
/ . Austral. Math. Soc. (Series A) 55 (1993), 232-237

TUBULAR SETS AND MULTIVARIATE POLYA ALGORITHM

ROBERT HUOTARI

(Received 11 January 1991; revised 10 October 1991)

Communicated by E. N. Dancer

Abstract

Some new results concerning tubular sets are presented, with applications to the convergence of the
Polya algorithm in the contexts of simultaneous approximation and approximation of multivariate
functions by univariate functions. (The Polya algorithm constructs a best uniform approximation
from the limit, as p —>• co, of best Lp approximations.)
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In 1913, George Polya proposed an algorithm to calculate best uniform ap-
proximations to continuous functions by polynomials [8]. This algorithm utilizes
the continuum of Lp spaces, and is known as the Polya algorithm. Current usage
of the Polya algorithm is primarily theoretical. In [2] it was used to show that
best uniform approximations exist, in [6] its limit was shown to be a Lipschitz
uniform selection operator, and in [3] and [8] its convergence was studied in new
contexts. The theme underlying these studies is the evolution of Lp to Lx as
p -> oo. In [7], a sufficient condition for the convergence of the discrete Polya
algorithm was presented. The present note continues the discussion of this con-
dition and presents applications to the theory of multivariate approximation. In
particular, it generalizes the simultaneous-Polya-algorithm-convergence result
of [12], and it establishes the convergence of the Polya algorithm in a gen-
eral context which includes the approximation of multivariate by univariate
functions [1].
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Ifw = (wu ...,wn)eW let

' l < p < c x ) and llwlloo = max \xt \.

If x e R", K c R" and 1 < p < oo, we say that x* € K is a best lp

approximation to x from K if

| | % Hyll,

If K is closed and convex, then for 1 < p < oo, x has a unique best lp

approximation, xp from K [13]. If limp^0Oxp exists, the Polya algorithm
converges. In this case we say that K has the Polya property. (If lim \p exists,
then the limit is a best l^ approximation to x from K, so the algorithm is a
method for constructing a best /^ approximation.)

Our discussion of the Polya property will be facilitated by the following
notations. If A c M" let aff(A), co{A), n{A) and (A) denote, respectively, the
affine hull, the convex hull and the relative interior of A, and the subspace of R"
generated by A. If x e R" and a € R, let B(\, a) be the ball {y ||y - xlU < a}.
If a, v e R" and 8 e R, let C(A, v) = {x = a + t\ a e A, t € R}, let //av

be the hyperplane which contains a and is orthogonal to v, and let Pay be the
projection of R" onto Hav along V.

Suppose K is closed and convex. If a e K and v e R", we say that K is
v-tubular at a, if for any e > 0 there exists 8 = 8(K,\,a,s) > 0 such that,
if y e K and ||a + t\ — y||oo < 8 for some t e R, then there exists 5 G R
such that z:=y + sv e K and ||z — z||oo < e. (This definition is equivalent to
that of \-cylindrical in [7].) In this case, we call z an e-admissible replacement
for y. We say that K is basically (respectively, totally) tubular if it is v-tubular
for every v in the standard basis for R" (respectively, for every v in R"). All
polygonal convex sets and all smooth rotund convex bodies are totally tubular
[7].

A geometric view of the above definition may be useful. Suppose v ^ 0.
Then K is v-tubular at a if and only if there is a function Q : Pav(^0 ->• K
such that Q(a) — a, Q is continuous at a, and Q is a right inverse for />av, that
is, for every b e Pay(K), Pay[Q(b)] — b. If a is a non smooth boundary point
of K and K is v-tubular at a, then, relative to C(K, v), the "vertex" of K at a
has finite sharpness. Indeed, for any e > 0, K contains a "tube" of the form
{b-Mvb e Pay[C(B(a,8)nK),\)],r < t < s} whose Hausdorff distance from
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{a} is less than e. For an example, let M c l ! = co{(0, 0, 1), [(x, v, z) (x —
l)2 + y2 = l,z -0}}. Then K is not (0, 0, l)-tubular at its sharp point (0, 0, 1).
A related set has been shown not to have the Poly a property [4].

A distinguished l^ approximation is the strict approximation, defined as
follows: If z e K, let 0(z) be the vector whose components are given by
|z, — x, |, arranged in non-increasing order. The strict approximation to x is the
unique x°° 6 K with <p(x°°) minimal in the lexicographic ordering on <p(K)
[10]. It is shown in [7] that if K totally tubular, then limp^oox'' = x°°. (The
claim in [7] is that limx'' = x00 whenever K is basically tubular. However,
Lemma 2.5 in [7] has recently been shown to hold, in general, only for all totally
tubular sets. We intend to deal with this in detail in a subsequent publication.)
Thus, tubularity is the focus of the present paper. Since tubularity is clearly
preserved by translation, we may assume in most discussions that a = 0. We
begin by showing that certain directions are always auspicious.

THEOREM 1. If K is a closed convex subset ofR" and there exists an a in K
such that a + v ^ aff(K), then K is \-tubular.

PROOF. AS noted above, no generality is lost in assuming that 0 e K. Since
a + v ^ aff(K), K does not contain two distinct points on any line parallel to v.
Thus, /"ov is one-to-one on K and has a unique inverse Q PQV(K) —>• K. Since
Q is linear, Q is continuous. Since fbvCO) = 0, Q(0) = 0.

If 0 € ri(^f), then, clearly, for every v G {K), K is v-tubular at 0. By
Theorem 1, K is v-tubular at 0 for every v e W\(K). Thus K is v-tubular at 0
for every v e R" if 0 e ri{K). This result can be generalized to a larger class of
non-extreme points. Let {x1, • • •, x""2} e K be given, let X = co{x' , . . . , x""2},
and let 7 = aff(X).

THEOREM 2. Let X and Y be as above, //dim Y = n - 2, if a e ri(X) and if
a — v ^ Y, then K is v tubular at a.

PROOF. Let £ > 0 be given. Again we assume without loss of generality
that a = 0. Let X' be the hyperplane (x 1 , . . . , x""2, v) and let S1 and S2 be
the two open half spaces defined by X'. For i = 1,2 choose y' 6 S' D K if
possible and, if this is not possible, let y' = 0. Let Z = cojx1, . . . , x""2, y1, y2}.
Since 0 G n{X), 0 e n{P^{X)), that is, there exists r)0 such that fi(0, rj0) D
Pov(X') C Pov(X). Similarly, if y' ^ 0, then there exists r?, such that S(0, r?,)n
POv(S' U X') c Pov(Z). Let r] = min(%, m> *fe). Then [P0v(*O n B(0, rj)]
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C Poy(Z). Since Z is a polyhedron, Z is totally tubular [7]. Let 8 =
min(»7, 8(Z, v, 0, e)). If y e K is within 8 of ({v}>, an £-admissible replacement
for y can be found in Z. This finishes the proof, since Z c K.

COROLLARY 3. Ifn = 3, any closed convex cylinder in R" is totally tubular.

PROOF. Let A be a closed convex set of dimension no greater than 2; let
0 ^ u e R3 and let K = C(A, u) . If there exists a ^ 0 such that v = a u , then,
whenever y e K, it must be that y + s\ e K for every s e R so the existence
of an admissible replacement for y is trivial. If v is not parallel to u, then every
x e K is interior to a line contained in K which is not parallel to v, so Theorem 2
applies.

To see that Corollary 3 does not generalize to n > 3, let K = {(x, y, z, w) :
(x,y,z) e M}, where M is the truncated cone defined earlier.

The next theorem deals with Cartesian products of tubular sets. Suppose
that n = k\ + k2, where 1 < kx < n. If v1' = (v[, ..., v'k), we will denote
(v\,..., v]

k) ,v
2,..., v2

ki) by (v1, v2).

THEOREM 4. IfK' C Rk' is v'-tubular at x', then K1 x K2 is (v1, v2)-tubular
at(xl,x2).

PROOF. Let v = (v1, v2), x = (x1, x2), and K = Kx x K2. If v1 = 0 or
v2 = 0, the result is trivial. Thus we may assume without loss of generality that
v1 jz 0 ^ v2 and, since tubularity is invariant under permutation of coordinates,
we may assume that v\ ^ 0 ^ v2. Let s > 0 be given. Choose 8 and r] so that

Since A"1 and K2 are tubular, there exists 8' < 8 such that, if y = (y1, y2) e K
and ||y — (x + fv)||oo < 8' for some t e R, then there exist sus2 e R such
that z'-Cy1 + SiV1, y2 + s2\

2) e K and \\x - z'||oo < r\. Then, for / = 1, 2,
k-vj+^il < \SiV\-x\ + y\\-\-\tv\+x\-y\\ < rj + <5,so \st+t\ < |uj|-1()? + 5).
Let s = S\. Since the sign of each of s and s2 differs from that of t and since
each of Kl and K2 is convex, we may assume without loss of generality that
0 > -t > s > s2. Then \s + t\ < (»j + 5)min(|u1

1r1, \v2\~l). Letz = y + 5V.
Since each K' is convex, z e K. Finally, by (1),

117 v l l < II v* — ( x -4- t ~ v \ I! - l - l v / I l l v l l < r " P
I I * A l l oo _ l l j v A i ' ' / l l o o i P M I I ' l l o o ^ £ •
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We conclude with a discussion of two applications of the theory of tubular
sets to multivariate approximation. For the first, suppose that n = 2k and K is
a totally tubular subset of E*. One approach [5, 12, 11] to the simultaneous lp

approximation of two vectors x and y in R* by elements of K is to seek a vector
zp in K such that

(||x - z"|i; + ||y - z ' | |p1 / p = inf (||x - z\\p
p + \\y - z\

If K'-~{(xi,..., xk, x\,..., xk) (xi,..., xk) e K}, then it is immediate from
Theorem 4 that K' is totally tubular and so has the Polya property. This result
generalizes that of Section 2 in [12] and, in subsequent sections of [12], can be
used to show that if M is any of a large class of closed convex sets of functions
of the form f [a,b] —>• R with discontinuities of the first kind only (including
M ={all nondecreasing functions}), then the simultaneous Polya algorithm
converges. The main tool in this demonstration is uniform approximation by
step functions.

The second application involves approximation by sums of univariate func-
tions. For notational convenience, we restrict our discussion to functions of
two variables. Thus, the problem to be addressed is to find h and g such that
f(s, t) « h(s) + g(t). (This problem arises when approximating functions by
solutions of the wave equation [1].) To be more precise, suppose that n = km
and both K1 c R* and K2 c Rm are basically tubular. Let S = { 1 , . . . , k} and
T = { 1 , . . . , AH} and let

(2) K •= {x = (jty = at + bj) (at) € AT1, (bj) e K2}.

Since K is the image of the closed set A"1 x K2 under a bounded linear operator,
K is closed. Clearly K is convex. Note that if Kx = Rk and K2 = W, then
K = U S ) + loo(Ty.= {x = (jcy = a, + bj) (ad e Rk, (bj) e Rm}. That K
is basically tubular is a consequence of Theorem 1. Indeed, suppose without
loss of generality that there exist c, c' e K such that c"==c — c' is a multiple
of (1, 0 , . . . , 0). Then c" has components {a'! + b"--=(i, j) e S x T], all of
which are zero except a" + b". However, the system containing the equations
a'{ + b'[ = d # 0, ^ + bl = 0, a'{ + b'[ = 0 and a'{ + ^ = 0 has no solution.
Thus (1, 0 , . . . . 0) £ (K), so K is basically tubular.

If K is defined as in (2), except that xtj = atbj, then AT is a sort of "tensor
product" of Kl and K2 and can also be shown to be basically tubular.

The question regarding the convergence of the Polya algorithm on the set
K — loo(S) + loo(T) was raised by Will Light. Light's question was, in fact,

https://doi.org/10.1017/S1446788700032043 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032043


[6] Tubular sets and multivariate Polya algorithm 237

the original inspiration for the present paper. We have not fully answered his
question here, but we hope that the tubularity approach will contribute to an
eventual solution.
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