitude fluctuations, although the
former remain dominant. Thus, the multifractal characteristics of this jet depend strongly
on the noise intensity: only at an intermediate noise intensity can strong multifractal
structures emerge. Similar findings hold for the subcritical case (figure 2d), where the
critical noise intensity is σ = 2.37 × 10−3.

Figure 2(e,f ) shows the singularity spectrum, as computed via the Legendre transform
with a qth-order mass exponent of τq = qHq − 1, a singularity (Hölder) exponent of
α = ∂τq/∂q and a singularity dimension of f (α) = qα − τq. For both types of bifurcation
and regardless of σ , we find that the singularity spectrum is distributed along an inverted
parabolic arc of appreciable width (�α ≡ αmax − αmin), confirming the presence of
multifractality. If the signal were simply monofractal, the singularity spectrum would
cluster at a discrete point (Kantelhardt et al. 2002). The spectral width �α is thus a
measure of the range of scales present in the signal, i.e. the degree of multifractality
(Silchenko & Hu 2001; Ihlen 2012). We find that �α increases, peaks and then decreases
as σ increases (figure 2e,f insets), implying that the degree of multifractality reaches a
maximum at intermediate noise intensities: σ = 1.82 × 10−3 in the supercritical case, and
σ = 2.37 × 10−3 in the subcritical case. Moreover, we find that in all cases the singularity
spectrum is biased to the right side of the maximum value of f (α): �αleft < �αright.
Such a right-biased spectrum with an extended high-α tail is further confirmation that
the multifractal structures in the jet are dominated by low-amplitude fluctuations. Lastly,
we find that the value of α at which f (α) peaks is higher in the subcritical case than in
the supercritical case. This suggests that the subcritical data are less correlated, containing
more irregular (fine) structures.

Multifractality can arise from two main sources (Kantelhardt et al. 2002): (i) different
long-range correlations of the small- and large-scale fluctuations, leading to a regular
probability density function (PDF) with finite moments; and (ii) a broad PDF of time
series values, such as the Lévy distribution. To determine which source is dominant in
the present system, we randomly shuffle the original time series to destroy any long-range
correlations, thereby making the data memoryless. Figure 2(e,f ) shows that unlike the
original data, the shuffled data have a singularity spectrum clustered at α = 0.5, indicating
that the jet dynamics have degenerated to a white-noise-like state. From this we conclude
that the multifractality of the jet arises from different long-range correlations of the small-
and large-scale fluctuations. Moreover, singularity spectra from the unforced limit-cycle
state show clustering at α = 0, which is consistent with periodic data dominated by a
single time scale. This demonstrates that the jet loses its multifractality when it bifurcates
to a limit cycle at the onset of global instability: a feature that is further explored in § 3.4.

3.3. Scale-free network topology
We further analyse the noise-induced dynamics of the jet using complex networks built
with the visibility algorithm of Lacasa et al. (2008). We use the jet velocity fluctuations
u′(t) as input, enabling insights to be gained into the kinetic energy of the system.
Each element of the time series u′

i(ti) indexed by i = 1, . . . , N represents a node in
a network. Two arbitrary elements, (ta, u′

a) and (tb, u′
b), are considered linked if u′

c <

u′
b + (u′

a − u′
b)[(tb − tc)/(tb − ta)], where (tc, u′

c) is any other element between elements
(ta, u′

a) and (tb, u′
b). After mapping the time series to a network using the adjacency
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Figure 3. (a,c) Node degree distribution and (b,d) network structure for two scale-free cases with strong
multifractality: (a,b) supercritical at σ = 1.82 × 10−3 and (c,d) subcritical at σ = 2.37 × 10−3.

matrix A, we analyse the network structure using various measures. One such measure
is the node degree distribution P(k), which represents the probability distribution of the
number of edges k emanating from each node in the network. The node degree distribution
is a fundamental property of a complex network, providing insights into its structure and
function.

We consider two representative cases: a supercritical case (figure 3a,b: σ = 1.82 ×
10−3) and a subcritical case (figure 3c,d: σ = 2.37 × 10−3). Both cases feature strong
multifractality, as indicated by the maxima in �α (figure 2e,f ). We find that both types
of bifurcation support an inverse power-law scaling in the node degree distribution,
P(k) ∼ k−γ (figure 3a,c). We use a maximum-likelihood method to estimate γ = 1 +
n[
∑n

i=1 log(ki/kmin)]−1, where n is the total degrees considered, ki is the degree itself
and kmin is the smallest degree for which the power-law scaling holds (here kmin = 6).
We find that γ = 2.48 and 2.63 for the supercritical and subcritical cases, respectively.
Both values are in the range 2 < γ < 3, indicating that both networks exhibit scale-free
topology (Barabási & Albert 1999).

The structure of these scale-free networks can be visualised in figure 3(b,d): for both
types of bifurcation, the low-k nodes far outnumber the high-k nodes. The high-k nodes
are known as hubs (red/orange circles), occupy the tail end of the power-law distribution,
and determine the resiliency of the network (Iacobello et al. 2021). In turbulent flows,
such hubs could represent large-scale coherent structures, whereas the low-k nodes could
represent small-scale vortices generated by the turbulent energy cascade (Murugesan &
Sujith 2015; Taira et al. 2016). In our globally stable laminar jet, the hubs represent
intermittent bursts of periodicity arising from coherence resonance (Zhu et al. 2019): the
peaks of such bursts provide a clear line-of-sight to other peaks, increasing k. This is the
origin of the observed scale-free network topology.

3.4. Early detection of global instability
Early warning indicators have been used to forewarn of impending critical transitions in
various nonlinear dynamical systems (Scheffer et al. 2009). Two such indicators are H2, as
computed via multifractal analysis, and the global clustering coefficient Cg, as computed
via network analysis. The indicator Cg was introduced by Watts & Strogatz (1998) to
quantify the extent of node clustering in a complex network. It is defined as the number of
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Figure 4. Early detection of global instability: (a,b) bifurcation diagrams, (c,d) the Hurst exponent H2, and
(e,f ) the global clustering coefficient Cg, all as functions of Re for different noise intensities σ . In panels (c–f ),
the hollow markers denote globally stable states, while the filled markers denote globally unstable states. The
supercritical and subcritical cases are shown in the left and right columns, respectively.

closed triplets normalised by the total number of open and closed triplets:

Cg ≡ 1
N

N∑
i=1

⎧⎨
⎩
⎛
⎝ N∑

j,k=1

AijAjkAki

⎞
⎠/ [ki (ki − 1)]

⎫⎬
⎭, (3.3)

where Aij is an edge in the adjacency matrix A and ki = ∑N
j=1 Aij is the degree centrality,

a measure of the number of edges incident to a given node i. The value of Cg ranges from
0 to 1, with higher values indicating that nodes in the network tend to cluster together
more tightly. Figure 4 shows the bifurcation diagrams, H2 and Cg, all as functions of Re
for different values of σ . In the subcritical case (figure 4b), the bistable regime shrinks as
σ increases owing to noise-induced triggering, eventually disappearing altogether at high
σ and making the bifurcation appear supercritical.

First we consider H2. In the supercritical case (figure 4c), H2 decreases gradually
towards zero as Re increases towards the Hopf point, indicating that the mean-reversion
processes of the jet become stronger as the onset of global instability is approached.
Crucially, the decrease in H2 occurs well before the jet oscillation amplitude (|Ā|) starts to
rise. This suggests that it might be possible to estimate the proximity to the supercritical
Hopf point based on a calibrated H2 threshold. Such a threshold, however, would depend
on the noise intensity because the rate at which H2 decreases with Re diminishes as σ

increases. Physically this occurs because while the jet is globally stable before the Hopf
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point, it is still convectively unstable (Huerre & Monkewitz 1990). Convectively unstable
modes tend to spatially amplify any injected noise, at certain frequencies more than others,
causing a preferred mode to emerge via coherence resonance (Zhu et al. 2019). Thus,
somewhat counterintuitively, noise promotes order, enhancing the coherence of the jet
and reducing the sensitivity of H2 to Re. In the subcritical case (figure 4d), H2 remains
relatively constant at each σ as Re increases towards the Hopf point, after which H2 falls
sharply. This indicates that H2 is not a reliable precursor of global instability arising from
a subcritical Hopf bifurcation.

Next we consider Cg. In the supercritical case (figure 4e), Cg decreases gradually as
Re increases towards the Hopf point, making it another potential precursor of global
instability. This decrease in Cg is insensitive to σ before the Hopf point. After the Hopf
point, Cg levels off as σ increases because strong noise tends to disrupt the intrinsic
periodicity of the limit-cycle oscillations, reducing the number of network links and thus
increasing Cg in the post-bifurcation regime. In the subcritical case (figure 4f ), Cg behaves
like H2 (figure 4d) in that it remains relatively constant as Re increases towards the Hopf
point, making it an ineffective precursor at low to moderate noise intensities. Only when
the noise intensity is high enough (σ = 2.93 × 10−3) to cause the hysteretic bistable
regime to disappear can Cg become a potential precursor.

From these observations, we propose that combining H2 and Cg, along with their slopes,
into an integrated algorithm could lead to a systematic methodology for early detection of
global instability. Our analysis shows that in the supercritical case, ∂H2/∂Re starts off near
zero but decreases as the Hopf point is approached, particularly at low σ (figure 4c). At the
same time, ∂Cg/∂Re remains relatively constant at all σ (figure 4e). In the subcritical case,
∂H2/∂Re remains relatively constant at all σ (figure 4d), whereas ∂Cg/∂Re decreases as
σ increases (figure 4f ). These differences in ∂H2/∂Re and ∂Cg/∂Re could be exploited to
identify the bifurcation type. Once the bifurcation type is identified (and σ is measured),
H2 or Cg could be used as an instability precursor in the supercritical case, because both
of these indicators decrease as Re approaches the Hopf point, with Cg benefiting from
reduced sensitivity to σ . However, a calibration step would be needed to determine the
critical values to which H2 and Cg decrease at the supercritical Hopf point. Meanwhile,
Cg could be used as an instability precursor in the subcritical case, but only if σ is high. If
σ is not high, neither H2 nor Cg is effective in the subcritical case. Taken together, these
criteria may serve as the foundation of an early detection algorithm that synergistically
combines multifractal analysis and complex network analysis.

3.5. Universal scaling between H2 and β

Nearly all early warning indicators of critical transitions rely on extracting information
from the noise-induced dynamics of the system (Scheffer et al. 2009). Such precursors can
be classified into two types: (i) those that quantify the complexity or long-term memory
of a time series; and (ii) those that quantify the degree of coherence. Prime examples
of the former and latter types are, respectively, H2 (Hurst 1951) and the coherence
factor β (Ushakov et al. 2005; Zhu et al. 2019). Figure 5 shows that in the globally
stable regime of the jet, before the onset of limit-cycle oscillations, an inverse power-law
scaling exists between H2 and β for both supercritical and subcritical Hopf bifurcations.
Using least-squares regression, we find that the scaling H2 ∼ β−ζ has a coefficient of
determination of R2 = 0.92 with ζ = 0.48 in the supercritical case and R2 = 0.82 with
ζ = 0.28 in the subcritical case. These scaling laws are independent of Re and σ , giving
them some degree of universality for the early detection of global instability in low-density
jets.
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Figure 5. Inverse power-law scaling between H2 and β for various σ in the globally stable regime, prior to
(a) supercritical and (b) subcritical Hopf bifurcations. The error bars denote the standard deviation of H2.

4. Conclusions

We have provided the first experimental evidence of multifractality and scale-free
network topology in a laminar flow: a noise-perturbed low-density jet operated at a
Reynolds number below the critical point of a supercritical Hopf bifurcation and below
the saddle-node point of a subcritical Hopf bifurcation. We stochastically forced the
jet with acoustic waves of different amplitudes σ and characterised its noise-induced
dynamics via multifractal detrended fluctuation analysis and complex network analysis.
For both supercritical and subcritical Hopf bifurcations, we found that (i) the degree of
multifractality, as quantified by the width of the singularity spectrum, reaches a maximum
at intermediate noise intensities; (ii) the conditions with the strongest multifractality give
rise to a complex network whose node degree distribution obeys an inverse power-law
scaling with an exponent of 2 < γ < 3, indicating scale-free topology; and (iii) the Hurst
exponent H2 and the global clustering coefficient Cg can serve as early warning indicators
of global instability, but their effectiveness depends on the bifurcation type and the noise
intensity. Specifically, we have found that both H2 and Cg can serve as precursors of
supercritical Hopf bifurcations, especially when σ is low. However, we also found that
only Cg can serve as a precursor of subcritical Hopf bifurcations, and only under specific
forcing conditions: when σ is high enough to merge the saddle-node and Hopf points,
eliminating the hysteretic bistable regime. Finally, we have identified a universal power-law
scaling between H2 and the coherence factor β, establishing a link between fractal-based
and coherence-based precursors of global instability.

Although both multifractality and scale-free network topology have previously been
observed in turbulent flows, they have not been observed in a laminar flow – until now.
Here we have shown that applying stochastic forcing to a laminar flow can cause it
to exhibit the same type of multifractal and scale-free network dynamics usually seen
in turbulent flows. This discovery supports the notion that the complex dynamics of
turbulent flows can be modelled with low-order oscillators subjected to additive noise
(Noiray & Schuermans 2013; Rigas et al. 2015; Sieber et al. 2021). This discovery also
supports the notion that deterministic spatiotemporal chaos in hydrodynamic systems
can be modelled with the Kardar–Parisi–Zhang (KPZ) equation, a nonlinear stochastic
partial differential equation. Many spatiotemporally chaotic systems are known to belong
to the KPZ universality class, demonstrating that the small-scale features of deterministic
systems can have effects equivalent to those of a stochastic noise term (Boghosian, Chow
& Hwa 1999). Further evidence to support this can be found in the shell models used
by physicists to understand the complexity of turbulence (Biferale 2003). Shell models
lack the spatial structure of turbulence, yet they retain most of the temporal complexity.
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These models are dimensionally consistent with the Navier–Stokes equations and can
reproduce the multiscale dynamics of three-dimensional turbulence, without incorporating
any geometrical complexity (Biferale 2003). Finally, we note that the ability of H2 and
Cg to forewarn of an impending critical transition to global instability could find uses
in various other self-excitable flows, such as bluff-body wakes and swirling jets. The
applicability of these early warning indicators to such flows remains to be explored.
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