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Abstract

Many components of a dependently typed programming language are by now well understood, for
example, the underlying type theory, type checking, unification and evaluation. How to combine
these components into a realistic and usable high-level language is, however, folklore, discovered
anew by successive language implementors. In this paper, I describe the implementation of IDRIS,
a new dependently typed functional programming language. IDRIS is intended to be a general-
purpose programming language and as such provides high-level concepts such as implicit syntax,
type classes and do notation. I describe the high-level language and the underlying type theory, and
present a tactic-based method for elaborating concrete high-level syntax with implicit arguments
and type classes into a fully explicit type theory. Furthermore, I show how this method facilitates the
implementation of new high-level language constructs.

1 Introduction

Dependently typed programming languages, such as Agda (Norell, 2007) and Coq (Bertot
& Castéran, 2004), have emerged in recent years as a promising approach to ensuring
the correctness of software. Type checking ensures a program has the intended meaning;
dependent types, where types may be predicated on values, allow a programmer to give
a program a more precise type and hence have increased confidence of its correctness.
The IDRIS language (Brady, 2011b) aims to take this idea further, by providing support for
verification of general-purpose systems software. In contrast to Agda and Coq, which have
arisen from the theorem proving community, IDRIS takes Haskell as its main influence.
Recent Haskell extensions such as GADTs and type families have given some of the power
of dependent types to Haskell programmers. In the short term this approach has a clear ad-
vantage, since it builds on a mature language infrastructure with extensive library support.
Taking a longer term view, however, these extensions are inherently limited in that they
are required to maintain backwards compatibility with existing Haskell implementations.
IDRIS, being a new language, has no such limitation, essentially asking the question:

‘What if Haskell had full dependent types?’

By full dependent types, we mean that there is no restriction on which values may appear
in types. It is important for the sake of usability of a programming language to provide a
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notation which allows programmers to express high-level concepts in a natural way. Taking
Haskell as a starting point means that IDRIS offers a variety of high-level structures such
as type classes, do-notation, primitive types and monadic I/O, for example. Furthermore, a
goal of IDRIS is to support high-level domain-specific language implementation, providing
appropriate notation for domain experts and systems programmers, who should not be
required to be type theorists in order to solve programming problems. Nevertheless, it
is important for the sake of correctness of the language implementation to have a well-
defined core language with well-understood meta-theory (Altenkirch et al., 2010). How
can we achieve both of these goals?

This paper describes a method for elaborating a high-level dependently typed functional
programming language to a low-level core based on dependent type theory. The method
involves building an elaboration monad which captures the state of incomplete programs
and a collection of tactics used by the machine to refine programs, directed by high-
level syntax. As we shall see, this method allows higher level language constructs to
be elaborated in a straightforward manner, without compromising the simplicity of the
underlying type theory.

1.1 Contributions

A dependently typed programming language relies on several components, many of which
are now well understood. For example, we rely on a type checker for the core type theory
(Chapman et al., 2005; Löh et al., 2010), a unification algorithm (Miller, 1992) and an
evaluator. However, it is less well understood how to combine these components effectively
into a practical programming language.

The primary contribution of this paper is a tactic-based method for translating programs
in a high-level dependently typed programming language to a small core type theory, TT,
based on UTT (Luo, 1994). The paper describes the structure of an elaboration monad
capturing proof and system state, and introduces a collection of tactics which the machine
uses to manipulate incomplete programs. Secondly, the paper gives a detailed description
of the core type theory used by IDRIS, including a full description of the typing rules.
Finally, through describing the specific tactics, the paper shows how to extend IDRIS with
higher level features. While we apply these ideas to IDRIS specifically, the method for term
construction is equally applicable to other typed programming languages, and indeed the
tactics themselves are applicable to any high-level language which can be explained in
terms of TT.

1.2 Outline

Translating an IDRIS source program to an executable proceeds through several phases is
illustrated below:

IDRIS
(desugaring)−−−−−−−→ IDRIS−

(elaboration)−−−−−−−→ TT
(compilation)−−−−−−−→ Executable

The main focus of this paper is the elaboration phase, which translates a desugared lan-
guage IDRIS− into a core language TT. In order to put this into its proper context, I give
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an overview of the high-level language IDRIS in Section 2 and explain the core language
TT and its typing rules in Section 3. Section 4 describes the elaboration process itself,
beginning with a tactic-based system for constructing TT programs, then introducing the
desugared language IDRIS− and showing how this is translated into TT using tactics.
Section 5 describes the process for translating TT back to IDRIS and properties of the
translation; and finally, Section 6 discusses related work and Section 7 concludes.

1.3 Typographical conventions

This paper presents programs in two different but related languages: a high-level language
IDRIS intended for programmers, and a low-level language TT to which IDRIS is elabo-
rated. We distinguish these languages typographically as follows:

• IDRIS programs are written in typewriter font, as they are written in a conven-
tional text editor. We use ei to stand for non-terminal expressions.

• TT programs are written in mathematical notation, with names arising from IDRIS

expressions written in typewriter font. We use vector notation �e to stand for
sequences of expressions.

Additionally, we describe the translation from IDRIS to TT in the form of meta-
operations, which in practice are Haskell programs. Meta-operations are operations on
IDRIS and TT syntax, and are identified by their names being in SMALLCAPS.

1.4 Elaboration example

A simple example of an IDRIS program is the following, which adds corresponding ele-
ments of vectors of the same length:

vAdd : Num a => Vect n a -> Vect n a -> Vect n a

vAdd Nil Nil = Nil

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys

This illustrates some basic features of IDRIS:

• Functions are defined by pattern matching, with a top-level type signature. Names
which are free in the type signature (a and n) here are implicitly bound.

• The type system ensures that both input vectors are of the same length (n) and have
the same element type (a), and that the element type and length are preserved in the
output vector.

• Functions can be overloaded using classes. Here the element type of the vector a
must be numeric and therefore supports the + operator.

• Unlike Haskell, a single colon is used for type signatures, and a double colon for the
cons operator, emphasising the importance of types.

IDRIS programs elaborate into a small core language, TT, which is a λ -calculus with
dependent types, augmented with algebraic data types and pattern matching. TT programs
are fully explicitly typed, including the names a and n in the type signature, and the names
bound in each pattern match clause. Classes are also made explicit. The TT translation of
vAdd is:
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vAdd : (a : Type) → (n : Nat) → Num a → Vect n a → Vect n a → Vect n a
var a : Type, c : Num a.

vAdd a Z c (Nil a) (Nil a) �→ Nil a
var a : Type, k : Nat, c : Num a,

x : a, xs : Vect k a, y : a, ys : Vect k a.

vAdd a (S k) c ((::) a k x xs) ((::) a k y ys)
�→ ((::) a k ((+) c x y) (vAdd a k c xs ys))

The rest of this paper describes IDRIS and TT, and systematically explains how to translate
from one to the other.

2 IDRIS – the high-level language

IDRIS is a pure functional programming language with dependent types. It is eagerly
evaluated by default, and compiled via the Epic supercombinator library (Brady, 2011a),
with irrelevant values and proof terms automatically erased (Brady et al., 2003; Brady,
2005). In this section I present some small examples to illustrate the features of IDRIS. A
full tutorial is available elsewhere (Brady, 2013).

2.1 Preliminaries

IDRIS defines several primitive types: fixed width integers Int, arbitrary width integers
Integer, Float for numeric operations, Char and String for text manipulation and Ptr

which represents foreign pointers. There are also several data types declared in the library,
including Bool, with values True and False. All of the usual arithmetic and comparison
operators are defined for the primitive types.

An IDRIS program consists of a module declaration, followed by an optional list of
imports and a collection of definitions and declarations, for example:

module Main

x : Int

x = 42

main : IO ()

main = putStrLn ("The answer is " ++ show x)

Like Haskell, the main function is called main, and input and output are managed with
an IO monad. Unlike Haskell, however, all top-level functions must have a type signature.
This is due to type inference being, in general, undecidable for languages with dependent
types.

A module declaration also opens a namespace. The fully qualified names declared in
this module are Main.x and Main.main.
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2.2 Data types

Data types may be declared in a similar way to Haskell data types, with a similar syntax.
For example, Peano natural numbers and lists are respectively declared in the library as
follows:

data Nat = Z | S Nat

data List a = Nil | (::) a (List a)

A standard example of a dependent type is the type of ‘lists with length’, conventionally
called ‘vectors’ in the dependently typed programming literature. In IDRIS, vectors are
declared as follows:

data Vect : Nat -> Type -> Type where

Nil : Vect Z a

(::) : a -> Vect k a -> Vect (S k) a

The above declaration creates a family of types. The syntax resembles a Haskell GADT
declaration: It explicitly states the type of the type constructor Vect – it takes a Nat and a
type as arguments, where Type stands for the type of types. We say that Vect is indexed
over Nat and parameterised by a type. The distinction between parameters and indices is
that a parameter is fixed across an entire data structure, whereas an index may vary. Note
that constructor names may be overloaded (such as Nil and (::) here) provided that they
are declared in separate namespaces.

Note that in the library, List is declared in a module Prelude.List, and Vect in a
module Prelude.Vect, so the fully qualified names of Nil are Prelude.List.Nil and
Prelude.Vect.Nil. They may be used qualified or unqualified; if used unqualified the
elaborator will disambiguate by type.

2.3 Functions

Functions are implemented by pattern matching. For example, the following function de-
fines concatenation of vectors, expressing in the type that the resulting vector’s length is
the sum of the input lengths:

(++) : Vect n a -> Vect m a -> Vect (n + m) a

Nil ++ ys = ys

(x :: xs) ++ ys = x :: xs ++ ys

Functions can also be defined locally using where clauses. For example, to define a func-
tion which reverses a list, we can use an auxiliary function which accumulates the new,
reversed list, and does not need to be visible globally:

reverse : List a -> List a

reverse xs = revAcc Nil xs where

revAcc : List a -> List a -> List a

revAcc acc Nil = acc

revAcc acc (x :: xs) = revAcc (x :: acc) xs

2.3.1 Totality checking

Internally, IDRIS programs are checked for totality – that they produce an answer in finite
time for all possible inputs – but they are not required to be total by default. Totality
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checking serves two purposes: firstly, if a program terminates for all inputs, then its type
gives a strong guarantee about the properties specified by its type; secondly, we can opti-
mise total programs more aggressively (Brady et al., 2003).

Totality checking can be enforced by using the total keyword. For example, the fol-
lowing definition is accepted:

total vAdd : Num a => Vect n a -> Vect n a -> Vect n a

vAdd Nil Nil = Nil

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys

The elaborator can verify that this is total by checking that it covers all possible patterns
– in this case, both arguments must be of the same form as the type requires that the input
vectors are of the same length – and that recursive calls are on structurally smaller values.

IDRIS also supports coinductive definitions, although this and further details of totality
checking are beyond the scope of this paper; the totality checker is implemented indepen-
dently of elaboration and type checking.

2.4 Implicit arguments

In order to understand how IDRIS elaborates to an underlying type theory, it is important
to understand the notion of implicit arguments. To illustrate this, consider the finite sets:

data Fin : Nat -> Type where

fZ : Fin (S k)

fS : Fin k -> Fin (S k)

As the name suggests, these are sets with a finite number of elements. The declaration gives
fZ as the zeroth element of a finite set with S k elements, and fS n as the n+1th element
of a finite set with S k elements.
Fin is indexed by Nat, which represents the number of elements in the set. Neither

constructor targets Fin Z, because the empty set has no elements. The following function
uses an element of a finite set as a bounds-safe index into a vector:

index : Fin n -> Vect n a -> a

index fZ (x :: xs) = x

index (fS k) (x :: xs) = index k xs

Let us take a closer look at its type. It takes two arguments, an element of the finite set of
n elements, and a vector with n elements of type a. But there are also two names, n and
a, which are not declared explicitly. These are implicit arguments to index. The type of
index could also be written as:

index : {a:_} -> {n:_} -> Fin n -> Vect n a -> a

This gives bindings for a and n with placeholders for their types, to be inferred by the
machine. These types could also be given explicitly:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

Implicit arguments, given in braces {} in the type signature, are not given in applications of
index; their values can be inferred from the types of the Fin n and Vect n a arguments.
Any name which appears in a non-function position in a type signature, but is otherwise
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free, will be automatically bound as an implicit argument. Implicit arguments can still be
given explicitly in applications, using the syntax {a=value} and {n=value}, for example:

index {a=Int} {n=2} fZ (2 :: 3 :: Nil)

2.5 Classes

IDRIS supports overloading in two ways. Firstly, as we have already seen with the construc-
tors of List and Vect, names can be overloaded in an ad hoc manner and resolved accord-
ing to the context in which they are used. This is mostly for convenience, to eliminate the
need to decorate constructor names in similarly structured data types, and eliminate explicit
qualification of ambiguous names where only one is well-typed – this is especially useful
for disambiguating record field names, although records are beyond the scope of this paper.

Secondly, IDRIS implements classes, following Haskell’s type classes. This allows a
more principled approach to overloading – a class gives a collection of overloaded op-
erations which describe the interface for instances of that class. IDRIS classes follow
Haskell 98 type classes, except that multiple parameters are supported, and that classes
can be parameterised by any value, not just types. Hence, we refer to them as classes
generally, rather than type classes specifically.

A simple example is the Show class, which is defined in the library and provides an
interface for converting values to Strings:

class Show a where

show : a -> String

An instance of a class is defined with an instance declaration, which provides implemen-
tations of the function for a specific type. For example:

instance Show Nat where

show Z = "Z"

show (S k) = "s" ++ show k

Instance declarations can themselves have constraints. For example, to define a Show

instance for vectors, we need to know that there is a Show instance for the element type,
because we are going to use it to convert each element to a String:

instance Show a => Show (Vect n a) where

show xs = "[" ++ show’ xs ++ "]" where

show’ : Vect n a -> String

show’ Nil = ""

show’ (x :: Nil) = show x

show’ (x :: xs) = show x ++ ", " ++ show’ xs

Classes can also be extended. A logical next step from an equality relation Eq, for example,
is to define an ordering relation Ord. We can define an Ord class which inherits methods
from Eq as well as defining some of its own:

data Ordering = LT | EQ | GT

class Eq a => Ord a where

compare : a -> a -> Ordering

(<) : a -> a -> Bool

-- etc
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2.6 Matching on intermediate values

2.6.1 Case expressions

Intermediate values of non-dependent types can be inspected using a case expression. For
example, list lookup looks up an index in a list, returning Nothing if the index is out of
bounds. This can be used to write lookup default, which looks up an index and returns
a default value if the index is out of bounds:

lookup_default : Nat -> List a -> a -> a

lookup_default i xs def = case list_lookup i xs of

Nothing => def

Just x => x

The case construct is intended for simple analysis of intermediate expressions to avoid
the need to write auxiliary functions. It will only work if each branch matches a value of
the same type, and returns a value of the same type.

2.6.2 The with rule

Often, matching is required on the result of an intermediate computation with a depen-
dent type. IDRIS provides a construct for this, the with rule, inspired by views in EPI-
GRAM (McBride & McKinna, 2004), which takes account of the fact that matching on a
value in a dependently typed language can affect what is known about the forms of other
values. For example, a Nat is either even or odd. If it is even, it will be the sum of two
equal Nats. Otherwise, it is the sum of two equal Nats plus one:

data Parity : Nat -> Type where

even : Parity (n + n)

odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether it is even
or odd and constructs the predicate accordingly:

parity : (n:Nat) -> Parity n

Using this, a function which converts a natural number to a list of binary digits (least
significant first) is written as follows, using the with rule:

natToBin : Nat -> List Bool

natToBin Z = Nil

natToBin k with (parity k)

natToBin (j + j) | even = False :: natToBin j

natToBin (S (j + j)) | odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result of parity k

depends on k. So, as well as the patterns for the result of the intermediate computation
(even and odd) right of the |, the definition also expresses how the results affect the
other patterns left of the |. Note that there is a function in the patterns (+) and repeated
occurrences of j – this is allowed because another argument has determined the form of
these patterns. In general, non-linear patterns are allowed only when their value is forced
by some other argument.
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Fig. 1. TT expression syntax.

3 The core type theory

High-level IDRIS programs, as described in Section 2, are elaborated to a small core
language, TT, then type checked. TT is a dependently typed λ -calculus with inductive
families and pattern matching definitions similar to UTT (Luo, 1994), and building on
an earlier implementation, IVOR (Brady, 2006). The core language is kept as small as is
reasonably possible, which has several advantages: it is easy to type check, since type
checking dependent type theory is well understood (Löh et al., 2010); and it is easy to
transform, optimise and compile. Keeping the core language small increases confidence
that these important components of the language are correct. In this section I describe TT

and its semantics.

3.1 TT syntax

The syntax of TT expressions is given in Figure 1. This defines:

• Terms, t, which can be variables, bindings, applications or constants.
• Bindings, b, which can be lambda abstractions, let bindings or function spaces.
• Constants, c, which can be integer or string literals, or Typei, the type of types, and

may be extended with other primitives.

The function space ∀x :S.T may also be written as (x : S) → T , or S → T if x is not free
in T , to make the notation more consistent with the high-level language. Universe levels
on types (Typei) may be left implicit and inferred by the machine (Pollack, 1990).

A TT program is a collection of inductive family definitions (Section 3.3) and pattern
matching function definitions (Section 3.4), as well as primitive operators on constants.
Before defining these, let us define the semantics of TT expressions.

3.2 TT semantics

The static and dynamic semantics of TT are defined mutually, since evaluation relies on a
well-typed term, and type checking relies on evaluation. Everything is defined relative to a
context, Γ. The empty context is valid, as is a context extended with a λ , ∀ or let binding:

� valid
Γ � S : Typei
Γ;λx :S � valid

Γ � S : Typei
Γ;∀x :S � valid

Γ � S : Typei Γ � s : S
Γ; let x �→ s : S � valid

We record the binding form in the context, as well as the type, because type checking relies
on evaluation. In particular, let bound names may reduce.
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Fig. 2. TT contraction schemes.

3.2.1 Evaluation

There are two distinct phases in which TT evaluation occurs, namely compile-time and
run-time. Compile-time evaluation is primarily to support type-checking, in which equiva-
lence of two terms (or types) is determined by comparing their normal forms. It is important
that terms are strongly normalising at compile-time, so any pattern matching definition
which is not guaranteed to be total does not reduce. In this section we discuss compile-
time evaluation; run-time evaluation differs in that there is no reduction under binders,
types and duplicated values have been erased (Brady et al., 2003), and non-normalising
definitions may reduce.

Compile-time evaluation of TT is defined by contraction schemes, given in Figure 2.
Contraction, relative to a context Γ, is given by one of the following schemes:

• β -contraction, which substitutes a value applied to a λ -binding for the bound vari-
able.

• δ -contraction, which replaces a let bound variable with its value.

The following contextual closure rule reduces a let binding by creating a δ -reducible
expression:

Γ; let x �→ s : S � t � u
Γ � let x �→ s : S. t � u

Reduction (�) is the structural closure of contraction, and evaluation (�∗) is the tran-
sitive closure of reduction. Conversion (�) is the smallest equivalence relation closed
under reduction. If Γ � x � y then y can be obtained from x by a finite, possibly empty,
sequence of contractions and reversed contractions. Terms which are convertible are also
said to be definitionally equal. The evaluator can also be extended by defining pattern
matching functions, which will be described in more detail in Section 3.4. In principle,
pattern matching functions can be understood as extending the core language with high-
level reduction rules.

3.2.2 Typing rules

The type inference rules for TT expressions are given in Figure 3. These rules use the
cumulativity relation, defined in Figure 4. The type of types, Typei is parameterised by a
universe level, to prevent Girard’s paradox (Coquand, 1986). There is an infinite hierarchy
of predicative universes. Cumulativity allows programs at lower universe levels to inhabit
higher universe levels. In practice, universe levels can be left implicit (and will be left
implicit in the rest of this paper) – the type checker generates a graph of constraints between
universe levels (such as that produced by the Forall typing rule) and checks that there are
no cycles. This happens as the last stage of type checking, waiting until we have all uses
of a family to establish how many levels are needed in the universe hierarchy. Otherwise,
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Fig. 3. Typing rules for TT.

Fig. 4. Cumulativity.

the typing rules are standard and type inference can be implemented in the usual way (Löh
et al., 2010).

3.3 Inductive families

Inductive families (Dybjer, 1994) are a form of simultaneously defined collection of al-
gebraic data types which can be parameterised over values as well as types. An inductive
family is declared in a similar style to a Haskell GADT declaration (Peyton Jones et al.,
2006) as follows:

data T : t where D1 : t | . . . | Dn : t

A constructor D of a family T must return a value in the family T. It may take recursive
arguments in the family T which may be higher order. Using vector notation,�x, to indicate
a sequence of zero or more x (i.e. x1,x2, . . . ,xn), recursive arguments have types of the form

∀x1 :S1. . . .∀xn :Sn.T�y
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where T does not occur in any of the�S or the�y. This restriction is known as strict positivity
and ensures that recursive arguments of the constructor are structurally smaller than the
value itself. In practice, this restriction can be relaxed when defining a family, but defini-
tions using families which do not satisfy strict positivity will not pass totality checking.

For example, the IDRIS data type Nat would be declared in TT as follows:

data Nat : Type where Z : Nat | S : (k : Nat) → Nat

A data type may have zero or more parameters (which are invariant across a structure)
and a number of indices, given by the type. For example, the TT equivalent of List is
parameterised over its element type:

data List : (a : Type) → Type where
Nil : List a
| (::) : (x : a) → (xs : List a) → List a

Types can be parameterised or indexed over values. Using this, we can declare the type
of vectors (lists with length), where the empty list is statically known to have length zero,
and the non-empty list is statically known to have a non-zero length. The TT equivalent of
Vect is parameterised over its element type, like List, but indexed over its length. Note
also that the length index k is given explicitly,

data Vect : Nat→ (a : Type) → Type where
Nil : Vect Z a
| (::) : (k : Nat) → (x : a) → (xs : Vect k a) → Vect (S k) a

3.4 Pattern matching definitions

A pattern matching definition for a function named f takes the following form, consisting
of a type declaration followed by one or more pattern clauses:

f : t
var�x1 :�t1.f�t1 = t1
. . .

var�xn :�tn.f�tn = tn

A pattern clause consists of a list of pattern variable bindings, introduced by var, and left-
and right-hand sides, both of which are TT expressions. Each side is type-checked relative
to the variable bindings, and the types of each side must be convertible. Additionally, the
left-hand side must take the form of f applied to a number of TT expressions, and the
number of arguments must be the same in each clause. The right-hand side may include
applications of f, i.e. pattern matching definitions may be recursive. The validity of a
pattern clause is defined by the following rule:

Γ;λ�x :�U � f�s : S Γ;λ�x :�U � e : T Γ � S � T
Γ � var�x :�U.f�s = e valid

Patterns are separated into the accessible patterns (variables and constructor forms which
may be inspected) and inaccessible patterns, following Agda (Norell, 2007) then imple-
mented by compilation into case trees (Augustsson, 1985). Non-terminating definitions are
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Fig. 5. Metatheoretic properties of TT.

permitted, but do not reduce at compile-time, which means in particular that they cannot
be used to construct proofs. Termination analysis is implemented separately.

A valid pattern matching definition effectively extends TT with a new constant, with
the given type (extending the initial typing rules given in Section 3.2.2) and reduction
behaviour (extending the initial reduction rules given in Section 3.2.1).

3.5 Metatheory

We conjecture that TT respects the usual metatheoretic properties, as shown in Figure 5.
Specifically: the Church–Rosser property (i.e. that distinct reduction sequences lead to
the same normal form); subject reduction (i.e. that computation preserves type); the cut
property (i.e. that let-bound terms may be substituted into their scope) and strengthening
(i.e. that removing unused definitions from scope does not affect type checking). Strong
normalisation holds at compile-time because pattern matching definitions which cannot
be shown to be terminating do not have compile-time reduction behaviour.

3.6 Totality checking

In order to ensure termination of type checking we must distinguish terms for which
evaluation definitely terminates, and those which may diverge. TT takes a simple but prag-
matic and effective approach to termination checking: any functions which do not satisfy a
syntactic constraint on recursive calls are marked as partial. Additionally, any function
which calls a partial function or uses a data type which is not strictly positive is also
marked as partial. We use the size change principle (Lee et al., 2001) to determine whether
(possibly mutually defined) recursive functions are guaranteed to terminate. Higher order
function arguments are assumed to be total, although if a higher order function is called
with a partial function as an argument, the calling function will be marked partial. TT also
marks functions which do not cover all possible inputs as partial. This totality checking is
independent of the rest of the type theory, and can be extended.
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This approach, separating the termination requirement from the type theory, means that
an IDRIS programmer makes the decision about the importance of totality for each function
rather than having the totality requirement imposed by the type theory.

3.7 From IDRIS to TT

TT is a very small language, consisting only of data declarations and pattern matching
function definitions. There is no significant innovation in the design of TT, and this is a
deliberate choice – it is a combination of small, well-understood components. The kernel of
the TT implementation, consisting of a type checker, evaluator and pattern match compiler,
is less than 1,000 lines of Haskell code. If we are confident in the correctness of the
kernel of TT, and any higher level language feature can be translated into TT, we can
be more confident of the correctness of the high-level language implementation than if it
were implemented directly.

The process of elaborating a high-level language into a core type theory like TT is,
however, less well understood, and presents several challenges depending on the features
of the high-level language.

3.7.1 Example elaboration

Recall the following IDRIS function:

vAdd : Num a => Vect n a -> Vect n a -> Vect n a

vAdd Nil Nil = Nil

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys

In order to elaborate this to TT, we must resolve the implicit arguments, and make the type
class explicit. The first step is to make the implicit arguments explicit, using a placeholder
to stand for the arguments we have not yet resolved. The type class argument is also treated
as an implicit argument, to which we give the name c:

vAdd : (a : _) -> (n : _) ->

Num a -> Vect n a -> Vect n a -> Vect n a

vAdd _ _ c (Nil _) (Nil _) = (Nil _)

vAdd _ _ c ((::) _ _ x xs) ((::) _ _ y ys)

= (::) _ _ ((+) _ x y) (vAdd _ _ _ xs ys)

Next, we resolve the implicit arguments. Each implicit argument can only take one value
for this program to be type correct – these are solved by a unification algorithm:

vAdd : (a : Type) -> (n : Nat) ->

Num a -> Vect n a -> Vect n a -> Vect n a

vAdd a O c (Nil a) (Nil a) = Nil a

vAdd a (S k) c ((::) a k x xs) ((::) a k y ys)

= (::) a k ((+) c x y) (vAdd a k c xs ys)

Finally, to build the TT definition, we need to find the type of each pattern variable and
state it explicitly. This leads to the following TT definition, switching to TT notation from
the ASCII IDRIS syntax:
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vAdd : (a : Type) → (n : Nat) → Num a → Vect n a → Vect n a → Vect n a
var a : Type, c : Num a.

vAdd a Z c (Nil a) (Nil a) �→ Nil a
var a : Type, k : Nat, c : Num a,

x : a, xs : Vect k a, y : a, ys : Vect k a.

vAdd a (S k) c ((::) a k x xs) ((::) a k y ys)
�→ ((::) a k ((+) c x y) (vAdd a k c xs ys))

3.7.2 An observation: programming vs theorem proving

IDRIS programs may contain several high-level constructs not present in TT, such as im-
plicit arguments, type classes, where clauses, pattern matching let and case constructs.
We would like the high-level language to be as expressive as possible, while remaining
possible to translate to TT.

Before considering how to achieve this, we make an observation about the distinction
between programming and theorem proving with dependent types, and appropriate mech-
anisms for constructing programs and theorems:

• Pattern matching is a convenient abstraction for humans to write programs, in that it
allows a programmer to express exactly the computational behaviour of a function.

• Tactics, such as those used in the Coq theorem prover (Bertot & Castéran, 2004), are
a convenient abstraction for building proofs and programs by refinement.

The idea behind the IDRIS elaborator, therefore, is to use the high-level program to direct
tactics to build TT programs by refinement. The elaborator is implemented as a Haskell
monad capturing proof state, with a collection of tactics for updating and refining the proof
state. The remainder of this paper describes this elaborator and demonstrates how it is used
to implement the high-level features of IDRIS.

4 Elaborating IDRIS

An IDRIS program consists of a series of declarations – data types, functions, classes and
instances. In this section, we describe how these high-level declarations are translated into
a TT program consisting of inductive families and pattern matching function definitions.
We will need to work at the declaration level, and at the expression level, defining the
following meta-operations.

• E �·�, which builds a TT expression from an IDRIS expression.
• ELAB, which processes a top-level IDRIS declaration by generating one or more TT

declarations.
• TTDECL, which adds a top-level TT declaration.

4.1 The development calculus TTdev

TT expressions are built by using high-level IDRIS expressions to direct a tactic-based
theorem prover, which builds the TT expressions step by step, by refinement. In order

https://doi.org/10.1017/S095679681300018X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681300018X


Idris, a general-purpose dependently typed programming language 567

Fig. 6. TTdev extensions.

to build expressions in this way, the type theory needs to support incomplete terms, and
a method for term construction. To achieve this, we extend TT with holes, calling the
extended calculus TTdev. Holes stand for the parts of programs which have not yet been
instantiated; this largely follows the Oleg development calculus (McBride, 1999).

The idea is to extend the syntax for binders with a hole binding and a guess binding.
These extensions are given in Figure 6. The guess binding is similar to a let binding, but
without any computational force, i.e. there are no reduction rules for guess bindings. Using
binders to represent holes is useful in a dependently typed setting since one value may
determine another. Attaching a guess to a binder ensures that instantiating one such variable
also instantiates all of its dependencies.

4.2 Proof state

We will build expressions in TT from high-level IDRIS expressions by creating a top-
level hole binding with the appropriate type, and refining it according to the structure of
the IDRIS expression. Noting the Curry–Howard correspondence between programs and
proofs, and the relationship between our method for elaboration and tactic-based theorem
proving, we refer to a development as a proof. A proof state is a tuple, (C,Δ,e,P,Q),
containing:

• a global context, C, containing pattern matching definitions and their types,
• a local context, Δ, containing pattern bindings,
• a proof term, e, in TTdev,
• unsolved unification problems, P

— these take the form (Γ,e1,e2), i.e. the context in which the problem is to be
solved, and the expressions to be unified,

• a hole queue, Q.

The hole queue is a priority queue of names of hole and guess binders 〈x1,x2, . . . ,xn〉
in the proof term – ensuring that each bound name is unique. Holes refer to sub-goals in
the proof. As a proof develops, unification problems arising from unsolved holes may be
introduced, and may be solved when those holes are instantiated. When the hole queue is
empty, and there are no remaining unification problems, the proof term is complete.

Creating a TT expression from an IDRIS expression involves creating a new proof state,
with an empty proof term, and using the high-level definition to direct the building of a
final proof state, with a complete proof term.

In the implementation, the proof state is captured in an elaboration monad, Elab, which
is simply a state monad with exceptions. Exceptions are captured by the option type
RESULT which either indicates success, or reports an error ERR:
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data RESULT t = SUCCESS t | FAILURE ERR

If any operation fails during a proof (e.g. a sub-term fails to type check) then the entire
proof fails (i.e. returns FAILURE e with some error message e) unless otherwise handled.

The Elab monad supports various operations for querying and updating the proof state,
manipulating terms, generating fresh names etc. However, we will describe IDRIS elab-
oration in terms of meta-operations on the proof state in order to capture the essence of
the elaboration process without being distracted by implementation details. These meta-
operations include:

• Queries, which retrieve values from the proof state, without modifying the state. For
example, we can:

— get the type of the current sub-goal (TYPE),
— get the current proof term (TERM),
— retrieve the local context Γ at the current sub-goal (CONTEXT),
— type check (CHECK) or normalise (NORMALISE) a term relative to Γ.

• Unification, which unifies two terms (potentially solving sub-goals) relative to Γ.
This may introduce new unification problems to the proof state.

• Tactics, which update the proof term. Tactics operate on the sub-term at the binder
specified by the head of the hole queue Q.

• Focussing on a specific sub-goal, which brings a different sub-goal to the head of
the hole queue.

Elaboration of an IDRIS expression involves creating a new proof state, running a series
of tactics to build a complete proof term, then retrieving and rechecking the final proof
term, which must be a TT program (i.e. does not contain any of the TTdev extensions).
We call a sub-term which contains no hole or guess bindings pure. Although a pure term
does not contain hole or guess bindings, it may nevertheless refer to hole- or guess-bound
variables.

The proof state is initialised with the NEWPROOF operation. Given a global context C,
NEWPROOF t sets up the proof state as:

(C, ·,?x : t. x,〈〉,〈x〉)
The local context is initially empty, and the initial hole queue is the x standing for the

entire expression. The proof term is reset with the NEWTERM operation. In an existing
proof state (C,Δ,e,P,Q), NEWTERM t discards the proof term and hole queue, and updates
the proof state to:

(C,Δ,?x : t. x,〈〉,〈x〉)
Resetting the term and queue but retaining pattern bindings allows the elaborator to use

pattern bindings from the left-hand side of a pattern matching definition in the term on the
right-hand side.

4.3 Tactics

In order to build TT expressions from IDRIS programs, we define a collection of meta-
operations for querying and modifying the proof state. Meta-operations may have side
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effects, including failure, or updating the proof state, and may fail. We have the following
primitive meta-operations:

• GET and PUT which allow direct access to the proof state.
• CHECKΓ e, which type checks an expression e relative to a context Γ, returning its

type. CHECK will fail if the expression is not well-typed.
• CONVERTΓ e1 e2, which checks that the well-typed expressions e1 and e2 respect the

cumulativity relation (i.e. Γ � e1 � e2), and fails otherwise.
• NORMALISEΓ e, which evaluates a well-typed expression e relative to a context Γ,

returning its normal form. NORMALISE reduces under binders, but does not reduce
definitions which are not total.

• PRIMUNIFYΓ e1 e2, which attempts to unify e1 and e2 by finding the values with
which holes must be instantiated for e1 and e2 to be convertible relative to Γ (i.e. for
Γ � e1 � e2 to hold).

• SUBST x e, which instantiates a hole x directly with a term e, typically arising from
unification and removes x from the hole queue.

Additionally, we have FOCUS, UNFOCUS, NEWHOLE, NEXTHOLE and REMOVEHOLE

operations which manipulate and inspect the hole queue. FOCUS n moves a hole to the
head of the hole queue:

FOCUS n = do (C,Δ,e,P,Q;n;Q′) ← GET

PUT (C,Δ,e,P,n;Q;Q′)

FOCUS refers to a hole n by name. Hole names are either given explicitly in proofs, or
chosen (as fresh names) by tactics. Correspondingly, UNFOCUS moves the hole currently
in focus to the end of the hole queue:

UNFOCUS = do (C,Δ,e,P,n;Q) ← GET

PUT (C,Δ,e,P,Q;n)

NEWHOLE declares that a new hole has been created and is to be solved next; NEXTHOLE

returns the next hole to be solved, and REMOVEHOLE removes a hole from the head of the
queue:

NEWHOLE n = do (C,Δ,e,P,Q) ← GET

PUT (C,Δ,e,P,n;Q)
NEXTHOLE = do (C,Δ,e,P,n;Q) ← GET

return n
REMOVEHOLE = do (C,Δ,e,P,n;Q) ← GET

PUT (C,Δ,e,P,Q)

Tactics are meta-operations which operate on the sub-term given by the hole at the head of
the hole queue in the proof state. They take the following form:

TACΓ �args t = do . . .

return t′

A tactic TAC takes a sequence of zero or more arguments �args followed by the sub-term
t on which it is operating. It runs relative to a context Γ, which contains all the bindings
and pattern bindings in scope at that point in the term. The sub-term t will either be a hole
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Fig. 7. Applying tactics to the proof state.

binding ?x : T. e or a guess binding ?x≈v:T. e. The tactic returns a new term t′ which can
take any form, provided it is well-typed, with a type convertible to the type of t. Tactics
may also have the side effect of updating the proof state, therefore we will describe tactics
in a pseudo-code with do notation.

Tactics are executed by a higher level meta-operation TACTIC, given in Figure 7, which
locates the appropriate sub-term, applies the tactic with the context local to this sub-term
and replaces the sub-term with the term returned by the tactic. Note that monadic lifting is
left implicit in this figure so that the details of the algorithm are not obscured.

In the remainder of this section, we will define a set of primitive tactics: CLAIM, FILL

and SOLVE, which are used to create and destroy holes; and LAMBDA, PI, LET and
ATTACK, which are used to create binders. Firstly, however, we must explain how uni-
fication is applied during elaboration.

4.3.1 Unification

Unification is crucial to the success of elaboration – it is unification which finds values
of implicit arguments, in particular. We do not require unification to succeed immediately,
in general, as instantiating a hole may affect the solution to other unification problems.
Instead, PRIMUNIFYΓ e1 e2 may give one of the following results:

• SUCCESS (�x =�e,�p), containing the solved holes mapping x to e, and a possibly
empty set of blocked unification problems�p. If�p is empty, there is a solution unifying
e1 and e2 in the context Γ.

• FAILURE e, if no solution is found due to a failure to unify sub-terms in normal form.
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Fig. 8. The UNIFY meta-operation.

UNIFY attempts to solve the given unification problem using PRIMUNIFY, then at-
tempts to further refine existing problems in the proof state. This operation is given in
Figure 8. After attempting to solve the problem with PRIMUNIFY and updating the proof
term with any solutions found, it updates the existing problems (with SUBSTPROBLEMS

which applies SUBST across the terms in the problems), then attempts to resolve the
existing problems with REUNIFY.

4.3.2 Creating and destroying holes

The CLAIM tactic, given a name and a type, adds a new hole binding in the scope of the
current goal x, adding the new binding to the hole queue, but keeping x at the head:

CLAIMΓ (y : S) (?x :T. e) = do NEWHOLE y
FOCUS x
return ?y :S. ?x :T. e

An obvious difficulty is in ensuring that names are unique throughout a proof term. The
implementation ensures that any hole created by the NEWHOLE operation has a unique
name by checking against existing names in scope and modifying the name if necessary.
In this paper, we will assume that all created names are fresh.

The FILL tactic, given a value v, attempts to solve the current goal with v, creating a
guess binding in its place. FILL attempts to solve other holes by unifying the expected type
of x with the type of v:

FILLΓ v (?x :T. e) = do T ′ ← CHECKΓ v
UNIFYΓ T T ′

return ?x≈v:T. e

For example, consider the following proof term:

?a :Type. ?k :Nat. ?x :a. ?xs :Vect k a.

?ys :Vect (S k) a. ys

If x is in focus (i.e. at the head of the hole queue) and the elaborator attempts to FILL it
with an Int value 42, we have:

• CHECKΓ 42 = Int

• Unifying Int with A (the type of x) is only possible if A = Int, so solve A.
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Therefore, the resulting proof term is:

?k :Nat. ?x≈42:Int. ?xs :Vect k Int.
?ys :Vect (S k) Int. ys

The SOLVE tactic operates on a guess binding. If the guess is pure, i.e. it is a TT term
containing no hole or guess bindings, then the value attached to the guess is substituted
into its scope, and the corresponding hole is removed from the hole queue:

SOLVEΓ (?x≈v:T. e) = do REMOVEHOLE

return e[v/x] (if PURE v)

The two-step process, with FILL followed by SOLVE, allows the elaborator to work
safely with incomplete terms, since an incomplete guess binding has no computational
force. Once a term is complete in a guess binding, it may be substituted into the scope of
the binding safely. In each of these tactics, if any step fails, or the term in focus does not
take the correct form (e.g. is not a guess in the case of SOLVE or not a hole in the case
of CLAIM and FILL), the entire tactic fails. We can handle failure using the TRY tactic
combinator:

TRYΓ t1 t2 t = case t1Γ t of
SUCCESS t′ �→ SUCCESS t′

FAILURE �→ t2Γ t

We have a primitive tactic FAIL, which may be invoked by any tactic which encounters a
failure condition (for example, an unsolvable unification problem) and is handled by TRY.

4.3.3 Creating binders

We also define primitive tactics for constructing binders. Creating a λ -binding requires that
the goal normalises to a function type:

LAMBDAΓ n (?x :T. x) = do ∀y :S.T ′ ← NORMALISEΓ T
return λn :S. ?x :T ′[n/y]. x

Creating a ∀-binding requires that the goal type converts with Type:

PIΓ (n : S) (?x :Type. x) = do V ← CHECKΓ S
CONVERTΓ V Type

return ∀n :S. ?x :Type. x

Creating a let binding requires a type and a value,

LETΓ (n : S �→ v) (?x :T. x) = do V ← CHECKΓ S
CONVERTΓ V Type

S′ ← CHECKΓ v
UNIFYΓ S S′

return let n : S �→ v. ?x :T. x

Each of these tactics requires the term in focus to be of the form ?x : T. x. This is
important because if the scope of the binding were an arbitrary expression e, the binder
would be scoped across this whole expression rather than the subexpression x as intended.
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The ATTACK tactic ensures that a hole is in the appropriate form, creating a new hole x′,
which is placed at the head of the queue:

ATTACKΓ (?x :T. e) = do NEWHOLE x′

return ?x≈(?x′ :T. x′):T. e

For example, consider the following proof term:

?x :a → b. x e

If we try to instantiate x with a λ -binding n immediately, without applying ATTACK first,
the λ will scope over the entirety of x e, and the resulting term is not well-typed:

λn :a. ?x :b. x e

If, on the other hand, we ATTACK the hole, then instantiate it with a λ -binding n, we get:

?x≈?x′ :a → b. x′:a → b. x e (after ATTACK)
?x≈λn :a. ?x′ :b. x′:a → b. x e (after LAMBDA n)

Now, once x′ has been instantiated, the guess for x can safely be closed with SOLVE.

4.3.4 Pattern binders

Finally, we can convert a hole binding to a pattern binding by giving the pattern variable a
name. This solves a hole by adding the pattern binding to the proof state, and updating the
proof term with the pattern variable directly:

PATΓ n (?x :T. e) = do PATBIND (n : T)
return e[n/x]

The PATBIND operation simply updates the proof state with the given pattern binding.
Once we have created bindings from the left-hand side of a pattern matching definition, for
example, we can retain these bindings for use when building the right-hand side.

4.3.5 Example

To illustrate how tactics are applied, using TACTIC, to build a complete term by refining a
proof state, let us consider the following TT definition for the identity function:

id : ∀A :Type.∀a :A.A
id = λA :Type.λa :A.a

We can build id either as a complete term, or by applying a sequence of tactics. To
achieve this, we create a proof state initialised with the type of id and apply a series of
LAMBDA and FILL operations using TACTIC. Note that the types on each LAMBDA are
taken from the goal type,
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Fig. 9. Proof state development for MKID.

MKID = do NEWPROOF ∀A :Type.∀a :A.A
TACTIC ATTACK

TACTIC (LAMBDA A)
TACTIC ATTACK

TACTIC (LAMBDA a)
TACTIC (FILL a)
TACTIC SOLVE

TACTIC SOLVE

TACTIC SOLVE

TERM

Figure 9 shows how each step of this sequence of tactics affects the proof state and hole
queue. In each step, the underlined fragment of the term is the fragment in focus. One
might observe that the ATTACK/SOLVE pairs are unnecessary in this case, as the term is
already in a form suitable for introduction. However, we retain these for uniform treatment
of introductions.

To aid readability, we will elide TACTIC, and use a semicolon to indicate sequencing – in
the implementation we use wrapper functions for each tactic to apply TACTIC. Using this
convention, we can build id’s type and definition as shown in Figure 10. Note that TERM

retrieves the proof term from the current proof state. Both MKIDTYPE and MKID finish
by returning a completed TT term. Note in particular that each tactic which introduces a
guess (FILL and ATTACK) is closed with a SOLVE.

Setting up elaboration in this way, with a proof state captured in a monad, and a primitive
collection of tactics, makes it easy to derive more complex tactics for elaborating higher
level language constructs, in much the same way as the Ltac language in Coq (Delahaye,
2000). As a result, the description of elaboration of a language construct (or a program
such as id) bears a strong resemblance to a Coq proof script.

4.4 System state

To elaborate IDRIS programs we will build expressions from high-level declarations of
functions, data types and classes, and add the resulting definitions to a global system state.
The system state is a tuple, (C,A, I), containing:

• a global context, C, containing pattern matching definitions and their types,
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Fig. 10. Building id with tactics.

• implicit arguments, A, recording which arguments are implicit for each global name,
• class information, I, containing method signatures and dictionaries for classes.

In the implementation, the system state is captured in a monad, Idris, which includes
additional information such as syntax overloadings, command line options and optimisa-
tions, which do not concern us here.

For each global name, A records whether its arguments are explicit, implicit or class
constraints. For example, recall the declaration of vAdd:

vAdd : Num a => Vect n a -> Vect n a -> Vect n a

Written in full, and giving each argument an explicit name, we get the type declaration:

vAdd : (a : _) -> (n : _) -> (c : Num a) ->

(xs : Vect n a) -> (ys : Vect n a) -> Vect n a

For vAdd, the state records that a and n are implicit, c is a constraint, and xs and ys are
explicit. When the elaborator encounters an application of vAdd, it knows that unless these
arguments are given explicitly, the application must be expanded.

4.5 Elaborating expressions

We will use a subset of full IDRIS, which we call IDRIS−, to explain elaboration of ex-
pressions. IDRIS− expression syntax is given in Figure 11, and declaration syntax is given
in Figure 12. IDRIS− is a subset of IDRIS without syntactic sugar – that is, without do-
notation or infix operators – and with implicit arguments in types bound explicitly (e.g.
{a : } -> {n : } -> Vect n a instead of simply Vect n a). Note that we separate
implicit and type constraint bindings to ensure that they only appear in top-level declara-
tions. It is in general straightforward to convert full IDRIS to IDRIS− – syntactic sugar is
implemented by a direct source transformation, and implicit arguments can be identified
as the names which are free in a type in a non-function position. IDRIS− differs from TT

in several important respects. It has implicit syntax and classes, and functions are applied
to multiple arguments rather than one at a time.

To elaborate expressions, we define meta-operations E �·� and P�·�, which run relative
to a proof state (see Section 4.2). P�·� elaborates patterns, i.e. expressions on the left-
hand side of a pattern matching definition, whereas E �·� elaborates expressions on the
right-hand side. Their effect is to update the proof state so that the hole in focus contains a
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Fig. 11. IDRIS− expressions.

Fig. 12. IDRIS− declarations.

representation of the given expression by applying tactics. We assume that the proof state
has already been set up, which means that elaboration can always be type-directed since
the proof state contains the type of the expression we are building.

In all cases except the elaboration of variables and constants, P�x� = E �x�.

4.5.1 Elaborating variables and constants

In the simplest cases, there is a direct translation from an IDRIS− expression to a TT

expression – we build TT representations of variables and constants using the FILL tactic:

E �x� = do FILL x; SOLVE

E �c� = do FILL c; SOLVE

Since FILL creates a guess binding, we use SOLVE to instantiate the guess. We need
not concern ourselves with type checking variables or constants here – FILL will handle
this, type checking x or c and unifying the result with the hole type. If there are any errors,
elaboration will fail.

If we are building the left-hand side of a pattern clause, however, there is a problem, as it
is the left-hand side which defines variables. In this context, we assume that attempting to
elaborate a variable which does not type check means that the variable is a pattern variable:
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P�x� = TRY (do FILL x; SOLVE)
(PAT x)

In Haskell, for comparison, pattern variables are all lower case, so type checking can
assume that a lower case name in a pattern refers to a variable. In IDRIS, however, a name
in a pattern may refer to a function if forced by some dependency.

We also need to elaborate placeholders, which are subexpressions we expect to solve
by unification. In this case, we simply move on to the next hole in the queue, moving the
current hole to the end of the queue with UNFOCUS:

E � � = UNFOCUS

On encountering a placeholder, our assumption is that unification will eventually solve
the hole. At the end of elaboration, any holes remaining unsolved on the left-hand side
become pattern variables. If there are any unsolved on the right-hand side, elaboration is
incomplete and an error will be reported when the resulting term is type checked.

4.5.2 Elaborating bindings

To elaborate a λ -binding, we ATTACK the hole, then apply the LAMBDA tactic, which
will fail if the goal is not a function type. We then elaborate the scope and SOLVE, which
discharges the ATTACK:

E �\ x =>e� = do ATTACK; LAMBDA x
E �e�
SOLVE

Note that there is no type on the λ -binding in IDRIS−. There is no need – since elabo-
ration is type directed, the LAMBDA tactic finds the type of the binding by looking at the
type of the hole. In full IDRIS, types are allowed on bindings, and the elaborator merely
checks that the given type is equivalent to the inferred type.

Elaborating a function type is more tricky, since we have to elaborate the argument type
(itself an IDRIS− expression), then elaborate the scope. To achieve this, we create a new
goal X for the argument type t, where X is a fresh name, and introduce a function binding
with argument type X. We can then focus on X, and elaborate it with the expression t.
Finally, we elaborate the scope of the binding.

E �(x : t) -> e� = do ATTACK; CLAIM (X : Type)
PI (x : X)
FOCUS X
E �t�; E �e�
SOLVE

Elaborating t will involve solving unification problems, which will, if the program is
type correct, solve X. After focussing on X and elaborating t, there is no need to refocus on
the hole representing the scope, as it was previously at the head of the hole queue before
focussing on X. Elaboration of implicit and constraint argument types is exactly the same
– TT makes no distinction between then.
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To elaborate a let binding, we take a similar approach, creating new subgoals for the
let-bound value and its type, then elaborating the scope. Again, if elaborating the scope
is successful, unification will solve the claimed variables V and X.

E �let x = v in e� = do ATTACK; CLAIM (X : Type); CLAIM (V : X)
LET (x : X �→ V)
FOCUS V
E �v�; E �e�
SOLVE

4.5.3 Elaborating applications

There are two cases to consider when elaborating applications:

• Applying a global function name to arguments, some of which may be implicit.

• Applying an expression, which does not have implicit arguments, to an argument.

In the first case, the elaborator must expand the application to include implicit argu-
ments. For example, vAdd xs ys is expanded to vAdd {a= } {n= } {{ }} xs ys,
adding the implicit arguments a and n and a class instance argument. The meta-operation
EXPAND x�a, given a global function name x and the arguments supplied by the program-
mer�a, returns a new argument list�a′ with implicit and class arguments added. Each value
in�a′ is paired with an explicit name for the argument.

Implicit arguments are solved by unification – the type or value of another argument
determines the value of an implicit argument, with the appeal to UNIFY in the FILL tactic
solving as many extra holes as it can. However, unification problems can take several
forms. For example, assuming f , g, x are holes, we might have unification problems of
the following forms:

UNIFYΓ f Int
UNIFYΓ (f x) Int
UNIFYΓ (f x) (g x)

The first problem has a solution: f = Int. The second and third problems have no
solution without further information. In the second case, we cannot conclude anything
about f or x just from knowing that f x = Int. In the third case, although we have x = x
in argument position, we cannot conclude that f = g in general as a result.

Once f or g is solved in some other way, perhaps by being given explicitly in another
argument, these unification problems can make progress. Otherwise, unification blocks.
In such a case, the elaborator stores the problem (i.e. the expressions to be unified with
their local context) and refines it with further information when it becomes available.
Elaborating a global function application makes a CLAIM for each argument, in turn. Then
the function is elaborated, and applied to each of the claimed arguments. Each argument
which has been given explicitly is elaborated. Finally, any class instance arguments are
resolved with the built-in INSTANCE tactic,
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E �x�a� = do (�n,�v) ← EXPAND x�a
�CLAIM (�n : �T)

FILL x�n
�ELABARG�n�v (for non-placeholder v)

SOLVE
�INSTANCE�n (for class constraint argument n)

ELABARG n v = FOCUS n; E �v�

The INSTANCE tactic focuses on the given hole and searches the context for a class
instance which would solve the goal directly. Firstly, it examines the local context, then
recursively searches the global context. INSTANCE is covered in detail in Section 4.6.6.

To elaborate a simple function application, of an arbitrary expression to an arbitrary
argument (possibly with a dependent-type), we need not worry about implicit arguments
or class constraints. Instead, the function and argument are elaborated, and the results are
applied. Since elaboration is type directed, however, there must be an appropriate type for
the function,

E �e a� = do CLAIM (A : Type); CLAIM (B : Type)
CLAIM (f : A → B); CLAIM (s : A)
FOCUS f ; E �e�
FOCUS s; E �a�

4.6 Elaborating declarations

To elaborate declarations, we define a meta-operation ELAB, which runs relative to the
system state (see Section 4.4) and has access to the current proof state. ELAB uses E �·� to
help translate IDRIS− type, function and class declarations into TT declarations.

4.6.1 Elaborating type declarations

Elaborating a type declaration involves creating a new proof state, translating the IDRIS−

type to a TT type, then adding the resulting type as a TT declaration:

ELAB (x : t) = do NEWPROOF Type

E �t�
t′ ← TERM

TTDECL (x : t′)

The final TTDECL takes the result of elaboration, type checks it and adds it to the global
context if type checking succeeds. This final type check ensures that the elaboration process
does not allow any ill-typed terms to creep into the context.

4.6.2 Elaborating data types

Elaborating a data declaration involves elaborating the type declaration itself, as a normal
type declaration. This ensures that the type is in scope when elaborating the constructor
types. Then using the results, the elaborator adds a TT data declaration,

https://doi.org/10.1017/S095679681300018X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681300018X


580 E. Brady

ELAB (data x : t where�c)
= do NEWPROOF Type

E �t�
t′ ← TERM

TTDECL (x : t′)
�c′ ← �ELABCON�c
TTDECL (data x : t′ where�c′)

ELABCON (x : t)
= do NEWPROOF Type

E �t�
t′ ← TERM

return (x : t′)

4.6.3 Elaborating pattern matching

Elaborating a pattern matching definition works clause by clause, elaborating the left- and
right-hand sides in turn. ELABCLAUSE returns the elaborated left- and right-hand sides,
and may have the side effect of adding entries to the global context, such as definitions in
where clauses. Firstly, let us consider the simplest case, with no where clause:

ELABCLAUSE (x�t = e) = . . .

How does the left-hand side get elaborated, given that elaboration is type directed, and
its type is not known until after elaboration? This can be achieved without any change to
the elaborator by defining a type Infer:

data Infer : Type where MkInfer : ∀a :Type.a → Infer

Now elaboration of the left-hand side proceeds by elaborating MkInfer (x�t) and
extracting the value and unified type when complete.

ELABCLAUSE (x�t = e) =
do NEWPROOF Infer; P�MkInfer (x�t)�

MkInfer T lhs ← TERM

�p ← PATTERNS

NEWTERM T; E �e�
rhs ← TERM

return (var�p. lhs = rhs)

This infers a type for the left-hand side, creating pattern variable bindings. Then it
elaborates the right-hand side using the inferred type of the left-hand side and the inferred
pattern bindings, which are retrieved from the state with the PATTERNS operation. Finally,
it returns a pattern clause in TT form. Elaborating a collection of pattern clauses then
proceeds by mapping ELABCLAUSE over the clauses and adding the resulting collection
to TT

ELAB �pclause = do�c ← �ELABCLAUSE �pclause
�TTDECL�c

Elaborating a clause is made only slightly more complex by the presence of where

clauses. In this case, after elaborating the left-hand side, the pattern-bound variables are
added as extra arguments to the declarations in the where block, which are then recursively
elaborated before the right-hand side
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ELABCLAUSE (x�t = e where�d) =
do NEWPROOF Infer; P�MkInfer (x�t)�

MkInfer T lhs ← TERM

�p ← PATTERNS

(�d′,e′) ← LIFT�p�d e
�ELAB�d′

NEWTERM T; E �e′�
rhs ← TERM

return (var�p. lhs = rhs)

In TT, all definitions must be at the top level. Therefore, the declarations in the where

block are lifted out, adding the pattern-bound names as additional arguments to ensure they
are in scope, using the LIFT operation. This also modifies the right-hand side e to use the
lifted definitions, rather than the original.

4.6.4 Elaborating the with rule

The with rule allows dependent pattern matching on intermediate values. Translating this
into TT involves constructing an auxiliary top-level definition for the intermediate pattern
match. For example, recall natToBin:

natToBin : Nat -> List Bool

natToBin Z = Nil

natToBin k with (parity k)

natToBin (j + j) | even = False :: natToBin j

natToBin (S (j + j)) | odd = True :: natToBin j

This is equivalent to the following, using top-level definitions only:

natToBin : Nat -> List Bool

natToBin Z = Nil

natToBin k = natToBin’ k (parity k)

natToBin’ : (n : Nat) -> Parity n -> List Bool

natToBin’ (j + j) even = False :: natToBin j

natToBin’ (S (j + j)) odd = True :: natToBin j

Additionally, the elaborator abstracts over the term being analysed in the type of the
generated auxiliary definition and reorders the arguments as required. For example:

f : Nat -> Bool

ftest : (n : Nat) -> so (f n) -> Nat

ftest n x with (f n)

| True = ...

| False = ...

Here we may require the knowledge that f n is True or False in the appropriate case.
The elaborator abstracts over f n in the auxiliary definition, specialising the type of x in
each case:
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ftest : (n : Nat) -> so (f n) -> Nat

ftest n x = ftest’ n (f n) x

ftest’ : (n : Nat) -> (p : Bool) -> so p -> Nat

ftest’ n True x = ...

ftest’ n False x = ...

Elaboration of with builds the type declaration and auxiliary function automatically. The
elaborator checks the left-hand side, resulting in a set of patterns�p, then infers a type W
for the expression w. The patterns �p are then split into those necessary to type W, and
the rest (�pw and�pn respectively) using SPLITCONTEXT. Then it builds a new declaration,
abstracting over the matched expression w in the types of �pn. ABSTRACT e w p simply
replaces any occurrence of w in p with the name e,

ELABCLAUSE (x�t with w �pclause) =
do NEWPROOF Infer; P�MkInfer (x�t)�

MkInfer T lhs ← TERM

�p ← PATTERNS

NEWTERM Infer; E �MkInfer w�

MkInfer W w′ ← TERM

(�pw,�pn) ← SPLITCONTEXT W�p
TTDECL (x′ : �pw → (e : W) → �ABSTRACT e w′�pn → T)
�c′ ← �MATCHWITH�p�t �pclause

�ELAB�c′

return (var�p. lhs = x′�pw w′�pn)

MATCHWITH�pw�pn�t (x�w | e rhs) =
do�p′ ← �MATCH �w�t

(�p′w,�p′n) ← SPLITPATS�pw�pn�p′

return (x′�p′w e�p′n rhs)

A with block in a clause for x results in an auxiliary definition x′, where x′ is a fresh
name, which takes an extra argument corresponding to the intermediate result which is to
be matched. MATCHWITH matches the left-hand side of the top-level definition against
each pclause, using the result of the match to build each pattern clause for x′. The clauses
in the block must be of a specific form: they must have an initial set of arguments �w which
matches the outer clause arguments�t, and an extra argument e which is the same type as
the scrutinee of the with, W. The right-hand side, rhs, may either return a value directly,
containing where clauses, or be a nested with block. In any case, it remains unchanged.
MATCH w t returns a list of pattern bindings containing the variables in t and their matches
in w. The resulting matches are split, using SPLITPATS, into matches for those variables
necessary to type W and the rest as before.

4.6.5 Elaborating class and instance declarations

Classes are implemented as dictionaries of functions for each instance, following the im-
plementation of first class type classes in Coq (Sozeau & Oury, 2008). Therefore, a class
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declaration elaborates to a record type containing all of the functions in the class, and
an instance is simply an instance of the record. The methods are translated to top-level
functions which extract the relevant function from the dictionary. For example, for the
Show class, the class declaration is translated (in the elaborated code, using the surface
IDRIS syntax for readability) to:

data Show : Type -> Type where

InstanceShow : (show : a -> String) -> Show a

show : Show a -> a -> String

show (InstanceShow show’) = show’

An instance for a type a is then a value of type Show a; for example, for Nat:

showNat : Show Nat

showNat = InstanceShow show’ where

show’ : Nat -> String

show’ Z = "Z"

show’ (S k) = "s" ++ show k

The call to show in the body of the instance uses the top-level show function, with the
instance resolved by the elaborator. Where instances have constraints, these constraints are
passed on to the function declaration for the instance. For example, for Show (List a):

showList : Show a => Show (List a)

showList = InstanceShow show’ where

show’ : List a -> String

show’ [] = "[]"

show’ (x :: xs) = show x ++ " :: " ++ show xs

Where classes have constraints, the constraints are again passed on to the data type decla-
ration, and resolved by the elaborator. For example, for Ord:

class Eq a => Ord a where

compare : a -> a -> Ordering

max : a -> a -> a

-- remaining methods elided

This translates to:
data Ord : Type -> Type where

InstanceOrd : Eq a => (compare : a -> a -> Ordering) ->

(max : a -> a -> a) -> Ord a

compare : Ord a -> a -> a -> Ordering

compare (InstanceOrd compare’ max’) = compare’

max : Ord a -> a -> a -> a

max (InstanceOrd compare’ max’) = max’

The elaborator also adds functions to retrieve parent classes from a dictionary, to assist
with class resolution. In this case:

OrdEq : Ord a -> Eq a

OrdEq (InstanceOrd {{eq}} compare’ max’) = eq
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In general, class declarations are elaborated as follows:

ELAB (class�c => C (�a : �t) where�d)
= do ELAB (data C : (�a : �t) → Type where

InstanceC : �c => �d → C�a)
�ELABMETH�d
�ELABPARENT�c

ELABMETH (f : t)
= do ELAB (f : C�a → t)

ELAB (f (InstanceC �meth) = �meth[f ])

ELABPARENT c
= do ELAB (cC : C�a → c)

ELAB (cC (InstanceC {{c′}} �meth) = c′)

Then instance declarations are elaborated as follows. One complication is that the func-
tion definitions in an instance declaration do not have explicit types, so we must retrieve
the method types from the system state and substitute C�t, using EXPANDTYPES. The name
instanceC is a fresh name generated for the newly defined instance:

ELAB (instance�c => C�t where�d)
= do ( �meth,�ty) ← EXPANDTYPES�d

�ty′ = �ty[�t/�a]
ELAB (instanceC : �c => C�t)
ELAB (instanceC = InstanceC �meth′ where

�meth′ : �ty′

�d)

Adding default definitions is straightforward: simply insert the default definition where
there is a method missing in an instance declaration.

Here we have added a higher level language construct (classes) simply by elaborating in
terms of lower level language constructs (data types and functions). We achieve type class
resolution by implementing a tactic, INSTANCE. We can build several extensions this way
because we have effectively built, bottom up, an Embedded Domain Specific Language for
constructing programs in TT.

4.6.6 The INSTANCE tactic

When elaborating applications, recall that implicit arguments are filled in by unification as
described in Section 4.5.3, and class constraints by an INSTANCE tactic, which searches
the context for an instance of the required class.

The INSTANCE tactic begins by trying to find a solution in the local context, using the
TRIVIAL tactic, which attempts to solve the current goal with each local variable in turn.
It is used as a very basic primitive for proof search, and is defined as follows:
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TRIVIAL = do (�v : �t) ← CONTEXT

TRYALL�v

TRYALL (v1,v2 . . .) = TRY (FILL v1) (TRYALL v2 . . .)
TRYALL 〈〉 = FAIL

For example, in the following function, the class constraint required for the > operator
is resolved by finding an instance for Ord a in the local context:

max : Ord a => a -> a -> a

max x y = if (x > y) then x else y

If TRIVIAL does not find a solution, INSTANCE begins a global search, applying every
class instance and attempting to resolve the instance’s parameters recursively. Given an
instance function instanceC with parameters of type�t:

TRYINSTANCE instanceC = do �CLAIM (�x : �t)
E �instanceC;�x�

�FOCUS�x; �INSTANCE

We define INSTANCE as follows, using ALLINSTANCES to retrieve all functions which
define instances:

INSTANCE = TRY TRIVIAL

(do�i ← ALLINSTANCES
�TRYINSTANCE�i)

In practice, for efficiency and to ensure that resolution terminates, we constrain the
search by recording which instances are defined for each class, and by ensuring that a
recursive call of INSTANCE is either searching for a different class, or a structurally smaller
instance of the current class.

For example, in the following function, the constraints required by the show function
are resolved by a global search which locates a Show instance for List a, which in turn
requires a Show instance for a. In this case a is instantiated by Int, so resolution finishes
by locating a Show instance for Int:

main : IO ()

main = putStrLn (show [1,2,3,4])

4.7 Syntax extensions

We now have a complete elaborator for IDRIS−, covering dependent pattern matching
definitions and expansion of implicit arguments and classes. In order to make the language
truly general purpose, however, we will need to add higher level extensions. Full IDRIS

is IDRIS− extended with do-notation, idiom brackets (McBride & Paterson, 2008), case
expressions, pattern matching let, metavariables and tactic-based theorem proving. The
majority of these extensions are straightforward transformations of high-level IDRIS pro-
grams – for example, do-notation can be reduced directly to IDRIS− function applications.
Some, however, require further support. In this section, we complete the presentation of
IDRIS− by extending it with metavariables and case expressions:
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e ::= . . .

| ?x (metavariable) | case e of �alt (case expression)

alt ::= e => e (case alternative)

4.7.1 Metavariables

Metavariables are terms which stand for incomplete programs. A metavariable serves a
similar purpose to a hole binding in TT, but gives rise to a global rather than a local
variable. For example, the following is an incomplete definition of the vector append
function, containing a metavariable append rec:

(++) : Vect n a -> Vect m a -> Vect (n + m) a

Nil ++ ys = ys

(x :: xs) ++ ys = x :: ?append_rec

This generates a new (as yet undefined) function append rec, which takes all of the
variables in scope at the point it is used, and returns a value of the required type. We can
inspect the type of append rec at the IDRIS prompt:

*vec> :t append_rec

append_rec : (a : Type) -> (m : Nat) -> (n : Nat) -> a ->

Vect n a -> Vect m a -> Vect (n + m) a

Metavariables serve two purposes: Firstly, they aid type-directed program development
by allowing a programmer direct access to the inferred types of local variables, and the
types of subexpressions. Secondly, they allow a separation of program structure from
proof details. Metavariables can be solved either by directly editing program source, or
by providing a definition elsewhere in the file. For example, we can later say:

append_rec a m n x xs ys = app xs ys

Elaborating a metavariable involves adding a new top-level definition which is applied
to all of the variables in local scope.

E �?x� = do (�v : �t) ← CONTEXT

T ← TYPE

TTDECL (x : (�v : �t) → T)
E �x�v�

4.7.2 case expressions

A case expression allows pattern matching on intermediate values. The difficulty in elab-
orating case expressions is that TT allows matching only on top-level values. Elaborating
a case expression, therefore, involves creating a new top-level function standing for the
expression, and applying it. The natural way to implement this is to use a metavariable. For
example, we have already seen lookup default:
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lookup_default : Nat -> List a -> a -> a

lookup_default i xs def = case list_lookup i xs of

Nothing => def

Just x => x

This elaborates as follows:
lookup_default : Nat -> List a -> a -> a

lookup_default i xs def =

let scrutinee = list_lookup i xs in ?lookup_default_case

lookup_default_case i xs def Nothing = def

lookup_default_case i xs def (Just x) = x

To elaborate a case expression involves let binding the scrutinee of the case expres-
sion, introducing a new name scrutinee, and creating a metavariable xcase to implement the
pattern matching. Then the elaborator builds a new pattern matching definition for xcase
and elaborates it:

E �case e of �alt� = do E �let scrutinee = e in ?xcase�
(�v : �t) ← CONTEXT

�MKCASE�v alt

MKCASE�v (l => r) = ELAB (xcase�v l = r)

Any nested case expressions will be handled by the recursive call to ELAB. Again,
because of the way we have set up an Embedded Domain Specific Language for describing
elaboration, we have been able to implement a new higher level language feature in terms
of elaboration of lower level language features.

5 Reversing elaboration

As well as translating from IDRIS to TT so that programs can be type checked and evalu-
ated, it is valuable to define the reverse transformation. This serves two principal purposes:

• To assist the user, it is preferable that the results of evaluation, and any error mes-
sages produced by the elaborator, are presented in IDRIS syntax rather than TT.

• For correctness, we would like to ensure as far as possible that the result of elab-
oration is equivalent to the original program. Informally, we can achieve this by
checking that reversing the elaboration process yields the original program (with
implicit arguments expanded).

In this section, we describe the process for reversing elaboration and the required prop-
erties of the elaboration process as a whole. Fortunately, translating from TT to IDRIS is
significantly easier than IDRIS to TT, because it is primarily erasing information.

5.1 From TT to IDRIS

We define a meta-operation T �t�, which converts a TT expression t to an IDRIS expression
which would elaborate to t:
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T �x� = x
T �c� = c

T �x�a� = x ( �IMPL x�a)
T �f a� = T �f �T �a�

T �λx :T. e� = \ x =>T �e�
T �∀x :T. e� = (x : T �T�) -> T �e�

T �let x �→ t : T. e� = let x = T �t� inT �e�

IMPL x ai = {n = E �ai�} (if the ith argument to x is implicit argument n)
{{E �ai�}} (if the ith argument to x is a constraint argument)
E �ai� (otherwise)

This is mostly a straightforward traversal of the TT expression, translating directly to an
IDRIS equivalent. The interesting case is for applications of named functions, T �x�a�,
where the arguments are translated to either implicit, constraint or explicit arguments
according to the definition of x. Since only type declarations are allowed to have implicit
or constraint arguments, and T �·� translates expressions, all function types are assumed to
take explicit arguments.

We also define an operation UNELAB, which translates TT declarations to correspond-
ing IDRIS declarations. This generates data declarations and pattern matching definitions
only – it makes no attempt to reconstruct class or instance declarations, or rebuild
case expressions. Firstly, we define the reverse elaboration of type declarations, which
must reconstruct which arguments are implicit or constraint arguments:

UNELABTYPE (x : t) = x : UNELABTYDECL 0 t

UNELABTYDECL i (∀y :T. e) = {y : T �T�} -> (UNELABTYDECL (i+1) e)
(if the ith argument to x is an implicit argument)

T �T� => (UNELABTYDECL (i+1) e)
(if the ith argument to x is a constraint argument)

(y : T �T�) -> (UNELABTYDECL (i+1) e)
(otherwise)

Using this, we define UNELAB for top-level declarations. For pattern matching clauses
reversing elaboration proceeds as follows, discarding the explicit pattern variable bindings
and applying UNELABTYPE to reconstruct the type declaration:

UNELAB (x : t) = UNELABTYPE (x : t)
UNELAB (var�x :�U.f�s = e) = T �f�s� = T �e�

For data type declarations, reverse elaboration proceeds as follows, applying
UNELABTYPE for each of the top-level type declarations:

UNELAB (data T (�x : �t) : T where �cons)
= dataUNELABTYPE (T : ∀�x :�t.T)where ( �UNELABTYPE �cons)

5.2 Elaboration properties

Elaboration satisfies two important properties. We limit our discussion of these properties
to IDRIS− without type classes, i.e. elaboration of type declarations, functions and data
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types. This is primarily because there is not enough information in a TT program alone to
reverse elaboration fully. However, since elaboration of the higher level IDRIS constructs
is implemented in terms of the lower level IDRIS− constructs, we should not consider this
a serious limitation.

Informally stated, the properties that elaboration satisfies are that (i) if elaboration is suc-
cessful, the resulting program is a well-typed TT program; and (ii) elaboration preserves
the meaning of the original IDRIS program. The first property is true by the definition of
elaboration – elaboration fails if it attempts to construct an ill-typed term at any point.
Furthermore, the development calculus TTdev ensures that partial constructions are well-
typed. The second property can be stated as the following conjecture:

Conjecture: Preservation of meaning
Given an IDRIS− declaration d, which is either a type declaration, a pattern match clause,
or a data type declaration, if ELAB d = t, and UNELAB t = d′, then MATCH d d′ produces
a valid match.

The output of UNELAB is not necessarily equal to the input of ELAB because elaboration
fills in placeholder subexpressions. Therefore, it suffices for the input to match the output.

We have not yet proved this conjecture. Its truth depends on the implementation of
ELAB faithfully translating each construct, and we observe that the present description
of ELAB elaborates each non-placeholder subexpression according to the structure of the
expression. However, since the truth of this conjecture is crucial to the correctness of the
implementation, the elaborator checks dynamically that meaning is preserved by evaluating
UNELAB t and matching the input against the result. In practice, this does not have a
significant impact on performance.

6 Related works

Dependently typed programming languages have become more prominent in recent years
as tools for verifying software correctness, and several experimental languages are be-
ing developed, in particular Agda (Norell, 2007), Epigram (McBride & McKinna, 2004;
Chapman et al., 2010) and Trellys (Kimmell et al., 2012). Furthermore, recent extensions
to Haskell (Vytiniotis et al., 2011), implemented in the Glasgow Haskell Compiler, are
bringing more of the power of dependent types to Haskell. The problem of refining high-
level syntax to a core type theory also applies to theorem provers based on dependent types
such as Coq (Bertot & Castéran, 2004) and Matita (Asperti et al., 2011).

Checking advanced type system features in Haskell involves a type system parame-
terised over an underlying constraint system X which captures constraints such as type
classes, constrained data types and type families. Types are checked using an inference
algorithm OUTSIDEIN(X) (Vytiniotis et al., 2011), which is stratified into an inference
engine independent of the constraint system, and a constraint solver for X . An additional
difficulty faced by Haskell, and hence any extensions, is the desire to support type infer-
ence, in which principal types may be inferred for top-level functions. We have avoided
such difficulties since, in general, type inference is undecidable for full dependent types.
Indeed, it is not clear that type inference is even desirable in many cases, as programmers
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can use dependent types to state their intentions (hence, a program specification) more
precisely. However, in future work we may consider adapting the OUTSIDEIN approach to
provide limited type inference.

An earlier implementation of IDRIS was built on the IVOR proof engine (Brady, 2006).
This implementation differed in one important way – unlike the present implementation,
there was limited separation between the type theory and the high-level language. The type
theory itself supported implicit syntax and unification, with high-level constructs such as
the with rule implemented directly. Two important disadvantages were found with this
approach, however: firstly, the type checker is much more complicated when combined
with unification, making it harder to maintain; secondly, adding new high-level features
requires the type checker to support those features directly. In contrast, elaboration by
tactics gives a clean separation between the low-level and high-level languages, and results
in programs in a core type theory which are separately checkable, perhaps even by an
independently written checker which implements the TT rules directly.

Matita uses a bi-directional refinement algorithm (Asperti et al., 2012). This is a type-
directed approach, maintaining a set of yet to be solved unification problems and relying on
a small kernel, similar to the approach we now take with IDRIS, but using refinement rules
rather than tactics. This leads to good error messages, although it is not clear how easy
it would be to extend to additional high-level language features, unlike the tactic-based
approach.

The Agda implementation is based on a type theory with implicit syntax and pattern
matching – Norell gives an algorithm for type checking a dependently typed language
with pattern matching and metavariables (Norell, 2007). Unlike the present IDRIS imple-
mentation, metavariables and implicit arguments are part of the type theory. This has the
advantage that implicit arguments can be used more freely (for example, in higher order
function arguments) at the expense of complicating the type system.

Epigram (McBride & McKinna, 2004) and Oleg (McBride, 1999) have provided much
of the inspiration for the IDRIS elaborator. Indeed, the hole and guess bindings of TTdev
are taken directly from Oleg. EPIGRAM does not implement pattern matching directly,
but rather translates pattern matching into elimination rules (McBride, 2000). This has the
advantage that elimination rules provide termination and coverage proofs by construction.
Furthermore, they simplify implementation of the evaluator and provide easy optimisation
opportunities (Brady et al., 2003). However, it requires the implementation of extra ma-
chinery for constructor manipulation (McBride et al., 2006) and so we have avoided it in
the present implementation.

7 Conclusions

In this paper, I have given an overview of the programming language IDRIS, and its core
type theory TT, giving a detailed algorithm for translating high-level programs into TT.
TT itself is deliberately small and simple, and the design has deliberately resisted innova-
tion so that we can rely on existing metatheoretic properties being preserved. The kernel
of the IDRIS implementation consists of a type checker and evaluator for TT along with a
pattern match compiler, which are implemented in under 1,000 lines of Haskell code. It is
important that this kernel remains small – the correctness of the language implementation

https://doi.org/10.1017/S095679681300018X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681300018X


Idris, a general-purpose dependently typed programming language 591

relies to a large extent on the correctness of the underlying type system, and keeping the
implementation small reduces the possibility of errors.

The approach we have taken to implementing the high-level language, implementing an
elaboration monad with tactics for program construction, allows us to build programs on
top of a small and unchanging kernel, rather than extending the core language to deal with
implicit syntax, unification and type classes. High-level IDRIS features are implemented
by describing the corresponding sequence of tactics to build an equivalent program in TT,
via a development calculus of incomplete terms, TTdev. A significant advantage we have
found with this approach is that higher level features can easily be implemented in terms
of existing elaborator components. For example, once we have implemented elaboration
for data types and functions, it is easy to add several features:

• Type classes: A dictionary is merely a record containing the functions which imple-
ment a type class instance. Since we have a tactic-based refinement engine, we can
implement type class resolution as a tactic.

• where clauses: We have access to local variables and their types, so we can elaborate
where clauses at the point of definition simply by lifting them to the top level.

• case expressions: Similar to where clauses, these are implemented by lifting the
branches out to a top-level function.

We do not need to make any changes to the core language type system in order to
implement these high-level features. Other high-level features, such as dependent records,
tuples and monad comprehensions, can be added equally easily – and indeed have been
added in the full implementation. Furthermore, since we have taken a tactic-based approach
to elaborating IDRIS to TT, it is possible to expose tactics to the programmer. This opens
up the possibility of implementing domain-specific decision procedures, or implementing
user-defined tactics in a style similar to Coq’s Ltac language (Delahaye, 2000). Although
TT is primarily intended as a core language for IDRIS, its rich type system also means
that it could be used as a core language for other high-level languages, especially when
augmented with primitive operators, and used to express additional properties of those
languages.

We have not discussed the performance of the elaboration algorithm, or described how
IDRIS compiles to executable code. In practice, we have found performance to be accept-
able – for example, the IDRIS library (31 files, 3,718 lines of code in total at the time of
writing) elaborates in around 12 seconds.1 Profiling suggests that the main bottleneck is
locating holes in a proof term, which can be improved by choosing a better representation
for proof terms, perhaps based on a zipper (Huet, 1997). Compilation is made straight-
forward by the Epic library (Brady, 2011a), with I/O and foreign functions handled using
command–response interaction trees (Hancock & Setzer, 2000). Although I have not yet
run detailed benchmarks of the performance of compiled code, I believe that rich type
information and guaranteed termination will allow aggressive optimisations (Brady et al.,
2003; Brady, 2005). I will investigate this in future work.

The objective of this implementation of IDRIS is to provide a platform for experimenting
with realistic, general-purpose programming with dependent types, by implementing a

1 On a MacBook Pro, 2.8 GHz Intel Core 2 Duo, 4Gb RAM.
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Haskell-like language augmented with full dependent types. In this paper, we have seen
how such a high-level language can be implemented by building on top of a small, well-
understood, easy to reason about type theory. However, a programming language imple-
mentation is not an end in itself. Programming languages exist to support research and
practice in many different domains. In future work, therefore, I plan to apply domain-
specific language-based techniques to realistic problems in important safety critical do-
mains such as security and network protocol design and implementation. In order to be
successful, this will require a language which is expressive enough to describe protocol
specifications at a high-level, and robust enough to guarantee correct implementation of
those protocols. IDRIS, I believe, is the right tool for this work.
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