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FINITE GROUPSWITH LARGE AUTOMIZERS
FOR THEIR ABELIAN SUBGROUPS

H. BECHTELL, M. DEACONESCU AND GH. SILBERBERG

ABSTRACT.  This note contains the classification of the finite groups G satisfying
the condition Ng(H) / Cg(H) 22 Aut(H) for every abelian subgroup H of G

1. Introduction. The automizer of a subgroup H of a group G is Autg(H) =
Ng(H)/Cs(H). Since Autg(H) can be regarded as a subgroup of Aut(H) and Autg(H)
contains an isomorphic copy of In(H), we shall say that Autg(H) islargeif Autg(H) =
Aut(H) and small if Autg(H) 2 In(H).

H. Zassenhaus[7] observed that afinite group G is abelian if and only if Autg(H) is
small for all abelian subgroupsH of G. Lennox and Wiegold [6] studied groupsin which
the automizers of al subgroups are large, the so-called MD-groups. They proved—see
also Deaconescu [1]—that a finite MD-group is isomorphic to one of the symmetric
groups S, forn < 3.

Of interest is the fact that the finite MD-groups are precisely those finite groups in
which all elements of the same order are conjugate—see Feit and Seitz [2]. In this paper
attention isrestricted to finite groups G satisfying the weaker condition that Autg(H) is
large for all abelian subgroupsH of G. Such groups will be referred to as LAAS-groups
(Large Automizers for Abelian Subgroups).

By definition, every finite MD-group is an LAAS-group. As the quaternion group
Qs shows, there exist LAAS-groups which are not MD-groups. Quite surprisingly, the
guaternion group distinguishesthe two classes. The main result is the following:

THEOREM. An LAAS-groupisisomorphicto either §,, for n < 3 or to Qg.

2. Preliminaries. Thefollowing result is essential.

LEMMA 2.1. Let G beanontrivial LAAS-group.

i) Every epimorphicimage of G isa rational group.

ii) [Z(P)| = p for every P € Syl,(G) and every p € 7(G).
iii) The elements of order p are conjugatein G for every p € 7(G).
iv) If G’ # G, then G/G’ is an elementary abelian 2-group.
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V) If Se Syl,(G) isnonabelian and has a unique involution, then S Qg.

PROOF. i) Let x be an element of order n of G and let H = (x). Then Aut(H) =
Ng(H)/Cs(H) actstransitively on the set of generators of H. In particular for an integer
k and (k,n) = 1, there exists an element g such that X = x9. The result now follows
from Satz VV 13.7 of [4].

i) SinceP < Cg(Z(P)) for P € Syl,(G), Aut(Z(P)) isap’-group. Hence |Z(P)| = p.

iii) By i), ii) and Sylow’s theorem, it sufficesto provethat every subgroup U of order
p of G is conjugate to Z(P), where P is a fixed Sylow p-subgroup of G. If U < P, let
M = U x Z(P). Since Aut(M) = GL2(p) = Ng(M)/Cgs(M) acts transitively on the set
of subgroups of order p of M, U is conjugateto Z(P). If U £ P, then U < P* for some
x € G and the result follows from ii).

iv) Thisisaconsequenceof i).

v) The hypothesisimpliesthat Sis ageneralized quaternion group. Let |§] = 2" and
let M beacyclic maximal subgroupof S. Then|M| = 2"1, M = Cg(M) and | Aut(M)| =
22, But SCg(M)/Cg(M) = S/Cg(M) = S/M isisomorphic to a Sylow 2-subgroup of
Aut(M). Hence 22 = 2 and G = Qg.

Thefact that any LAAS-group is arational group reduces our search.

LEMMA 2.2. i) If G isa nonabelian simple rational group, then G = Spg(2) or
G 03(2).
ii) If Gisanonabelian composition factor of a rational group, then G isisomorphic
either to an alternating group A, or to one of the following groups: P Sp,(3),
Sps(2), O3(2)', PSL3(4) or PSU4(3).

PROOF. See Theorem B of Feit and Seitz [2].
The next result will be used in conjunction with Lemma 2.1 iii):

LEMMA 2.3. Let G bea solvable group and let p € 7(G) be odd. If all elements of
order p of G are conjugate, then the Sylow p-subgroups of G are abelian.

PrROOF. Thisis a consequenceof aresult of Gaschiitz and Yen [3]—see also Theo-
rem 8.7, p. 512 of [5].

3. Proof of the Theorem. Throughout this section G will denote a nontrivia
LAAS-group. The proof is in two parts. In the first part we shall determine al solv-
able LAAS-groups, whilein the second part we shall prove that there are no nonsolvable
LAAS-groups.

To begin with assumethat G is a nontrivial solvable LAAS-group.

LemMA 3.1. 7(G) C {2,3}

PrROOF. Supposethat p > 5 isaprime divisor of |G|. If a Sylow p-subgroup of G
is cyclic, G has Z, as a composition factor and hence has Z,_; asa quotient. But thisis
impossible since G isrational.

If a Sylow p-subgroup of G is not cyclic, it has a subgroup of type Z, x Z, whose
automorphism group is GL (2, p). Hence G is not solvable, another contradiction.
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LEMMA 3.2. If Gisnilpotent, then G & Z, or G 2 Qs.

ProOF. If Gisabelian, then 1 = Ng(G)/Cgs(G) = Aut(G) forcesG = Z,. If G is
nonabelian, then Gisa2-group by Lemmas3.1and 2.1iv). Since S3 = Aut(Z, x Z3), G
cannot have subgroupsisomorphicto Z, x Z,. Thus G isageneralized quaternion group.
Then G = Qg by Lemma2.1v).

LEmMmA 3.3. If Gisnonnilpotent, then G & Ss.

PrROOF. By hypothesisand by Lemma 3.1, n(G) = {2,3}. Let S € Syl,(G) and let
P € Syl4(G). By Lemmas2.1iii) and 2.3, Pis abelian. Hence |P| = 3 by Lemma2.1ii).

If now A isaminimal normal subgroup of G, then the solvability of G and Aut(A) =
G/Cgs(A) imply |A| € {2,3,4}. Suppose first that A C Sand note that A # S for
otherwise G/S = P = Z3, acontradiction with Lemma 2.1 iv). If |A| = 2, then Shas
aunique involution by Lemma 2.1 iii). So S Qg by Lemma 2.1 v). Since |G| = 24
and since Sis not normal in G, thisyields a contradiction. If |A| = 4, then Ais afour
group. Since G/Cg(A) = Aut(A) = S, one can prove easily that G & S,. Thisisa
contradiction since S; has two conjugacy classes of involutions and hence cannot be an
LAAS-group by Lemma2.1iii).

Therefore one must have |A| = 3. Hence A = Pisnormal inGand S~ G/P =
G/Cqs(P) = Aut(P) = Z,. Thisimplies G & S; and completes the proof.

The next objective is to prove that every LAAS-group is solvable. For the sake of
contradiction assumethat there exists a nonsolvable LAAS-group G. We shall usefreely
the fact that the elements of the same prime order are conjugate in G for every primein
m(G). Since G isarational group and since both groupsin Lemma 2.2 i) have more than
one conjugacy class of involutions, it follows that G cannot be simple.

LEMMA 3.4. G hasa unique abelian minimal normal subgroup A = Z, x Zo.

PrROOF. Let F(G) denote the Fitting subgroup of G. If F(G) = 1, there exists a
nonabelian minimal normal subgroupK < G. Then K isthedirect product of isomorphic
nonabelian simple groups K for 1 < i < s. Since G permutes the set {Ki|1 < i < s}
via conjugation, an involution in K; cannot be conjugate in G with an involution in the
diagonal if s # 1. Hence K isasimple nonabelian group. If Cs(K) # 1, Cs(K) contains
a nonabelian minimal normal subgroup of G because F(G) = 1. The unique conjugacy
class of involutions leads to a contradiction. So Cg(K) = 1 and G can beregarded as a
subgroup of Aut(K).

Since K isone of the groupsindicated in Lemma 2.2 i), the argument in the proof of
Corollary B of Feit and Seitz [2] eliminates all but one candidate, namely K = Ag. But
if K= Ag, then |G : K| = 2 0r |G : K| = 4. Hence G has a Sylow 3-subgroup of order 9
which contradicts Lemma 2.1 ii). Consequently F(G) # 1.

Since F(G) # 1, there exists aminimal normal elementary abelian subgroup A of G
of p-power order. If Ais cyclic, |A| = p. Hence G/Cg(A) = Aut(A) is cyclic of order
p—1 ByLemma2liv),p=3orp=2.
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Suppose first that p = 3 and let P € Syl;(G). Then A is the unique subgroup of
order 3 of P since al elements of order 3 of G liein A. This forces P to be cyclic and
then by Lemma 2.1 ii), P = A. Hence G/A is arational 3'-group. Since none of the
possible nonabelian composition factors of G /A, which are indicated in Lemma 2.2 ii),
isa3'-group, thereis a contradiction.

Suppose now that |A| = 2 and let S € Syl,(G). Since the unique involution of G lies
in Aand Aisnormal in G, Sis either cyclic or isomorphic to Qg by Lemma2.1v). If S
iscyclic, then |§ = 2 by Lemma 2.1ii). Hence S= A and therefore G/ A has odd order,
contradicting the fact that G /A is arational group.

If S= Qs, then a Sylow 2-subgroup of the rational group G/A hasorder 4. But G/A
is nonsolvable. The only possible nonabelian composition factor of G/A is As because
the other simple groupsin Lemma2.2 ii) have larger Sylow 2-subgroups. Consider now
achief factor G/H of G, with A < H. If G/H isabelian, G/H isa2-group by Lemma2.1
iv). Since G is honsolvable, H must contain a chief factor isomorphic to As by Jordan-
Holder theorem. This contradicts |§ = 8. One must then have G/H = As and conse-
quently H /A must have odd order.

Weclaimthat A = Z(G) = F(G). For if theclaimisfalse, then |F(G)| = 4and F(G) is
cyclic. Butthen G/ Cg(F(G)) = Aut(F(G)) = Z,. Thisimpliesthat if T isasubgroup of
order 5 of G, then 4 divides |Cg(T)|. In particular, [Ng(T)| = |[Ng(T) : Ca(T)| |Ca(T)| =
| Aut(T)| |Ce(T)| would be divisible by 16, a contradiction.

Thus F(G) = Z(G) and by Satz 4.2 b), p. 277 of [4], G/F(G) = Cg(F(G))/F(G)
contains no nontrivial abelian normal subgroups of G/F(G). By our preceeding discus-
sion, this showsthat Z(G) = F(G) = H with G/Z(G) & As. In particular, |G| = 120. If
Q € Syl5(G), then by Sylow’s theorem |G : Ng(Q)| equals 1 or 6. If Ng(Q) = G, then
|Cs(Q)| = 30. But inthis case Cg(Q) iscyclic and since | Aut(Zs)| = 8, one obtainsthe
contradiction: 240 divides the order of G.

If |G : Ng(Q)| = 6, then |[Ng(Q)| = 20 and |Cg(Q)| = 5, a contradiction because
|Z(G)| = 2. Therefore A cannot be cyclic.

Suppose now that A is an elementary abelian p-group of rank n > 2. Then GL(p) &
Aut(A) = G/Cg(A) is a homomorphic image of G, hence a rationa group. This can
happen only if (n,p) € {(1,2), (2,2), (1,3)} and since n > 2 we see that (n,p)=(2,2).
But then A 2 Z, x Z,. The uniquenessof A is evident.

We are now in a position to show that there exist no nonsolvable LAAS-groups. Sup-
posethat G isanonsolvable LAAS-group and let A beits unique minimal normal abelian
subgroup. By Lemma 3.4, Ais afour group and by Lemma 2.1 iii) all involutions of G
liein A. Moreover G/Cg(A) = Aut(A) = S;. There exists a 3-element x of G which
acts nontrivially on A. There exists a 2-element y which inverts x. Thus y?x = xy? and
y?" commutes with x for all m > 0. Sincey” is an involution for somen, it isin A. This
contradicts the definition of x. The proof of the Theorem is now complete.

REMARK. Onemay feel that the aboveproof reliestoo heavily on deep results about
simple groups and that the LAAS-property is so strong that an elementary proof should
be given to the Theorem. However, one should keep in mind that the LAAS-property is
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weaker than the MD-property mentioned in the Introduction and that the MD-property
is equivalent to the property that all elements of the same order are conjugate. As far
as we know, there is no elementary (i.e. CFSG-free) proof that §,, n < 3, are the only
finite groupsin which all elements of the same order are conjugate. Such a proof could
be obtained possibly by showing that the conjugation property implies the M D-property.
One may ask how far is the LAAS-property from the property that all elements of the
same prime order p are conjugate for every primep € 7(G).
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