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Abstract

In this review, we explore the origin of the rudimentary embryo, its relationship to other kinds
of plant embryos and its role in the diversification of angiosperms. Rudimentary embryos
have a length:width ratio of ≤2.0, and they have organs, including cotyledon(s) and a primary
root. A literature survey failed to reveal rudimentary embryos in the pre-angiosperms, suggest-
ing that this kind of embryo is an angiosperm invention. Although proembryos of some gym-
nosperms and angiosperms have a length:width ratio of ≤2.0, they have not formed meristems
or organs. Thus, rudimentary embryos are not proembryos. During the development of rudi-
mentary embryos in monocots and dicots (all non-monocots), the growth pattern of the epi-
cotyledonary cells differs, resulting in differences in the placement of the shoot meristem and
in one versus two cotyledons, respectively, but the embryo size is similar. Rudimentary
embryos grow inside the seed prior to germination, which is true for linear-underdeveloped
embryos, including those in some gymnosperms. Rudimentary embryos served as the starting
point for the great diversification of embryos, and ultimately of seeds, in angiosperms, and
they are still present in many families of extant angiosperms. The rudimentary embryo is
part of the syndrome of changes, including increased speed of pollen germination and pollen
tube growth, simplification of the female gametophyte, development of endosperm and elim-
ination of multiple embryo production from each zygote, that distinguish angiosperm seed
production from that of gymnosperms. We conclude that the rudimentary embryo was one
of many new developments of angiosperms that contributed to their great success on earth.

Introduction

A rudimentary embryo is small and has organs and grows inside the seed prior to germination.
Martin (1946) placed the rudimentary embryo at the base of his family tree of seed phylogeny,
and he listed the Aquifoliaceae, Araliaceae, Magnoliaceae, Ranunculaceae and Papaveraceae as
examples of families with a rudimentary embryo. Today, we know that seeds of the most-basal
extant angiosperm Amborella trichopoda also have a rudimentary embryo (Fogliani et al.,
2017). Martin provided no clues about the origin of the rudimentary embryo but did give a
hint about the relationship between the rudimentary and other kinds of embryos when he
wrote, ‘ … there is also clear evidence of ancestral relation of the Rudimentary type to
many of the Linear seeds’ [p. 524]. Furthermore, he noted that rudimentary and linear
embryos as well as intermediate embryos occur in the Apiaceae and Ranunculaceae. It should
be noted that these comments do not include any monocot families. Furthermore, Martin
included only angiosperms in his family tree of seed phylogeny. He said, ‘Gymnosperms
were excluded from the diagram for the reason that they are not well adapted to depiction
in a family tree for seeds; the group lacks representation in the Basal division and, therefore,
would have to be illustrated as a trunk suspended in air or at least separated from its theoretical
original base’ [p. 524].

It has been 77 years since the publication of Martin’s (1946) classic paper, and during this
time much has been learned about the geological/fossil history, phylogenetic relationships and
morphology/development of plants. Thus, an evaluation of the available information poten-
tially could provide new insights into the origin of the rudimentary embryo and its relation-
ship to other kinds of embryos. The purpose of this review is to seek answers to the following
eight questions: (1) How is a rudimentary embryo distinguished from other kinds of embryos?
(2) Do any pre-angiosperms have a rudimentary embryo? (3) Is the rudimentary embryo a
proembryo? (4) Do rudimentary embryos differ in dicots (as used here, it refers to all non-
monocot angiosperms) and monocots, and if so how? (5) When do embryos in pre-
angiosperms and angiosperms grow? (6) What is the relationship between the rudimentary
embryo and other kinds of angiosperm embryos? (7) How does seed production differ between
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gymnosperms and angiosperms? (8) Is the rudimentary embryo a
new development (‘invention’) of angiosperms and did it contrib-
ute to the diversification and success of angiosperms?

We hypothesized that (1) the rudimentary embryo originated
in the angiosperms, (2) underdeveloped embryos occur only in
seed plants, (3) the rudimentary embryo is closely related to linear
embryos, (4) rudimentary embryos in dicots and monocots differ
in development/morphology but not in size and (5) the diversifi-
cation of angiosperm embryos from the rudimentary embryo con-
tributed to the success of angiosperms on earth.

What is a rudimentary embryo?

Martin (1946) described the rudimentary embryo as ‘Embryo
small, globular to oval-oblong; seeds generally of medium size
or larger; cotyledons are usually rudimentary and obscure but
sometimes they are evident, making the embryos appear like min-
iatures of the Linear or Spatulate types. The group is not entirely
clear-cut since most of the families concerned have some genera
that merge into the Linear type and a few inclined toward the
Broad’ [p. 519]. Also, he said of the rudimentary embryo
‘Endosperm, if present, not definitely starchy except among a
few linear-embryoed forms; embryo not peripheral: Embryo
minute in medium to large seeds’ [p. 521]. Martin did not specify
an embryo length.

To gain a better understanding of the morphological traits of
rudimentary embryos, the length (L) and width (W) of the
embryo in the 48 species of angiosperms Martin (1946) listed
as having a rudimentary embryo were measured in the drawings
he provided in his paper. Mean (±SE) embryo L:W ratio for the
48 species is 1.50 ± 0.08. The L:W ratios of embryos in seeds of
Aconitum napellus, Clematis columbiana and Thalictrum polyg-
onum were 3.0, 3.0 and 3.5, respectively, but the L:W ratio for
embryos of the other 45 species was ≤2.0. Martin said that the
embryo in seeds of Smilax glauca and Paeonia brownii was linear,
and the L:W ratio was 3.0 for both of these species. If the three
species with a L:W ratio of ≥3.0 are excluded, then the L:W
ratio for the remaining 45 species is 1.39 ± 0.06. Of these 45 spe-
cies, 5 are monocots and 40 are dicots, and the L:W ratio (mean ±
SE) of the monocots and dicots is 1.18 ± 0.08 and 1.41 ± 0.06,
respectively.

For Martin’s seeds with a rudimentary embryo, the embryo
length (E):seed length (S) ratio (mean ± SE) is 0.11 ± 0.01. For
comparison, the E:S ratio of freshly matured seeds of A. tricho-
poda is 0.08 ± 0.01, and it grows to 0.48 ± 0.07 just prior to radicle
emergence (Fogliani et al., 2017).

Do any pre-angiosperms have a rudimentary embryo?

Niklas et al. (2016) hypothesized that major evolutionary trans-
formations have occurred in land plants, which lead to the devel-
opment of different kinds of embryogenesis and embryos. Thus, a
survey of the general embryo morphology of bryophytes, lyco-
phytes, monilophytes (ferns and fern allies) and gymnosperms
was conducted. Particular attention was given to the kinds of
organs present in the embryo and to the general shape of the
embryo.

The first cell division of the zygote of mosses and liverworts
(bryophytes) is transverse in relation to the axis of the archego-
nium, giving rise to an apical (epibasal) and basal (hypobasal)
cell within the venter (base) of the archegonium. The epibasal
cell divides transversally, resulting in an embryo with three

cells. The upper cell (adjacent to the neck of the archegonium)
produces the capsule, the middle cell the seta and foot and the
lower cell a haustorium (Bower, 1935; Schertler, 1979; Kato and
Akiyama, 2005; Ligrone et al., 2012). In hornworts, the first div-
ision of the zygote is vertical, and then other cell divisions give
rise to a three-tiered embryo, with the upper tier producing the
capsule and the lowest tier the foot (Ligrone et al., 2012). The
bryophyte embryo is relatively long and narrow, and as the devel-
opment of the capsule begins the embryo becomes greatly elon-
gated (Fig. 1a). Bryophyte embryos do not have a root meristem.

The embryo of lycophytes and monilophytes also develops
inside an archegonium. The embryo has a shoot apex, one or
more primary leaves (no cotyledons), a foot and a root, and it
may, or may not, have a suspensor. The foot serves as a ‘suctorial
or nursing organ’ (Foster and Gifford, 1959). Eventually, the
developing sporophyte becomes detached from the foot via a sep-
aration layer of cells between the shoot and foot. The root meri-
stem is lateral to the main axis of the embryo (Fig. 1b–e), which
differs from the embryo of seed plants in which the root and
shoot have the same vertical axis (Fig. 1f, g). The root–shoot por-
tion of a lycopod or fern embryo is somewhat elongated, but the
presence of the foot increases its overall width. In contrast to a
lycopod or fern embryo, the rudimentary embryo of angiosperms
has a vertical root–shoot axis and one or two cotyledons (i.e.
monocot and dicot, respectively) (Figs 1g and 2a, d).

In gymnosperms, the female gametophyte develops within the
confines of an ovule that is attached to the sporophyte, and nour-
ishment for the developing gametophyte and embryo comes from
the sporophyte. With the exception of a proembryo in
Plectilopsermum elliotii (Glossopteridales) (Taylor and Taylor,
1987), embryos have not been found in fossil ovules or seeds of
the early gymnosperms (Table 1), although much effort has
been made to find fossil embryos (e.g. Gould and Delevoryas,
1977; Ryberg and Taylor, 2013). The absence of embryos has
caused much speculation about seed development in early gym-
nosperms (Reed, 1939; Long, 1974/1975; Rothwell, 1982), but
no definite answers to the question of why these fossils do not
contain an embryo have been found. However, fossil megaspores
of a lycopod with a megagametophyte and embryo have been
found in the Upper Carboniferous (Westphalian A) at Burnley,
England (Stubblefield and Rothwell, 1981), suggesting that the
lack of embryos in fossil seeds of early gymnosperms may be
due to the lack of an embryo and not lack of fossilization
per se. We will return to this point later.

Fossil ovules of seed ferns (Lagenospermosida) have been col-
lected from the Devonian and fossil seeds of Medullosales (seed
ferns) and Cordaitales (coniferophytes) from the Middle
Pennsylvanian (Table 1). The earliest gymnosperm embryos
(Voltziales and coniferophyte) are from the uppermost
Pennsylvanian and lowermost Permian, and they were elongated
(linear) and polycotyledonous (Mapes et al., 1989). Embryos
have been found in fossil seeds of Voltziales, Bennettitales and
Coniferales from the Late Pennsylvanian to Late Cretaceous,
and all of them are elongated and have two cotyledons, except
Pitystrobus beardii with eight cotyledons.

Embryos in the 13 families of extant gymnosperms
(Araucariaceae, Cupressaceae, Cephalotaxaceae, Cycadaceae,
Ephedraceae, Ginkgoaceae, Gnetaceae, Pinaceae, Podocarpaceae,
Sciadopityaceae, Taxaceae, Welwitschiaceae and Zamiaceae) are
formed in the female gametophyte that develops in the ovule.
The female gametophyte has much stored food that is subse-
quently used by the growing embryo(s). In all the extant families,
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the embryos have cotyledons, usually two but sometimes more,
and the embryo is several times longer than wide. Embryos of
some species of Cupressaceae and Ephedraceae are spoon-shaped
(spatulate) (Martin, 1946), but nevertheless they are longer than
wide. In the Cephalotaxaceae, Cycadaceae, Ginkgoaceae,
Podocarpaceae, Taxaceae and Zamiaceae, the linear embryos
have a low E:S ratio (Martin, 1946), and they grow inside the
seed prior to germination. Thus, the embryo in these six families
is underdeveloped (Baskin and Baskin, 2014), but the length of
the embryo is longer than that of a rudimentary embryo.

In our survey of embryos in the non-seed plants and the gym-
nosperms, we did not find a group of pre-angiosperm plants with
an embryo matching the characteristics of a rudimentary embryo.
Thus, based on available information, we conclude that rudimen-
tary embryos are not found in the pre-angiosperms. However, we
would like to emphasize that more searching for embryos in fossil
seeds of early gymnosperms is needed. Perhaps, fossil seeds of
some early gymnosperms stored in a museum drawer have an
embryo that could be revealed via synchrotron radiation X-ray
tomography (see Friis et al., 2015).

Is the rudimentary embryo a proembryo?

A proembryo in seeds of both gymnosperms and angiosperms is
the product of the first stages of embryogenesis, and it is smaller

than a mature embryo. Thus, we ask if proembryos of gymnos-
perms and angiosperms have the same size and general morph-
ology as rudimentary embryos?

The L:W ratio of proembryos in the 13 families of extant gym-
nosperms ranges from 1.2 (Taxaceae) to 7.6 (Cephalotaxaceae)
(Table 2). However, the ratio varies within a family as indicated
by a range of 1.2–2.7 for the Taxaceae and of 1.4–3.9 for the
Zamiaceae. The mean L:W ratio of the 48 species with a rudimen-
tary embryo in Martin’s (1946) paper is 1.5; thus, some gymno-
sperm taxa have a proembryo that fits into the size range of
rudimentary embryos. However, the early proembryo stages of
most gymnosperms are free-nuclear (see Rudall and Bateman,
2019), with the exception of Gnetum (Johansen, 1950), Sequoia
sempervirens (Buchholz, 1939) and Welwitschia mirabilis
(Pearson, 1909, 1910), which are cellular. A free-nuclear stage
occurs in the early embryogenesis of the lower vascular plants,
but it is not known in angiosperms (Foster and Gifford, 1959).
However, nuclear and helobial endosperm formation in angios-
perms seeds are free-nuclear, while cell wall formation keeps
pace with cell division in cellular endosperm formation of angios-
perms (Gifford and Foster, 1989).

In contrast to gymnosperms, the proembryo of angiosperms is
cellular, and, as frequently illustrated in the botanical literature
(e.g. Gifford and Foster, 1989), it is globular in shape. For
example, the L:W ratio of the proembryo in various angiosperms
is: (1) dicots – Aconitum soongaricum, 1.1 (Butuzova et al., 1997),
Capsella bursa-pastoris, 0.8 (Raghavan and Torrey, 1963), Phlox
drummondii, 1.1 (Miller and Wetmore, 1945), Pisum sp., 1.0
(Reeve, 1948) and Strombosia ceylanica 1.0 (Agarwal, 1963);
and (2) monocots – Crocus thomasii, 1.4 (Chichiricco, 1989),
Lomandra longifolia, 1.5 (Ahmad et al., 2008), Sagittaria variabi-
lis, 1.3 (Schaffner, 1897), Scilla autumnalis, 1.4 (Coşkun and Ünal,
2010) and Zephyranthes drummondii, 1.2 (Church, 1916).

In both gymnosperms (Johansen, 1950) and angiosperms
(Raghavan, 1986), the signal that the proembryo stage has
ended is the initiation of meristems and organs such as cotyledon
primordia. Although proembryos of some gymnosperms and
angiosperms are small enough to fit into the size range of

Figure 1. Diagrams showing parts of embryos (not to
scale) of liverwort (a), Selaginella (b), fern (c),
Equisetum (d), Isoetes (e), gymnosperm (Zamiaceae)
(f), angiosperm (Ilex with rudimentary embryo) (g), lon-
gitudinal section of seed with a rudimentary embryo at
time of dispersal showing small size of embryo in rela-
tion to endosperm (h) and the same seed with a rudi-
mentary embryo (black) that has grown prior to
germination (i). Modified from Schertler (1979),
Bruchmann (1912), Hofmeister (1979), Walker (1921),
La Motte (1937), Woodenberg et al. (2014), Hu (1976)
and Martin (1946), respectively. C, cotyledon; Cap, cap-
sule; E, embryo; endosp., endosperm; F, foot; H, hau-
storium; L, leaf; R, root; S, shoot; Se, seta; Su, suspensor.

Figure 2. General shape of underdeveloped embryos in seeds of dicots: rudimentary
(a), linear-underdeveloped (b) and spatulate-underdeveloped (c) and monocots: rudi-
mentary (d) and linear-underdeveloped (e). • indicates position of shoot meristem.
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Table 1. Information about fossil ovules, seeds and embryos of gymnosperms from the Upper Devonian to Late Cretaceous

Order Species Age
Fossil has ovule/seed/embryo;

embryo size (mm) Ovule or seed size (mm) References

Lagenospermopsida Cosmosperma polyloba Upper Devonian Ovules Ovule: 3.7–4.7 long, 1.6–
2.2 wide

Liu et al. (2017)

Not determined Latisemenia longshania Late Devonian Ovules Ovule: 5.3–10.7 long, 2.4–
5.3 wide

Wang et al. (2015)

Cordaitales Cordaites annularis Middle Pennsylvanian Seedsa Seed: 10–11 long, 9–11
wide

Šimůnek et al. (2009)

Cordaitales Cordaianthus
duquesnensis

Late Pennsylvanian Ovules Ovule: 0.1–0.3 long, 0.1
wide

Rothwell (1982)

Cordaitales Wangjunia microfolia Middle Permian Seedsa Seed: 5.4–5.5 long, 4.1–
4.3 wide

Backer et al. (2019)

Medullosales Pachytesta muncii Lower Pennsylvanian Seedsa Seed: 30 long, 20 wide Cichan and Taylor (1981)

Medullosales Hexapterospermum
delevoryii

Middle Pennsylvanian Seedsa Seed: 25 long, 13 wide Taylor (1966)

Lagenostomales Conostoma oblongum Upper Pennsylvanian Seedsa Seed: 4 long, 2.5 wide Reed (1939)

Trigonocarpuales Pachytesta gigantea Upper Pennsylvanian Seedsa Seed: 70 long, 30 wide Reed (1939)

Cycadales Cycads, new genus A,
new genus B

Lower Permian Ovules/seeds No data Mamay (1969)

Cycadales Beania gracilis Jurassic Seedsa Seed: 7–15 long, 7–13
wide

Harris (1941)

Ginkgoales Sphenobaiera Upper Permian Ovules/seeds No data Fischer et al. (2010)

Ginkgoales Schmeissneria
microstachys

Late Triassic–Early
Jurassic

Ovules Ovule: 2.5–3.5 long, 2.2–
2.6 wide

Kirchner and van
Konijnenburg-van Cittert
(1994)

Glossopteridales Glossopterid Late Permian Ovules Ovule: 1.8 long, 0.5–0.9
wide

Taylor and Taylor (1992)

Glossopteridales Plectilopsermum elliotii Permian Seeds Seed: 3.1–4.1 long, 2.2–
2.8 wide

Smoot and Taylor (1986),
Taylor and Taylor (1987)

Glossopteridales Plectilopsermum elliotii Permian Proembryo: 0.3 long, 0.1 wide Seed: 2.2–4.1 long, 1.6–
2.5 wide

Smoot and Taylor (1986);
Taylor and Taylor (1987)

Glossopteridales Pachytestopsis
tayloriorum

Late Permian Ovules Ovules: 5–11 long, 5–10.1
wide

McLoughlin et al. (2018)

Voltziales Walchian conifer Uppermost Pennsylvanian
or lowermost Permian

Linear-full polycotyledonous
embryo: 2.5 long, slender

No data Mapes et al. (1989)

Voltziales Emporia cryptica Late Pennsylvanian Elongated and polycotyledonous
embryo: 0.5 long, 0.2 wide

Seed: 2.4–7.9 long, 1.4–
1.8 wide

Hernandez-Castillo et al.
(2009)

Voltziales Parasciadopitys aequata Early Middle Triassic Linear-full embryo (with 2
cotyledons): 0.2 long, 0.1 wide

Seed: 0.6 long, 0.2 wide Schwendemann et al. (2010)

Bennettitales Westersheimia
pramelreuthensis

Upper Triassic Linear-full embryo (with 2
cotyledons): 1.3 long, 0.4 wide

Seed: 1.6 long, 1.4 wide Pott (2016)
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Martin’s rudimentary embryo, they are not rudimentary embryos
due to lack of cotyledon primordia. Furthermore, in angiosperms,
the source of food for the developing embryo changes as the
embryo advances from a globular to a heart-shaped embryo.
The young globular angiosperm embryo receives nutrients from
the seed coat via the suspensor, while the heart-shaped embryo
begins to use nutrients from the endosperm, at which time the
suspensor degenerates (Lafon-Placette and Köhler, 2014).

Dicot versus monocot embryos

Clearly, there are differences between embryos in dicots and
monocots, for example, two (typically) versus one cotyledon,
respectively, but is this the only difference? During embryogenesis
of monocots and dicots, the epicotyl and cotyledon(s) come from
derivatives of the apical (terminal) cell (ca) that results from the
first division of the zygote. In dicots, initiation of the epicotyl and
cotyledonary centres of growth begins when derivatives of the
apical cell reach the octant stage. The octant stage may consist
of four cells each in tiers l and l′ or eight cells may be in tier q
(Johri et al., 1992). In a dicot embryo, the epicotyl comes from
the central cells of the q tier (with eight cells) or from the l (ter-
minal) tier of four cells, depending on the species (Swamy and
Krishnamurthy, 1977). The cells that give rise to the cotyledons
in a dicot embryo are on opposite sides of the q tier of cells, or
they are the four cells in tier l′. The epicotylenary cells grow
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Table 2. Examples of the length:width ratios of proembryos in the families of
extant gymnosperms

Family
Proembryo length:

width ratio References

Araucariaceae 1.4, 2.4 Owens et al. (1995)

Cupressaceae 2.8 Johansen (1950)

2.1 Doyle (1961–1963)

Cephalotaxaceae 7.6 Doyle (1961–1963)

Cycadaceae 3.6 Biswas and Johri
(1997)

Ephedraceae 1.5 Johansen (1950)

Ginkgoaceae 1.9 Wang et al. (2011)

Gnetaceae 1.8 Johansen (1950)

Pinaceae 2.1 Buchholz (1918)

1.8 Johansen (1950)

Podocarpaceae 1.8, 2.3 Doyle (1961–1963)

Sciadopityaceae 2.7 Doyle (1961–1963)

Taxaceae 2.7 Johansen (1950)

1.3 Doyle (1961–1963)

1.2 Schneckenburger
(1993)

Welwitschiaceae 1.6 Pearson (1910)

Zamiaceae 2.7 Chamberlain (1910)

3.2 Sedgwick (1924)

3.9 Johansen (1950)

1.4 Schneckenburger
(1993)
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very slowly, while the cells that give rise to the cotyledons grow
rapidly forming a cotyledon on each side of the epicotylenary cen-
tre (Swamy and Krishnamurthy, 1977; Johri et al., 1992).

During embryogenesis of the monocot embryo, the apical (ter-
minal) cell resulting from the first division of the zygote divides
by formation of a vertical wall, as seen in dicots. One of the two
cells becomes the epicotylenary centre and the other one the coty-
ledonary centre (Swamy and Krishnamurthy, 1977). Cells of the
epicotylenary centre divide very slowly, while those in the cotyle-
donary centre divide relatively rapidly, causing the growing cotyle-
don to push the epicotylenary cells to the side of the embryo
(Swamy, 1963; Lakshmanan, 1972, 1977, 1978; Swamy and
Krishnamurthy, 1977; Guignard, 1984; Johri et al., 1992). Thus,
the epicotyl and cotyledon(s) in both dicots and monocots are
derived from the apical cell that results from the first division of
the zygote. However, subsequent cell production and growth in
the dicot and monocot embryo lead to the epicotyledonary cells
being on the top and side of the embryo, respectively.

Underdeveloped (differentiated) embryos in the seeds of
dicots and monocots

In seeds with an underdeveloped embryo, not including undiffer-
entiated embryos such as occurs in Orchidaceae (Yeung, 2022),
the embryo is small in relation to the size of the seed, and a rela-
tively large amount of endosperm is present. Furthermore, the
embryo grows inside the seed prior to radicle emergence (germin-
ation) (Nikolaeva, 1969). Three kinds of underdeveloped embryos
are found in dicots (rudimentary, linear-underdeveloped and
spatulate-underdeveloped), and two occur in monocots (rudi-
mentary and linear-underdeveloped).

In dicot seeds with a rudimentary embryo, the two cotyledons
are small projections (bumps), one on each side of the apical
meristem (Fig. 2a). In the linear-underdeveloped embryo, the
top of the somewhat elongated (linear) cotyledons extends
above the shoot meristem by one-third to one-half the full length
of the embryo (Fig. 2b). In the spatulate-underdeveloped embryo,
the two cotyledons are rounded and are about one-half the length
of the embryo (Fig. 2c).

In the monocot rudimentary embryo, the height of the tip of
the cotyledon above the shoot meristem (bud) is about equal to
that of the height of the bud from the base of the embryo. That
is, the bud is on the side of the embryo, halfway between the
top and bottom (Fig. 2d). In the linear-underdeveloped monocot
embryo, the bud is on the side of the embryo but relatively close
to the base of the embryo; it is only about one-third of full embryo
length above the base of the embryo (Fig. 2e). Thus, the tip of the
elongated cotyledon projects well above the shoot meristem on
the side of the embryo.

When do embryos grow?

Spores are the dispersal unit for bryophytes, lycophytes and mon-
ilophytes, and seeds (gymnosperms) or seeds plus enclosing
structures (angiosperms) are the dispersal unit in seed plants.
Both spores and seeds can be dormant at maturity (Niklas,
2008), and various treatments such as dry storage (afterripening)
and cold moist stratification may be required to break dormancy
of spores (Kott and Britton, 1982; Whittier, 1987; Haupt et al.,
1988; McLetchie, 1999; Sabovljević et al., 2016) and seeds
(Baskin and Baskin, 2014); these treatments suggest the presence
of physiological dormancy in both spores and seeds.

Non-dormant spores germinate and produce a gametophyte
that grows on/in the soil or inside the megaspore (that is on/in
the soil) of some species. As gametophytes mature, they produce
one or more archegonia, each containing an egg that potentially
will be fertilized, resulting in the formation of a zygote. The
first division of the zygote occurs between 1 h and 10 d after fer-
tilization, depending on the species (see Ward, 1954). After the
first division of the zygote, the embryo increases in size via cell
division, and organs are formed. The young sporophyte rapidly
exceeds the size of the archegonium and emerges from it. Thus,
there is relatively little delay between the time of first division
of the zygote and appearance of the young sporophyte.

In gymnosperm and angiosperm seeds, the gametophyte devel-
ops inside an ovule that is attached to the sporophyte. After egg for-
mation and fertilization, mitotic divisions of the zygote and the
resulting cells lead to formation of an embryo; an ovule with an
embryo inside is called a seed. The size of the embryo at the
time of seed maturation varies with the species, and (in relation
to size of the whole seed) it ranges from very small (rudimentary,
linear-underdeveloped, spatulate-underdeveloped; together referred
to as underdeveloped embryos) to very large (e.g. linear-full, spatu-
late, bent, folded and investing).

In the case of angiosperm seeds with a rudimentary, linear-
underdeveloped or spatulate-underdeveloped embryo, the embryo
has organs but additional growth and differentiation occur prior
to germination (radicle emergence). That is, after the seeds are
dispersed and are imbibed, the embryo grows inside the seed,
using the stored food reserves. Rudimentary, linear-
underdeveloped and spatulate-underdeveloped embryos are
known to occur in 31, 83 and 27 families of dicots, respectively,
and rudimentary and linear-underdeveloped occur in 5 and 27
families of monocots, respectively (Martin, 1946; Baskin
and Baskin, unpublished embryo database). However, a family
may have more than one kind of underdeveloped embryo, for
example, Apiaceae, Araliaceae, Dilleniaceae, Myristicaceae and
Papaveraceae. In gymnosperms, linear-underdeveloped embryos
occur in the Cephalotaxaceae, Cycadaceae, Ginkgoaceae,
Podocarpaceae, Taxaceae and Zamiaceae, and this is the only
kind of underdeveloped embryo in these families; the embryo
grows inside the seed prior to germination (Devillez, 1978;
Dehgan and Schutzman, 1983, 1989; Nikolaeva et al., 1985 (see
Rosbakh et al., 2020 for English translation of this book); Del
Tredici, 2007; Ferrandis et al., 2011; Yang et al., 2011).

Relationship between the rudimentary and other kinds of
angiosperm embryos

First, we will consider the ANA grade of angiosperms, which
includes Amborellales (A), Nymphaeales (N) and Austrobaileyales
(A). Phylogenetic analyses based on 1594 nuclear genes have recov-
ered ‘ … full support for Amborella being sister to all other extant
angiosperms, followed successively by Nymphaeales and
Austrobaileyales… ’ (Yang et al., 2020). There are three kinds of
embryos in the ANA grade: two are underdeveloped
(Amborellales and Austrobaileyales) and one fully developed
although small (Nymphaeales) (Baskin and Baskin, 2007a, 2021).
Seeds of Amborellales have a rudimentary embryo (Fogliani et al.,
2017), and those of Austrobaileyales have a linear-underdeveloped
embryo (Endress, 1980; Losada et al., 2017).

Seeds of Nymphaeales were reported by Martin (1946) to have
a broad embryo, and when they are viewed in profile, they are
wider than tall. However, much research has been done on
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seeds with broad embryos, for example, in the monocot families
Eriocaulaceae, Mayacaceae and Xyridaceae (see Baskin and
Baskin, 2018), and it is now clear that the broad embryo only dif-
ferentiates organs (shoot and root) after part of it is pushed to the
outside of the seed (Ramaswamy et al., 1981; Corredor et al.,
2015); this is also true in Hydatellaceae (Tucket et al., 2010;
Friedman et al., 2012). In contrast to the mostly undifferentiated
broad embryo of Eriocaulaceae, Hydatellaceae and other families,
the embryo of Nymphaeales is cup-like with thick hemispherical
cotyledons surrounding leaf primordia (Haines and Lye, 1975;
Titova and Batygina, 1996). There is little or no embryo growth
inside the seed prior to beginning of the germination process
(Baskin and Baskin, 2007a, 2021). During seed germination of
Nymphaeales, the base of the cotyledons elongates pushing the
leaf primordia and terminal part of the hypocotyl to the outside
of the seed; the distal end of the cotyledons remains inside the
seed and acts as a haustorium (Okada, 1925; Haines and Lye,
1975; Povilus et al., 2015). The cup-like embryo of Nymphaeales
has not been placed on Martin’s (1946) family tree of seed phyl-
ogeny, and its relationship to rudimentary and linear-
underdeveloped embryos is not known.

The rudimentary embryo is placed at the base of Martin’s
(1946) tree, and the linear embryo is placed above it. Martin’s linear
category includes linear-full and linear-underdeveloped embryos in
both monocot and dicot families. To the right of the rudimentary
embryo, along the base of his tree, we find the capitate, broad (as
found in Eriocaulaceae, Mayacaceae and Xyridaceae) and lateral
embryos. To look for relationships between the rudimentary
embryo and other kinds of angiosperm embryos, all families in
the Baskin and Baskin plant embryo database (257 families) were
surveyed for presence of underdeveloped embryos: rudimentary,
linear-underdeveloped and spatulate-underdeveloped. If a family
with underdeveloped embryos also had other kinds of embryos,
these kinds of embryos were recorded. Since monocots have
some kinds of embryos not found in dicots, monocots and dicots
were evaluated separately.

A total of 177 families were recorded for dicots and 7, 33, 51 and
5 have only rudimentary, linear-underdeveloped, linear-full or
spatulate-underdeveloped embryos, respectively. The other 81 fam-
ilies in the database have a combination of kinds of embryos. The
rudimentary embryo is found in 12 families that also have a linear-
underdeveloped embryo but in a few or no families with other kinds
of embryos (Table 3). On the other hand, although many (33) fam-
ilies have only a linear-underdeveloped embryo, this kind of embryo
can be found in families that also have linear-full, spatulate-full or
undifferentiated embryos. A few linear-underdeveloped embryos
are found in families with bent, folded or investing embryos.

Of the 80 families of monocots in the database, 15, 29, 9, 7, 1
and 6 have only a linear-underdeveloped, linear-full, board, capitate,
lateral andundifferentiatedembryo, respectively.Theother13 families

have a combination of kinds of embryos: 5, rudimentary + linear-
underdeveloped; 6, linear-underdeveloped + linear-full; and 2, linear-
full + capitate. Thus, for both dicots and monocots, the rudimentary
embryo is more likely to be found in families with a linear-
underdeveloped embryo than in familieswithother kinds of embryos.
The five families of monocots with both rudimentary and linear-
underdeveloped embryos include the Arecaceae, Haemodoraceae,
Liliaceae, Melanthiaceae and Stemonaceae (Martin, 1946).

Rudimentary embryos and palaeohistory of seeds

Arnold (1938, 1949) concluded that in ovules of the pteridos-
perms and Cordaitales a rest period occurred after fertilization,
which was marked by formation of a well-developed/durable
integument. After the rest period, the ovule with a zygote inside
it was dispersed from the plant. Later, Miller and Brown (1973)
suggested that ‘ … production of embryos before seed dispersal
may have evolved as an adaptation to climatic conditions to
enhance seedling survival rather than as a better way of manufac-
turing an embryo’. It seems reasonable that a step between ovules
with only a zygote and seeds with a large well-developed embryo
when they are dispersed would be seeds with a small embryo
(with organs) and stored food to supply the early stages of growth.

In the history of seed plants, can we find a sequence of ovules
with only a zygote, followed by seeds with small embryos and
finally seeds with large well-developed embryos? In the
Cycadopsida, we will consider the pteridosperms, cycads and
Bennettitales. The pteridosperms (Devonian) presumably had
ovules with only a zygote (Arnold, 1938, 1949). Based on the
facts that (1) living cycads have a linear-underdeveloped embryo,
and (2) features of gymnosperms were highly developed by the
Permian (Wachtler, 2016), it is presumed that seeds of cycads
(Permian) had a linear-underdeveloped embryo. Finally, seeds
of the Bennettitales (Triassic) had a linear-fully developed embryo
(Table 1). In the Coniferopsida, we will consider Cordaitales,
Ginkogoales and Pinales. The sequence of advancement is
Cordaitales (Mississippian; McLoughlin, 2020) with ovules con-
taining only a zygote (Arnold, 1938, 1949)→Ginkogoales
(Permian) with a linear-underdeveloped embryo, based on
Ginkgo biloba (Martin, 1946)→ Pinales (Coniferales) (Triassic)
with linear-underdeveloped, linear-fully developed and spatulate
embryos (Martin, 1946). However, Martin (1946) indicated that
the shape and size of the cotyledons in gymnosperm linear-
underdeveloped and spatulate embryos differed somewhat from
those in angiosperms.

The presence of a small embryo in seeds of early angiosperms
is consistent with small embryos in seeds of early gymnosperms.
However, as noted above, a rudimentary embryo has not been
found in fossil seeds of early gymnosperms. Thus, we conclude
that the rudimentary embryo is an angiosperm ‘invention’. If at

Table 3. Number of dicot angiosperm families with rudimentary or linear-underdeveloped embryos and number of dicot angiosperm families with a combination of
rudimentary or linear-underdeveloped embryos and other kinds of embryos

Rudimentary or Linear-underdeveloped Rud. LU SU LF Bent Folded Invest. Spat. Undiff.

Rudimentary 9a 16b 0 0 1 0 0 3 1

Linear-underdeveloped 16b 33c 8 16 2 1 1 17 5

Abbreviations: Rud, rudimentary; LU, linear-underdeveloped; SU, spatulate-underdeveloped; LF, linear-full; Invest., investing; Spat., spatulate; Undiff., undifferentiated.
aNine families with only a rudimentary embryo.
bSixteen families with both a rudimentary embryo and a linear-underdeveloped embryo.
cThirty-three families with only a linear-underdeveloped embryo.
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some point in the future the rudimentary embryo is found in
seeds of an ancient gymnosperm, it seems that such a discovery
would provide a good clue as to which group of ancient gymnos-
perms was the ancestor of angiosperms.

The fossil record indicates that seeds were small during most
of the Cretaceous (Tiffney, 1984; Eriksson et al., 2000; Sims,
2012; Friis et al., 2015). For seeds from seven Late Cretaceous
field-collection sites, average seed volume was 1.7 mm3 (Tiffney,
1984); the size of A. trichopoda seeds is 3.3 mm3 (Feild et al.,
2004). In the early part of the Paleogene, both median seed size
and the range of seed sizes increased (Tiffney, 1984; Eriksson
et al., 2000; Benton et al., 2021). Furthermore, as seed size
increased the rate of species diversification of angiosperms
increased (Igea et al., 2017; Benton et al., 2021). Moles et al.
(2005a,b) concluded that species divergence of angiosperms was
more closely related to plant growth form than to other variables
such as climate, latitude, net primary productivity, leaf area index
and method of seed dispersal.

A factor that has not been considered in the divergences of
angiosperms is the development of different kinds of embryos
and the change from seeds with a large amount to endosperm
at seed maturity to those with little or no endosperm at seed
maturity. However, the analysis of embryo size in seed plants
by Forbis et al. (2002) found that the underdeveloped embryo is
primitive and that the E:S ratio has increased in both gymnos-
perms and angiosperms. Using data from Moles et al. (2005a)
on seed mass for various orders of angiosperms, we can obtain
a preliminary glimpse of the possible magnitude of change in
seed mass as embryo size increased. The endospermous seeds in
the orders Amborellales, Apiales, Aquifoliales, Austrobaileyales,
Liliales, Piperales, Ranunculales and Trochodendrales have small
either rudimentary and/or linear-underdeveloped embryos
(Martin, 1946) and a mean seed mass of 6.69 mg (Moles et al.,
2005a). However, the eight orders of fabids (Celastrales,
Cucurbitales, Fabales, Fagales, Oxalidales, Malpighiales, Rosales
and Zygophyllales) with little or no endosperm and large linear-
full developed, spatulate, bent, investing and/or folding embryos
(Martin, 1946) have a mean seed mass of 38.4 mg (Moles et al.,
2005a). Thus, overall, it seems that seeds with small, underdevel-
oped embryos are smaller (i.e. lower volume and mass) than those
with large, fully developed embryos. Do the small seeds of the
early angiosperms mean that plants produced a relatively large
number of seeds that may have enhanced colonization of new
habitats (e.g. Leishman, 2001)?

Rudimentary embryos and diversification of angiosperm
embryos

Plant taxonomists have long considered angiosperm plant families
whose seeds have an underdeveloped embryo and a large amount
of endosperm to more primitive than those whose seeds have a
fully developed embryo and little or no endosperm (e.g. Bessey,
1915). Fossil seeds from Early Cretaceous deposits in eastern
North America and Portugal had much endosperm and tiny
embryos, including rudimentary embryos in Canrightiopsis and
linear-underdeveloped embryos in Anacostia and Appomattoxia
(Friis et al., 2015). As mentioned above, seeds of the most-basal
extant angiosperm A. trichopoda have a rudimentary embryo
(Tobe et al., 2000), which is physiologically dormant, that is, the
seeds have morphophysiological dormancy (Fogliani et al., 2017).
In an investigation of the dormant state transitions for 14,000
taxa in 318 families, Willis et al. (2014) concluded that

morphophysiological dormancy was the ‘most likely ancestral
state of seed plants’. With all these facts as background information,
we see no reason to dispute Martin’s (1946) placement of the rudi-
mentary embryo at the base of his family tree of seed phylogeny.

According to Martin (1946), the rudimentary embryo has
served as the base or starting point for the diversification of
embryos in angiosperms. Rudimentary and linear embryos occur
together in at least 29 angiosperm families (Baskin and Baskin,
embryo database). This association of rudimentary and linear
embryos is not surprising, since Martin (1946) concluded that
the progression of development of the different kinds of embryos
was rudimentary→ linear→ spatulate→ bent→ folded, or it was
from rudimentary→ linear→ spatulate→ investing. The occur-
rence of rudimentary and linear embryos in the same families sug-
gests a strong relationship between the two kinds of embryos. In
addition, linear and spatulate embryos in the same families, for
example, Boraginaceae, Caprifoliaceae, Hypericaceae, Loganiaceae,
Plantaginaceae, Rubiaceae and Solanaceae, suggest a relationship
between these two kinds of embryos. Furthermore, a relationship
between spatulate and bent, investing and folded embryos is
suggested by their occurrence in the same families, for example,
Acanthaceae, Burseraceae, Fabaceae, Malpighiaceae, Phyllanthaceae
and Rosaceae (Martin, 1946).

Although rudimentary embryos occur in the most-basal extant
angiosperm, they are not restricted to the basal angiosperms.
Rudimentary embryos are known to occur in 38 families and 25
orders of angiosperms (Martin, 1946; Baskin and Baskin, embryo
database), and they occur in woody as well as in herbaceous per-
ennials and annuals (Baskin and Baskin, 2014). Rudimentary
embryos occur in seeds of the magnollids, commelinids, lamiids
and campanulids and various other clades but not those in the
fabids and malvids. Thus, rudimentary embryos are present in
seeds of many families and orders of angiosperms and in species
with various life forms growing in a diversity of habitats. The rela-
tively wide occurrence of rudimentary embryos throughout the
angiosperms suggests that a small embryo in an endospermous
seed is not a detriment for lineage survival.

For both gymnosperms and angiosperms, we can think of eco-
logical situations where the length of time for successful seed
development is limited, for example, onset of drought and closure
of the canopy in deciduous forests in spring. The production of
seeds with an underdeveloped embryo with much stored food
in the female gametophyte of gymnosperms or endosperm of
angiosperms would permit relatively rapid seed development
and maturation. Furthermore, the embryo could continue to
grow after seed dispersal, using the stored food reserves in the
seed. In addition, the timing of onset of favourable environmental
conditions for plant growth, such as temperature and soil mois-
ture, could help time growth of the embryo and thus germination
to a season when conditions are favourable for seedling survival
and growth (Baskin and Baskin, 2014).

Many examples of species with rapid seed development and
underdeveloped embryos are found in the deciduous forests of
eastern North America. Of the 127 species of herbs (mostly per-
ennials) growing on the forest floor (see Braun, 1950), 59 (46.5%)
of them produce seeds with an underdeveloped embryo, either
rudimentary or linear-underdeveloped (Baskin and Baskin,
2014). These species flower and set seeds in early spring during
the short period of high photosynthetic irradiance on the forest
floor and warm temperatures prior to leaf emergence and canopy
closure. Furthermore, seeds of most of these species have mor-
phophysiological dormancy, that is, the underdeveloped embryo

70 C.C. Baskin and J.M. Baskin

https://doi.org/10.1017/S0960258523000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258523000168


has physiological dormancy, which is broken during the summer
and/or winter following seed dispersal (Baskin and Baskin, 2014).
Nonogaki et al. (2022) found a delay of a germination gene in
A. trichopoda, which indicates an early association between the
rudimentary embryo and physiological dormancy.

Advantages of seed formation in angiosperms versus
gymnosperms

Many changes have occurred in angiosperms, including increased
rate (speed) of seed formation, simplification of the female gam-
etophyte, development of a new tissue (endosperm) for food stor-
age for the embryo and time when it is formed (after fertilization/
zygote formation) and elimination of the production of multiple
embryos from each zygote, that enhance seed production com-
pared to gymnosperms.

A significant decrease in the time from pollen dispersal until
seed dispersal has long been thought to have played a role in
the origin and diversification of angiosperms (see Williams,
2012a). Two important aspects of the increase in speed of angio-
sperm seed formation are an increase in the speed of pollen ger-
mination and of pollen tube growth compared to gymnosperms
(Williams, 2008, 2012a). After gymnosperm pollen is in the pol-
len chamber of the ovule, germination does not occur for hours or
days (Gnetophyta), a week (conifers and Ginkgo) or several
months (cycads), and this along with slow pollen tube growth
results in a delay of fertilization of the egg for 10 h to more
than 1 year, depending on the species (Fernando et al., 2010).
However, angiosperm pollen on the stigma germinates quickly
compared to pollen of gymnosperms. In a survey of pollen ger-
mination after deposition on the stigma in 131 species of angios-
perms in 65 families, Williams (2012b) found that germination
occurred within about 1 min to >60 h, depending on the species.
Interestingly, the time intervals between pollination and fertiliza-
tion (i.e. presence of sperm in female gametophyte) for A. tricho-
poda, Austrobaileya scandens and Nuphar sepala are 12, 13 and
24 h, respectively (Williams, 2008, 2009). In vitro pollen tube
growth rates of gymnosperms are 5–20 μm h−1, and those of
angiosperms are 10 to >20,000 μm h−1, with monocots generally
having higher rates than eudicots (Williams, 2012a).

Although many living (and fossil) gymnosperms have (had)
relatively small ovules at the time of pollination, gymnosperm
ovules are larger than angiosperm ovules at the time of fertiliza-
tion (Leslie and Boyce, 2012). Gymnosperm ovules increase in
size by the time of fertilization because a large female gameto-
phyte generally is required for egg formation. On the other
hand, the angiosperm ovule at the time of fertilization is small
and consists of only a few cells. In gymnosperms, much food
has been stored in cells of the female gametophyte by the time fer-
tilization occurs, but in angiosperms, endosperm formation is not
initiated until double fertilization has occurred (Baroux et al.,
2002; Leslie and Boyce, 2012). Thus, if fertilization does not
occur an aborted ovule represents a greater loss (‘cost’) to a
gymnosperm than to an angiosperm plant.

Although seeds with more than one embryo do occur in
angiosperms (polyembryony), in general the fertilized egg in an
angiosperm female gametophyte gives rise to a single embryo.
In gymnosperms, however, there is a phase in embryogenesis dur-
ing which multiple embryos derived from the same zygote are
growing and presumably competing for food stored in the female
gametophyte (Buchholz, 1918, 1939; Johansen, 1950; Foster and
Gifford, 1959). For example, in Pinus, the zygote gives rise to

four cells, each of which becomes an embryo with a long, often
twisted, suspensor. Furthermore, at the base of each suspensor,
opposite the end to which the embryo is attached, a (rosette)
cell is initiated, and each rosette cell has the potential to develop
into an embryo. Thus, eight embryos can be produced from a sin-
gle zygote. Rosette embryos mostly do not develop and quickly
die, but some with elongated cells that look like a suspensor
have been observed (Buchholz, 1918). In general, only one
embryo survives, and the terminal embryo usually is the success-
ful one; sometimes, the second rather than the terminal embryo
survives. Programmed cell death has been shown to be an import-
ant factor in the death of subordinate embryos in Pinus (Vuosku
et al., 2009).

Concluding thoughts

From our review, we conclude that underdeveloped embryos
occur only in seed plants. The rudimentary embryo originated
in the angiosperms, and linear embryos are closely related to it.
Rudimentary embryos in dicots and monocots differ in develop-
ment/morphology, but their size is the same. The diversification
of angiosperm embryos from the rudimentary embryo contribu-
ted to the success of angiosperms on earth.

It seems reasonable that the chances of offspring survival are
increased if the dispersal unit contains an embryo versus only a
zygote. Seeds of the oldest extant gymnosperms (Cycadales and
Ginkgoales) contain a small linear-underdeveloped embryo, and
the most-basal extant angiosperm (Amborella) has a small rudi-
mentary embryo. In the case of gymnosperms, embryo diversifi-
cation has resulted in the formation of linear-fully developed
and somewhat spatulate embryos. However, the rudimentary
embryo of angiosperms has directly/indirectly given rise to 13
new kinds of embryos in angiosperms (Martin, 1946; Baskin
and Baskin, 2007b, 2018), that is, counting the linear-
underdeveloped and spatulate embryos of angiosperms that differ
somewhat from these two types of embryos found in seeds of
gymnosperms. Diversification of embryos, along with increased
embryo and seed size, are a part of the syndrome of changes in
angiosperms that have increased the speed and efficiency of
seed production compared to gymnosperms. Thus, efficient
seed production may be one of the reasons for the eventual dom-
inance of angiosperms over gymnosperms (Condamine et al.,
2020). Finally, we fully agree with Martin’s (1946) placement of
the rudimentary embryo as the base of his family tree of seed
phylogeny of angiosperms.
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