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The Hausdorff and Packing Dimensions
of Some Sets Related to Sierpiński Carpets
Ole A. Nielsen

Abstract. The Sierpiński carpets first considered by C. McMullen and later studied by Y. Peres are modified by
insisting that the allowed digits in the expansions occur with prescribed frequencies. This paper (i) calculates
the Hausdorff, box (or Minkowski), and packing dimensions of the modified Sierpiński carpets and (ii) shows
that for these sets the Hausdorff and packing measures in their dimension are never zero and gives necessary
and sufficient conditions for these measures to be infinite.

1 Introduction

Let m and n be two integers satisfying n ≥ m ≥ 2 and let I = {0, 1, . . . , n − 1} and
J = {0, 1, . . . ,m− 1}. There is a function π from (I × J)N onto [0, 1]2 defined as follows:
If x is a point in (I × J)N and if u and v are the points in IN and JN, resp., such that
x j = (u j , v j) for each j ∈ N then

π(x) =
( ∞∑

j=1

u jn
− j ,

∞∑
j=1

v jm
− j
)
.

The sets to be studied in this paper are the images under this map of certain subsets of
(I × J)N.

Let D be a non-empty subset of I × J and let p = (pd)d∈D be a probability vector on
D. For any point x in (I × J)N, any positive integer k, and any point d ∈ I × J let Nk(x, d)
denote the number of integers in the set

{ j : 1 ≤ j ≤ k and x j = d}.

One can then consider the two subsets

L(D) = {x ∈ (I × J)N : x j ∈ D for all j ∈ N}

and

L(D, p) =

{
x ∈ L(D) : lim

k→∞

Nk(x, d)

k
= pd for all d ∈ D

}
of (I × J)N as well as their images

Λ(D) = π
(
L(D)

)
and Λ(D, p) = π

(
L(D, p)

)
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under π. The setΛ(D) is sometimes called a Sierpiński carpet. McMullen has calculated the
Hausdorff and box dimensions of Λ(D) [5] and Peres has calculated its packing dimension
and investigated its Hausdorff and packing measures in the critical dimension [7], [8]. The
object of the present paper is to carry out this analysis for the sets Λ(D, p).

For any Borel subset A of R2 let Hγ(A) and Pγ(A) denote the γ-dimensional Haus-
dorff and packing measures of A, resp., and let dimH A, dimP A, and dimB A denote the
Hausdorff, packing, and box dimensions of A, resp. (These measures and dimensions are
discussed in [1] and [4] and their definitions will not be reviewed here.) Let |A| denote
the cardinality of any finite set A, let θ = logn m, let σ denote the projection of R2 onto its
second coordinate, let B = σ(D), and for each point b ∈ B put nb = |D ∩ (I × {b})| and

qb =
∑
{pd : d ∈ D ∩ (I × {b})}.

Then 0 < θ ≤ 1 and q = (qb)b∈B is a probability vector on B. Finally, x logm x will be
interpreted as being 0 in case x = 0.

Theorem 1

dimH Λ(D, p) = dimP Λ(D, p) = −θ
∑
d∈D

pd logm pd − (1− θ)
∑
b∈B

qb logm qb(1)

and

dimB Λ(D, p) = logm(|B|1−θ|D|θ).(2)

The vector p is said to be uniformly distributed on D if pd = |D|−1 for all d ∈ D and D
is said to have uniform horizontal fibers if nb = nb ′ for all b, b ′ ∈ B.

Corollary 2

(a) dimH Λ(D, p) ≤ dimH Λ(D) with equality if and only if nσ(d) pd = qσ(d) for all d ∈ D
and (

∑
b ′∈B nθb ′)qb = nθb for all b ∈ B.

(b) dimP Λ(D, p) ≤ dimP Λ(D) with equality if and only if p is uniformly distributed on D
and D has uniform horizontal fibers.

The two conditions that part (a) of this corollary assert as being necessary and sufficient
for the equality of dimH Λ(D, p) and dimH Λ(D) are implied by but do not imply that p
is uniformly distributed on D and that D has uniform horizontal fibers. There is, in fact,
a simple example with |D| = 3, |B| = 2, and p not uniformly distributed on D for which
dimH Λ(D, p) = dimH Λ(D).

Theorem 3 Let γ denote the common value of dimH Λ(D, p) and dimP Λ(D, p) (cf. Theo-
rem 1).

(a) If p is uniformly distributed on D and if D has uniform horizontal fibers then

0 < Hγ
(
Λ(D, p)

)
≤ Pγ

(
Λ(D, p)

)
<∞.
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(b) If p is not uniformly distributed on D or if D does not have uniform horizontal fibers then

Hγ
(
Λ(D, p)

)
= Pγ

(
Λ(D, p)

)
=∞.

If |B| = 1 the set Λ(D, p) may be regarded as a subset of [0, 1] and has been discussed
by various authors. In particular, the calculation of its Hausdorff dimension is in [1, Sec-
tion 10.1].

2 Preliminaries

For each point x ∈ (I × J)N and each positive integer k put

Qk(x) = {π(u) : u ∈ (I × J)N, u j = x j for 1 ≤ j ≤ [θk], and

σ(u j) = σ(x j) for [θk] + 1 ≤ j ≤ k},

where, as usual, [·] denotes the greatest integer function. The sets Qk(x) are closed rectan-
gles in [0, 1]2 whose sides have lengths n−[θk] and n−θk and whose diameters diam Qk(x)
satisfy

√
2m−k ≤ diam Qk(x) ≤

√
2nm−k.(3)

The proofs of Theorems 1 and 3 necessarily involve estimating the Hausdorff and pack-
ing measures of Λ(D, p) in various dimensions and this will accomplished by means of the
following two density theorems. The first of these is a just a reformulation of the Rogers-
Taylor density theorem as stated by Peres in [8, Section 2]. Note that the occurrence of logm
in these theorems is a consequence of (3).

Lemma 1 Suppose that δ is a positive number, that λ is a finite Borel measure on [0, 1]2,
and that E is a subset of (I × J)N such that π(E) is a Borel subset of [0, 1]2 and λ

(
π(E)

)
> 0.

Put
A(x) = lim sup

k→∞

(
kδ + logm λ

(
Qk(x)

))
for each point x ∈ E.

(a) If A(x) = −∞ for all x ∈ E then Hδ
(
π(E)

)
=∞.

(b) If A(x) =∞ for all x ∈ E then Hδ
(
π(E)

)
= 0.

(c) If there are numbers a and b such that a ≤ A(x) ≤ b for all x ∈ E then 0 < Hδ
(
π(E)

)
<

∞.

Lemma 2 Suppose that δ, λ, and E are as in Lemma 1 and put

B(x) = lim inf
k→∞

(
kδ + logm λ

(
Qk(x)

))
for each point x ∈ E.

(a) If B(x) = −∞ for all x ∈ E then Pδ
(
π(E)

)
=∞.
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(b) If B(x) =∞ for all x ∈ E then Pδ
(
π(E)

)
= 0.

(c) If there are numbers a and b such that a ≤ B(x) ≤ b for all x ∈ E then 0 < Pδ
(
π(E)

)
<

∞.

Proof Consider the rectangle Qk(x) for some x ∈ (I × J)N and k ∈ N: This rectangle has
the form [u1, u2]× [v1, v2] and one may associate with it the rectangle

Qk(x) ′ =


[u1, u2]× [v1, v2] u2 = v2 = 1

[u1, u2]× [v1, v2) u2 = 1 and v2 < 1

[u1, u2)× [v1, v2] u2 < 1 and v2 = 1

[u1, u2)× [v1, v2) u2 < 1 and v2 < 1.

For any k ∈ N and any x ∈ (I× J)N the set Qk(x) determines k and it will be convenient
to let h

(
Qk(x)

)
= k. For each k ∈ N put

Qk = {Q j(x) : x ∈ (I × J)N and j ≥ k}

and define a k-packing of a non-empty subset F of [0, 1]2 to be a countable subset R of Qk

such that Q ′ ∩ F 6= ∅ for each Q ∈ R and such that the Q ′, Q ∈ R, are pairwise disjoint.
Put

P̃s(F) = lim
k→∞

sup
{∑

Q∈R

m−h(Q)s : R is a k-packing of F
}

and

P̃s(F) = inf
{ ∞∑

j=1

P̃s(F j) : F j ⊆ [0, 1]2 for each j and F =
∞⋃
j=1

F j

}
for each positive number s and each subset F of [0, 1]2. In view of (3) the functions P̃s and
P̃s are reminiscent of the packing pre-measure and measure and, what is more to the point,
are analogous to the functions denoted by es − P∗ and es − p∗ in [6]. In particular, the

P̃s, s > 0, are Borel measures on [0, 1]2. One can prove Lemma 2 by adapting some of the
arguments given in [6, Sections 3 and 5].

The first step is to modify the proof of [6, Corollary 5.9] to show that for any subset F of
[0, 1]2 the three numbers

(i) dimP(F),
(ii) sup{s > 0 : P̃s(F) =∞}, and

(iii) inf{s > 0 : P̃s(F) = 0}

are equal.
Now suppose that s > 0 and that E and λ are as in the statement of the lemma and put

C(x) = lim sup
k→∞

m−ks

λ
(
Qk(x)

)
for each x ∈ E. The second step is to show that

λ(E) inf
x∈E

C(x) ≤ P̃s(E) ≤ λ([0, 1]2) sup
x∈F

C(x)
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and this can be done by a modification of the proof of [6, Theorem 5.4]. The point of
introducing the rectangles Qk(x) ′ is that they resemble the dyadic cubes considered in [6]
and are amenable to a Vitali-type argument. Namely, suppose that G ⊆ (I × J)N and A ⊆
Q1 are sets with the property that the set {k : Qk(x) ∈ A} is infinite for each point x ∈ G.
Then there are (possibly finite) sequences (x j) in G and (k j) in N satisfying (i) Qk j (x j) ∈ A

for all j, (ii) G =
⋃

j Qk j (x j), and (iii) the Qk j (x j) ′ are pairwise disjoint. The proof
of this depends on the fact if Q1 and Q2 are two sets in Q1 such that Q ′1 ∩ Q ′2 6= ∅ and
h(Q1) ≤ h(Q2) then it follows that Q2 ⊆ Q1.

The lemma follows easily from these two steps.

The measures on [0, 1]2 that will be used in the application of these two lemmas are

constructed as follows. Suppose that p( j) = (p( j)
d )d∈D is a probability vector on D for each

j ∈ N. Then p( j) determines, in an obvious manner, a probability measure on the power
set of D and hence on the j-th factor of L(D) = DN. Let µ denote the Borel measure on
L(D) that is the infinite product of these measures (see [2, Section 38], for example) and
let µ̃ denote the Borel measure on Λ(D) that is the image of µ by π. One may, of course,
regard µ̃ as a Borel measure on [0, 1]2 and this will be done in the applications of Lemmas 1
and 2. In order to apply these lemmas with the measure µ̃ it is necessary to have a formula
for µ̃

(
Qk(x)

)
and to know that µ̃

(
Λ(D, p)

)
> 0. It is clear from the definition of µ̃ and

from the product structure of Qk(x) that

µ̃
(
Qk(x)

)
=

[θk]∏
j=1

p( j)
x j

k∏
j=[θk]+1

q( j)
σ(x j )
.(4)

Lemma 3 If lim j→∞ p( j)
d = pd for each d ∈ D then µ̃

(
Λ(D, p)

)
= 1.

Proof If

Kd =

{
x ∈ L(D) : lim

k→∞

Nk(x, d)

k
= pd

}
for each point d ∈ D then L(D, p) =

⋂
d∈D Kd and so it is sufficient to show that µ(Kp) = 1

for each d ∈ D.
Fix a point d ∈ D and put

X j(x) =

{
1 x j = d

0 x j 6= d

for j ∈ N and x ∈ L(D). Then (with respect to µ) X1,X2, . . . are independent (but not
necessarily identically distributed) random variables on L(D) which are uniformly bounded
and hence satisfy

∑∞
j=1 var(X j) j−2 <∞. Now

pd = lim
k→∞

k−1
k∑

j=1

p( j)
d
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(this is well-known—see [3, Lemma 2.3.1], for example), hence

lim
k→∞

Nk(x, d)

k
− pd = lim

k→∞
k−1

k∑
j=1

(
X j(x)− p( j)

d

)

= lim
k→∞

k−1
k∑

j=1

(
X j(x)−

∫
L(D)

X j dµ

)

for all x ∈ L(D), and therefore µ(Kd) = 1 by the strong law of large numbers (see [3,
Proposition 2.3.7]).

3 Proof of Theorem 1

Since Λ(D, p) is dense in Λ(D) it follows directly from the definition of the box dimension
that the box dimensions of these two sets are equal. But McMullen has shown that the right
side of (2) is equal to dimB Λ(D) and this proves (2).

Let p( j) = p for all j ∈ N and let µ and µ̃ be the Borel probability measures on L(D)
and Λ(D), resp., corresponding to the sequence (p( j)) of probability vectors on D. For any
point x ∈ (I × J)N, any integer k ∈ N, and any point b ∈ B let

Mk(x, b) = |{ j : 1 ≤ j ≤ k and σ(x j) = b}|.

Then

Mk(x, b) =
∑
{Nk(x, d) : d ∈ D ∩ (I × {b})}

and so

lim
k→∞

Mk(x, b)

k
=
∑
{pd : d ∈ D ∩ (I × {b})} = qb

for all x ∈ L(D, p) and b ∈ B.
Now let γ denote the right side of (1) and consider a point x in L(D, p). Then

logm µ̃
(
Qk(x)

)
=

[θk]∑
j=1

logm px j +
k∑

j=[θk]+1

logm qσ(x j )

=
∑
d∈D

N[θk](x, d) logm pd +
∑
b∈B

(
Mk(x, b)−M[θk](x, b)

)
logm qb

by (4) and hence

lim
k→∞

logm µ̃
(
Qk(x)

)
k

=
∑
d∈D

θpd logm pd +
∑
b∈B

(qb − θqb) logm qb

= −γ.
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For any positive number δ one can write

kδ + logm µ̃
(
Qk(x)

)
= k

(
δ +

logm µ̃
(
Qk(x)

)
k

)

and therefore

lim
k→∞

(
kδ + logm µ̃

(
Qk(x)

))
=

{
∞ δ > γ

−∞ δ < γ.

Since this holds for all points x ∈ L(D, p) it follows from Lemmas 1 and 3 that

Hδ
(
Λ(D, p)

)
=

{
0 δ > γ

∞ δ < γ,

and therefore dimH

(
Λ(D, p)

)
= γ. A similar argument using Lemma 2 in place of

Lemma 1 will show that dimP

(
Λ(D, p)

)
= γ.

4 Proof of Corollary 2

McMullen has shown that

dimH Λ(D) = logm

(∑
b∈B

nθb

)
(5)

and Peres that

dimP Λ(D) = logm(|B|1−θ|D|θ)(6)

([5, p. 1] and [7, Corollary 2.3(i)], resp.).
Since Λ(D, p) ⊆ Λ(D) there is no doubt that the inequalities in parts (a) and (b) must

hold, and straightforward calculations using Theorem 1 will show that the stated conditions
are sufficient for equality in the inequalities.

The proofs that the stated conditions are also necessary for equality depend on two
inequalities. The first of these is that∑

d∈E

pd logm pd ≥
(∑

d∈E

pd

)
logm

(
|E|−1

∑
d∈E

pd

)
(7)

for any non-empty subset E of D with equality if and only if the pd, d ∈ E, are all equal and
the second, that ∑

b∈B

qb(logm nθb − logm qb) ≤ logm

(∑
b∈B

nθb

)
(8)

with equality if and only if (
∑

b ′∈B nθb ′)qb = nθb for all b ∈ B.
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It now follows from Theorem 1 and (7), (8), and (5) that

dimH Λ(D, p) = −θ
∑
d∈D

pd logm pd − (1− θ)
∑
b∈B

qb logm qb

= −θ
∑
b∈B

∑
d∈D
σ(d)=b

pd logm pd − (1− θ)
∑
b∈B

qb logm qb

≤ −θ
∑
b∈B

qb logm(qb/nb)− (1− θ)
∑
b∈B

qb logm qb

=
∑
b∈B

qb(logm nθb − logm qb)

≤ logm

(∑
b∈B

nθb

)
= dimH Λ(D).

Now suppose that dimH Λ(D, p) = dimH Λ(D). Then (7) with E = σ−1(b) must be an
equality for each b ∈ B and (8) must be an equality, and this means that the two conditions
in the statement of part (a) are necessary for the equality of the Hausdorff dimensions.

The proof of part (b) depends on (7) with E = D and is even simpler, and it will there-
fore be left to the reader.

5 Proof of Theorem 3

The second inequality in part (a) is a well-known inequality relating the Hausdorff and
packing measures (see [4, Theorem 5.12], for example) and means that in proving part (b)
it is enough to consider the Hausdorff measure.

The proofs of the first and third inequalities in part (a) are easy. Let µ and µ̃ be as in
the proof of Theorem 1, let γ denote the right side of (1), and suppose that |B| = r and
|D| = rs. Then qb = r−1 for all b ∈ B and so (by (4))

kγ + logm µ̃
(
Qk(x)

)
= θk logm rs + (1− θ)k logm r

− [θk] logm rs− (k− [θk]) logm r

= (θk− [θk]) logm s

for all k ∈ N and all x ∈ L(D, p). The first and third inequalities in Theorem 3(a) now
follow from Lemmas 1(c) and 2(c).

The proof of part (b) is somewhat more complicated and it will be convenient to divide
it into four cases depending in part on whether or not pd > 0 for all d ∈ D. Accordingly,
consider the set

D ′ = {d ∈ D : pd > 0}.

The restriction p ′ of p to D ′ is a probability vector on D ′ and it is obvious that

Λ(D ′, p ′) ⊆ Λ(D, p)(9)
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and it follows from Theorem 1 that

dimH Λ(D ′, p ′) = dimH Λ(D, p).(10)

The four cases into which the proof of Theorem 3(b) will be divided are as follows:

(i) p is uniformly distributed on D and D does not have uniform horizontal fibers,
(ii) D ′ = D and p is not uniformly distributed on D,
(iii) D ′ 6= D and either p ′ is not uniformly distributed on D ′ or else D ′ does not have

uniform horizontal fibers, and
(iv) D ′ 6= D, p ′ is uniformly distributed on D ′, and D ′ has uniform horizontal fibers.

The last two of these four cases are not difficult. In fact, case (iii) follows from (i) and
(ii) and (10). Now consider case (iv). Then 0 < Hγ

(
Λ(D ′, p ′)

)
< ∞ by Theorem 3(a).

Put T(u, v) = (u/n, v/m) for all points (u, v) ∈ R2 and consider a positive integer k. Then
T is a linear transformation of R2 and the sets

T(d1) + · · · + Tk(dk) + Tk
(
Λ(D ′, p ′)

)
for d1, . . . , dk ∈ D are pairwise disjoint subsets of Λ(D, p) with the property that

Λ(D ′, p ′) =
⋃
{T(d1) + · · · + Tk(dk) + Tk

(
Λ(D ′, p ′)

)
: d1, . . . , dk ∈ D ′}.

Since Hγ is translation-invariant this implies that

Hγ
(
Λ(D ′, p ′)

)
= |D ′|kHγ

(
Tk
(
Λ(D ′, p ′)

))
and hence

Hγ
(
Λ(D, p)

)
≥ |D|kHγ

(
Tk
(
Λ(D ′, p ′)

))
= (|D|/|D ′|)kHγ

(
Λ(D ′, p ′)

)
.

Since this inequality holds for all k ∈ N it follows that Hγ
(
Λ(D, p)

)
=∞.

The proofs of cases (i) and (ii) are similar to one another and somewhat more compli-
cated than those of (iii) and (iv). Let r = (rb)b∈B be a vector on B satisfying rb > 0 for
all b ∈ B and

∑
b∈B nbrb = 1, let ω be a number in the interval (0, 1/4), let t j = j−ω for

j ∈ N, and put

p( j)
d = (1− t j)pd + t j rσ(d)

and
q( j)

b = (1− t j)qb + t jnbrb

for all j ∈ N, d ∈ D, and b ∈ B. (The actual value of ω will be unimportant except in one
argument near the end of the proof.) Notice that (p( j)) is a sequence of probability vectors
on D and

q( j)
b =

∑
{p( j)

d : d ∈ D ∩ (I × {b})}
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for all b ∈ B; let µ and µ̃ denote the corresponding Borel probability measures on L(D) and
Λ(D), resp., (cf. Section 2). Now put

Ak(x) = kγ + logm µ̃
(

Qk(x)
)

for k ∈ N and x ∈ L(D).
To prove cases (i) and (ii) of Theorem 3(b) it is sufficient, in view of Lemmas 1(a) and 3,

to show the one can select ω and r in such a manner that if

K = {x ∈ L(D, p) : lim
k→∞

Ak(x) = −∞}

then µ(K) > 0.
In order to study the functions Ak and the set K it will be convenient to introduce two

sequences of numbers and two sequences of random variables by putting

S j =
∑
d∈D

p( j)
d logm p( j)

d −
∑
d∈D

pd logm pd

T j =
∑
b∈B

q( j)
b logm q( j)

b −
∑
b∈B

qb logm qb

X j(x) = logm p( j)
x j
−
∑
d∈D

p( j)
d logm p( j)

d

and
Y j(x) = logm q( j)

σ(x j )
−
∑
b∈B

q( j)
b logm q( j)

b

for any j ∈ N and x ∈ L(D). Then∫
L(D)

X j dµ =

∫
L(D)

Y j dµ = 0(11)

for each j ∈ N and (by (4))

Ak(x) = kγ +
[θk]∑
j=1

logm p( j)
x j

+
k∑

j=[θk]+1

logm q( j)
σ(x j )

= ([θk]− θk)
∑
d∈D

pd logm pd + (θk− [θk])
∑
b∈B

qb logm qb

+
[θk]∑
j=1

S j +
k∑

j=[θk]+1

T j +
[θk]∑
j=1

X j(x) +
k∑

j=[θk]+1

Y j(x).

The first two terms in this last expression for Ak(x) are bounded functions of k and so play
no role in the identification of the set K; the middle two terms will be estimated directly
and the last two will be estimated by the law of the iterated logarithm. (The suggestion

https://doi.org/10.4153/CJM-1999-047-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-047-4


Some Sets Related to Sierpiński Carpets 1083

to use the law of the iterated logarithm and the measure just constructed instead of the
more natural measure employed in the proof of Theorem 1 came from Peres’ analysis of
the Hausdorff measure of Λ(D) in its Hausdorff dimension [8, pp. 519–520].) Now (11)
is part of the hypothesis of the law of the iterated logarithm for the sequences (X j) and
(Y j) and the rest of the hypothesis involves the variances var(X j) and var(Y j) of the X j and
the Y j .

Consider the numbers

uk =
( k∑

j=1

var(X j)
)1/2

and vk =
( k∑

j=1

var(Y j)
)1/2

for k ∈ N and the sets

KX =

x ∈ L(D, p) : lim sup
k→∞

|X1(x) + · · · + Xk(x)|

uk

√
2 ln ln u2

k

= 1


and

KY =

x ∈ L(D, p) : lim sup
k→∞

|Y1(x) + · · · + Yk(x)|

vk

√
2 ln ln v2

k

= 1

 .
It will be convenient to write αk ≈ βk for any two sequences (αk) and (βk) of positive
numbers satisfying αk = O(βk) and βk = O(αk). Since 1 − ω > 3/4 it is clear that if the
four conditions

lim
k→∞

( [θk]∑
j=1

S j +
k∑

j=[θk]+1

T j

)
= −∞,(12)

∣∣∣ [θk]∑
j=1

S j +
k∑

j=[θk]+1

T j

∣∣∣ ≈ k1−ω(13)

µ(KX) = 1 and
[θk]∑
j=1

X j(x) = o(k3/4) for each x ∈ KX(14)

and

µ(KY ) = 1 and
k∑

j=[θk]+1

Y j(x) = o(k3/4) for each x ∈ KY(15)

are all satisfied then KX ∩ KY ⊆ K and therefore µ(K) = 1. So to complete the proof of
Theorem 3(b) it is sufficient to show that these four conditions hold in cases (i) and (ii).

In order to do this it is necessary to estimate the numbers S j and T j and the variances
var(X j) and var(Y j), and this will be done by means of Taylor’s theorem with remainder.
Indeed, since D ′ = D in cases (i) and (ii) a tedious but straightforward calculation will
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show that there is a positive constant c (depending on ω and r) and, for each j ∈ N,
numbers ε j , η j , ξ j , and ζ j in the interval [−c, c] and such that

S j = c1t j + ε j t
2
j ,

T j = c2t j + η j t
2
j ,

var(X j) =

{
c3t2

j + ξ jt4
j pd = |D|−1 for all d ∈ D

c4 + ξ jt j otherwise,

and

var(Y j) =

{
c5t2

j + ζ jt4
j qb = |B|−1 for all b ∈ B

c6 + ζ jt j otherwise,

where the various constants are given by the formulae

c1 =
∑
d∈D

(rσ(d) − pd) logm pd,

c2 =
∑
b∈B

(nbrb − qb) logm qb,

c3 =
|D|

(ln m)2

∑
b∈B

nb(rb − |D|
−1)2,

c4 =
∑
d∈D

pd(logm pd)2 −
(∑

d∈D

pd logm pd

)2
,

c5 =
|B|

(ln m)2

∑
b∈B

(nbrb − |B|
−1)2,

and

c6 =
∑
b∈B

qb(logm qb)2 −
(∑

b∈B

qb logm qb

)2
.

The following lemma effectively reduces the four conditions (12)–(15) to questions
about the values of the constants c1, . . . , c6.

Lemma 4

(a) If c1, c2 ≤ 0 and c1 + c2 < 0 then (12) and (13) hold.
(b) If p is uniformly distributed on D and c3 > 0 or if p is not uniformly distributed on D

then (14) holds.
(c) If q is uniformly distributed on B and c5 > 0 or if q is not uniformly distributed on B then

(15) holds.

Proof There is no difficulty in verifying (a).
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Suppose that uk ≈ kα for some α > 0. Then limk→∞ u−1
k Xk

√
ln ln u2

k = 0 uniformly

on L(D) since the X j are uniformly bounded and so the law of the iterated logarithm (see
[3, p. 108, Corollary 2], for example) implies that µ(KX) = 1. Moreover, for each point
x ∈ KX and for each ε > 0 one has

∣∣∣ [θk]∑
j=1

X j(x)
∣∣∣ = |X1(x) + · · · + X[θk](x)|

u[θk]

√
2 ln ln u2

[θk]

u[θk]

√
2 ln ln u2

[θk] = o(kα+ε).

A similar argument will show that if vk ≈ kβ for some β > 0 then

∣∣∣ k∑
j=[θk]+1

Y j(x)
∣∣∣ ≤ ∣∣∣ k∑

j=1

Y j(x)
∣∣∣ +
∣∣∣ [θk]∑

j=1

Y j(x)
∣∣∣ = o(kβ+ε)

for each x ∈ KY and any ε > 0.
If p is uniformly distributed on D and c3 > 0 then u2

k ≈ k1−2ω and hence µ(KX) = 1 and∑[θk]
j=1 X j(x) = o(k1/2) for all x ∈ KX . On the other hand, if p is not uniformly distributed

on D then c4 > 0 by the condition for equality in the Cauchy-Schwarz inequality and hence

u2
k ≈ k and therefore µ(KX) = 1 and

∑[θk]
j=1 X j(x) = o(k3/4) for all x ∈ KY .

This proves part (b) of the lemma and the proof of (c) is similar.

The question of when the constants c1 and c2 are negative is answered by the next lemma.

Lemma 5 If α1, . . . , αk are positive numbers with
∑k

j=1 α j = 1 then

k∑
j=1

(k−1 − α j) logm α j ≤ 0

with equality if and only if α1 = · · · = αk.

Proof It is only necessary to observe that

k∑
j=1

(k−1 − α j) logm α j =

k∑
j=1

(k−1 − α j)(logm α j − logm k−1).

With these generalities out of the way it is now possible to finally begin the analysis of
cases (i) and (ii). Consider case (i) first and recall that pd = |D|−1 for all d ∈ D and that
the nb, b ∈ B, are not all the same. Put rb = (|B|nb)−1 for all b ∈ B. Then q is not uniformly
distributed on B, c2 < 0 by Lemma 5, and c1 = 0 and c3 > 0. Lemma 4 now implies that
the four conditions (12)–(15) hold and this completes the proof of case (i).

Now consider case (ii) and observe that, by Lemma 4, (14) holds. In analyzing case (ii)
further it will be convenient to consider the following three conditions:
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(N) nb = |D|qb for all b ∈ B
(P) qσ(d) = pdnσ(b) for all d ∈ D
(Q) qb = |B|−1 for all b ∈ B.

Suppose first that at least one of (N) and (Q) hold and put rb = |D|−1 for all b ∈ B.
Then c1 < 0 by Lemma 5 and c2 = 0, and so (12) and (13) hold by Lemma 4(a). If (N)
does not hold then clearly c5 > 0, and so if either (N) or (Q) fails to hold then Lemma 4(c)

implies that (15) holds. And if both (N) and (Q) hold then q( j)
b = |B|

−1 for all b ∈ B and
hence T j = 0 and Y j(x) = 0 for all x ∈ L(D) and all j ∈ N, and so in identifying the set K
it is not necessary to consider (15).

Now suppose that none of (N), (P), and (Q) hold and let rb = qb/nb for b ∈ B. Then
(14) and (15) hold by Lemma 4, c2 = 0, and∑

d∈D

(rσ(d) − pd) logm rσ(d) =
∑
b∈B

(qb − qb) logm rb = 0,

and therefore
c1 =

∑
d∈D

(rσ(d) − pd)(logm pd − logm rσ(d)) < 0.

So (12) and (13) also hold and again µ(K) = 1.
Now suppose, as absolutely the last case to be considered, that neither (N) nor (Q) hold

but that (P) does hold. Then again Lemma 4 implies that (14) and (15) hold. If there is a
choice of ω and r for which both c1 and c2 are negative then this same lemma would also
imply that (12) and (13) hold and the proof of case (ii) would be complete. So one may as
well assume that there are no such ω and r. Now

c1 =
∑
b∈B

(nbrb − qb) logm(qb/nb)

and thus
c2 + θ1−ω(c1 − c2) =

∑
b∈B

(nbrb − qb)(logm qb − θ
1−ω logm nb).

Let b0 be any point in B and put B0 = B \ {b0} and observe that

nb0 rb0 − qb0 =
∑
b∈B0

(qb − nbrb)

and therefore that

c2 + θ1−ω(c1 − c2) =
∑
b∈B0

(nbrb − qb)(logm qb − θ
1−ω logm nb)

+
(∑

b∈B0

(qb − nbrb)
)

(logm qb0 − θ
1−ω logm nb0 )

=
∑
b∈B0

(qb − nbrb)
(
logm(qb0/qb)− θ1−ω logm(nb0/nb)

)
.
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If θ = 1 the assumption that (N) does not hold implies that

logm(qb0/qb)− θ1−ω logm(nb0/nb) 6= 0(16)

for at least one point b ∈ B0. On the other hand, if θ < 1 there must be an ω ∈ (0, 1/4)
such that (16) holds for all b ∈ B0. Now since c2 + θ1−ω(c1 − c2) = 0 if rb = qb/nb for all
b ∈ B there will be positive numbers rb, b ∈ B0, such that

∑
b∈B0

nbrb < 1 and such that,
for each b ∈ B0 for which (16) holds, qb− nbrb and the left side of (16) have opposite signs.
This means that there are positive numbers rb, b ∈ B, such that

∑
b∈B nbrb = 1 and

c2 + θ1−ω(c1 − c2) < 0.(17)

By changing the numbers rb, b ∈ B, slightly if necessary one may assume that neither c1 nor
c2 is zero. The inequality (17) then implies that c1c2 < 0.

Now that ω and r have been selected it is possible to prove that (12) and (13) hold. This
will be done by combining upper and lower bounds on sums of the t j with the approxima-
tions of the S j and the R j by linear Taylor polynomials.

The first step is to observe that sums of the form
∑s

j=r t j , where r and s are positive
integers with r < s, satisfy

(s + 1)1−ω − r1−ω

1− ω
≤

s∑
j=r

t j ≤
s1−ω − (r − 1)1−ω

1− ω
.(18)

Regardless of which one of c1 and c2 is positive (recall that one of them is positive and
the other is negative), one can use (18) to find two sequences (Ck) and (C ′k) of numbers
satisfying

(1− ω)−1Ckk1−ω ≤ c1

[θk]∑
j=1

t j + c2

k∑
j=[θk]+1

t j ≤ (1− ω)−1C ′kk1−ω

for all k ∈ N and
lim

k→∞
Ck = lim

k→∞
C ′k = c2 + θ1−ω(c1 − c2).

The approximations of the S j and the T j by linear Taylor polynomials given in the discus-
sion preceding Lemma 4 imply that

∣∣∣ k∑
j=1

S j +
k∑

j=[θk]+1

T j − c1

k∑
j=1

t j − c2

k∑
j=[θk]+1

t j

∣∣∣ = ∣∣∣ k∑
j=1

ε j t
2
j +

k∑
j=[θk]+1

η j t
2
j

∣∣∣
≤ c

k∑
j=1

t2
j

≤
ck1−2ω

1− 2ω
.

It follows easily from from these estimates that (12) and (13) hold and this completes the
proof of case (ii) of Theorem 3(b).
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