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Machine Learning Arrives in Archaeology

Simon H. Bickler

Machine learning (ML) is rapidly being adopted by archaeologists interested in analyzing a range of geospatial, material cultural, textual,
natural, and artistic data. The algorithms are particularly suited toward rapid identification and classification of archaeological features and
objects. The results of these new studies include identification of many new sites around the world and improved classification of large
archaeological datasets. ML fits well with more traditional methods used in archaeological analysis, and it remains subject to both the
benefits and difficulties of those approaches. Small datasets associated with archaeological work make ML vulnerable to hidden complexity,
systemic bias, and high validation costs if not managed appropriately. ML's scalability, flexibility, and rapid development, however, make it
an essential part of twenty-first-century archaeological practice. This review briefly describes what ML is, how it is being used in archaeology
today, and where it might be used in the future for archaeological purposes.
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MACHINE LEARNING IN
ARCHAEOLOGY

Machine learning (ML) is gaining prominence in the media and in
the academic literature. This review briefly describes what ML is,
how it is being used in archaeology today, and where it might be
used in the future for archaeological purposes. The rapid growth
in the use of ML, due in large part to the increasing accessibility
and capability of the algorithms, has meant that the number of
publications far outpaces any attempt to cover this in a short arti-
cle. The selected publications mentioned here demonstrate how
diverse, vibrant, and innovative this research has become. This
research also demonstrates some of the challenges of using ML,
ranging from managing the sparse and complex datasets to
systemic biases that can influence the results.

Machine learning describes the study and programming of algo-
rithms allowing computers to learn from data and then make
predictions from those data (see, for example, Shalev-Shwartz and
Ben-David 2014). Broadly, ML uses statistical techniques to analyze
a set of categorized “training” data to derive a series of math-
ematical classifiers (“descriptors” or “feature vectors”) for each
data category. The resulting classification system ideally means
that objects in each category are mathematically identifiable as
distinct from objects in all other categories. This trained classifi-
cation model finds the best set of mathematical “features” to
reliably identify examples for the categories. In other words, the
computer can use math to classify quantifiable objects into dis-
tinct groups (Figure 1).

Dunnell’s (1971) Systematics in Prehistory was prescribed reading
for many students, and it has long cemented classification as a

central focus for archaeologists. ML takes many of the relatively
familiar statistical techniques of classification—such as factor,
discriminant, and cluster analyses—to another level. It does this by
closing the loop on the construction of a classification schema
based on a “known”—and large—set of data to test and tune the
model. This makes the classification as internally consistent as
possible. Less familiar algorithms, such as those associated with
neural networks, add other methods to manage noise in the data,
reliability, and efficiency in the models.

In short, given a known set of classified data, ML algorithms are
"trained” to understand the mathematical rules underpinning that
classification, which are then used to extract, classify, sort, and
draw conclusions from a new set of related data. The data that can
be analyzed includes all kinds of numeric and textual information,
images, and spatial-temporal datasets. Digital data is all numbers
to a computer!

MACHINE LEARNING FOR
ARCHAEOLOGICAL DATA

Archaeological data is also probably better described as “slow
data” (see, for example, Heitman et al. 2017; Kansa and Kansa
2016). Whereas "Big Data” approaches focus on managing data
flowing in on a continuous or near-continuous basis, archaeo-
logical data can be very slow to create—sometimes taking years
or decades—and is delivered in large “lumps” of complex
contextualized information. ML provides the opportunity to
process such “lumps” of data, create models from those data,
and then use that analysis to interpret subsequent data. These
methods enable not only the sorting and management of new
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FIGURE 1. Schematic overview of the process of machine learing applied to archaeological data, showing an example of

matching decorative patterns on historical ceramics.

data but also learning from the new data and the reincorporation
of the results into more robust interpretations. ML works best on
highly structured and large datasets, but there are ways of using it
to explore the sparse and messy datasets archaeologists often
obtain.

Although ML can be applied to a range of digital data, to date,
archaeologists have broadly focused on the following types:

® Numerical and/or categorical data
e Textual data

* Images

¢ Geospatial data

As noted earlier, ML algorithms on numerical and categorical
data are very much extensions of the traditional statistical
techniques (Horr et al. 2014). For example, the ML analysis of
chemical data for provenience studies that rely on cluster

and factor analysis can be less influenced by the statistical
requirements of those algorithms and can be refined as

new data becomes available (Hazenfratz Marks et al. 2017).
Similarly, ML has been used for pattern classification of pottery
styles (Bickler 2018a; Chetouani et al. 2020; Romanengo et al.
2020).

Textual data have also been analyzed using ML, including the
analysis of archaeological records to extract key information

or develop more consistent data (Brandsen et al. 2020; Davis 2020;
Felicetti 2017). More dramatically, ML techniques offer the possi-
bility of automating the translation of ancient languages such as
Egyptian hieroglyphs (e.g., Fabricius'; Sanders 2018).
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The processing of images using ML has been one of the most
productive areas to date for archaeologists. The forms of the
images vary from photographs to stylized drawings of archaeo-
logical objects. Typically, ML has been used to identify “objects”
within images, describe rock art and structural elements of
buildings (Kogou et al. 2020; Prasomphan and Jung 2017; Tsigkas
et al. 2020), and analyze designs as well as tool and vessel forms
(e.g., Bevan et al. 2014; Gualandi et al. 2021; Nash and Prewitt
2016; Pawlowicz et al. 2017); to identify shell or animal bone
(Bickler 2018b; Huffer and Graham 2018); and to document use
wear and damage on tools and ecofacts (Byeon et al. 2019,
Cifuentes-Alcobendas and Dominguez-Rodrigo 2019; Grove and
Blinkhorn 2020).

ML processing roles therefore range from sorting and filtering
archaeological images to improving the management or accessi-
bility of image data for analysis (e.g., Engel et al. 2019) through to
the creation of automated or semiautomated processes (where
expert oversight is used alongside the ML algorithms) for classi-
fication of form, taphonomy, and function (e.g., Gualandi et al.
2021). ML also can be used in the reconstruction of vessels based
on pattern matching of shapes and decoration or as jigsaw-puzzle
solvers (Cintas et al. 2020; Felicetti et al. 2021; Ostertag and
Beurton-Aimar 2020).

Another benefit of the ML approach is that multiple algorithms
can automatically be applied to the same dataset at the same time
to form competing classifications. In this way, the "best” algo-
rithm, with appropriate parameters, can be determined. Such
automated machine learning can be advantageous because most
archaeologists will tend to use a limited range of statistical
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FIGURE 2. An illustrative fictional example of how machine learning may be applied to feature identification in geospatial data

and the reconstruction of a site.

algorithms with which they are familiar rather than pick and
choose from those that suit specific datasets.

The difficulties of creating models with limited training material
available from archaeological situations can be mitigated using
“transfer learning.” Pretrained models that extract relevant fea-
tures from a general set of nonarchaeological images can be
supplemented with a smaller library of preclassified images rele-
vant to the specific task. This allows the model to create the most
relevant descriptors for distinguishing archaeological features
from each other (see Horton and Paunic 2017). Such “transfer
learning” is likely to become a dominant way of building useful
ML models for archaeology.

THE SEARCH FOR SITES

Perhaps the most active area for archaeologists using ML relates to
geospatial data. Rarely does archaeology generate the large
quantities of systematically coded data at a pace that makes ML so
effective in commercial environments. The increasing availability
of large-scale lidar, satellite, and aerial imagery on local, regional,
and national scales, however, is transforming archaeology around
the globe—particularly the searching and mapping of archaeo-
logical sites (Figure 2). ML algorithms can be used to process the
geospatial data in the search for sites in diverse environments
(Bonhage et al. 2021; Caspari and Crespo 2019; Davis 2019,
Davis, DiNapoli, et al. 2020; Davis, Seeber, et al. 2020; Evans and
Hofer 2019; Guyot et al. 2018, 2021; Orengo et al. 2020; Soroush
et al. 2020; Thabeng et al. 2019; Trier et al. 2018, 2019;
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Verschoof-van der Vaart and Lambers 2019; Verschoof-van der
Vaart et al. 2020).

The construction of the ML models can help to identify the con-
tribution of different variables that are useful predictors of where
sites are found across landscapes (Sharafi et al. 2016; Zheng et al.
2020). The different scales in which these models can operate
empower archaeologists when cataloguing heritage by thematic
choices, morphology, and environmental context, which in turn
makes for both better heritage management (e.g., Castiello and
Tonini 2019; Davis, Seeber, et al. 2020; Jones and Bickler 2017)
and more detailed research around the world (e.g., Caspari and
Crespo 2019; Freeland et al. 2016).

These ML approaches to heritage landscapes can be used to
assist in mitigating some of the difficulties of predictive modeling
for cultural resource management (see, for example, Dore and
Wandsnider 2006). This includes methods to test the internal
consistency of the ML predictions and to explore in more detail
the relevant factors that contribute to the presence and absence
of archaeological sites in a landscape. This can be critical in areas
where physical access or visibility of archaeological sites is difficult.

BLACK BOXES

The complexity of the ML algorithms is significant and the amount
of work to create new models is substantial. The result of this

complexity, however, is often a “black box" approach that relies
on a previously created classification model and a need to accept
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the applicability to new data without getting too concerned over
the mathematics and its possible limitations (Figure 1).

For many archaeological applications where the ML is an assistant
to more detailed work, such analysis may be more than adequate.
Where the objectives might be to identify a range of new possi-
bilities for the location of sites or to assist in sorting artifact types,
the benefits of machine-assisted classification, checked by ad-
ditional archaeological investigation such as fieldwork, can be
significant.

Byeon and colleagues (2019:41), for example, in their analysis of
cut marks on bones suggest that their model is more reliable than
manual systems. Most ML models of archaeological data, how-
ever, are likely to be less reliable than those of expert traditional
methodologies because they are as yet unable to manage the
range of variation and inconsistencies of archaeological data. This
may be offset by major time-saving and scalability benefits, which
allow the experts to focus on the more difficult or contentious
examples.

Typically, the most significant hurdle to constructing good ML
models is that they work best when built on large databases of
information, such as thousands of catalogued images or reliably
sourced material, which can be difficult to achieve, especially on
archaeological budgets and with the diversity of data that may be
available. The nature of archaeologically recovered samples, with
poor preservation, makes the task even more difficult because
fragmentation and surface state (including erosion, patina, and
vegetation coverage, for example) can affect the success of
identification. Specialists can typically identify material with which
ML models trained on idealized collections would struggle.

The implications of this are that managing the ML models’ mis-

classification, resulting in either targets being wrongly classified or
not classified at all, should be part of the strategy for their use in
archaeological situations. The algorithms usually offer a range of
ways of establishing their mathematical robustness, but archaeol-
ogists still need to ensure that the results stand up to scrutiny in
the real world.

AVOIDING BIAS

Another aspect of ML is that the models are very much a product
of the data from which they are built. As a result, the models tend
to classify according to the categories they know about, which
makes them susceptible to (at least) two major forms of bias.

The first relates to a form of lumping an assemblage into previ-
ously determined categories. This means that rare and unusual
objects can easily be missed by being grouped with a more
common type. A ceramic vessel of similar shape to one of the
modeled forms, for example, may look “normal” but could have
an unusual surface treatment that would immediately be noted by
an archaeologist.

A second form of bias, and probably the most common, is that the
models cannot fully incorporate the variability of the features

being classified. ML analyses are susceptible to missing the “for-
est for the trees” because the data used to train the models are
often stripped of contextual information (especially in the case of
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images) or operate on a limited set of prechosen variables that
may not include sufficient information to distinguish between
important (that is, archaeologically relevant) classes.

ML techniques do have ways of checking “performance,” but
these still rely on internal mathematical measures and require
attention from archaeological research to ensure that they are
delivering good results. Difficulties with ML have repeatedly been
encountered outside of archaeology including exacerbating race
and gender biases in commercial situations (Gebru 2020).

This sort of bias is of particular concern for archaeologists using
ML on data associated with Indigenous communities. Optimi-
zation techniques, such as least-cost analysis, generally result

in outcomes that are based on behavioral elements such as
“energy"” efficiencies. "Success” is therefore measured in terms
of purportedly “scientific” measures. Archaeologists engaging
with Indigenous communities that are using models based on
acultural—or ethnocentric—assumptions can create interpreta-
tions that are stripped of cultural context and meaning. Increas-
ingly, those assumptions are being challenged as measures of
success, especially as Indigenous forms of inquiry focus on
behaviors and outcomes rooted in cultural value systems (see, for
example, Davis, DiNapoli, et al. 2020; Douglass et al. 2019).
Archaeologists bear the responsibility of ensuring that their
research contributes to descendant cultures (e.g., Allen and
Phillips 2010; Solomon and Forbes 2010).

EVOLUTION OR REVOLUTION

Archaeologists are not likely to be replaced in the foreseeable
future by an insurrection of archaeological robots. Harari (2017)
has given us a 97% chance of keeping our jobs! The real revolu-
tion for archaeologists is less about ML and more about the fact
that ML, along with other forms of analysis, will allow for the use of
a larger—and rapidly expanding—corpus of archaeological data.
This transformation is shifting both academic and cultural resource
management inquiry. Many of its applications are evolutionary,
greatly improving the types, scale, and complexity of analytic tools
that archaeologists already use.

There is no doubt that ML can significantly aid identification of
archaeological samples with the potential to draw upon an ever-
improving and ever-expanding library of data. This makes sharing
data from projects much more important. The reward for this is
making identification of new data easier and more reliable, which
offers advantages for not only research objectives but also cultural
heritage, where improvements can have significant financial ben-
efits. The revolution will be in integrating these outcomes into
both academic and cultural resource management frameworks,
which is a significant challenge given that archaeologists will have
to become competent in managing this much richer and more
diverse information (Kansa and Kansa 2021).

| would like to thank Peter J. Cobb for providing me with the
opportunity to write this article and for discussions. Dorothy
Brown helped sort out the text and references, for which | am most
grateful. My thanks to University of Hong Kong undergraduate
student Agnes Pui Yee Sung for redrawing Figure 1. Thomas
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MacDiarmid built the 3D model for Figure 2 based on precolonial
Maori archaeological sites. | acknowledge the incorporation of
matauranga Maori (Indigenous knowledge) in that work.

NOTE

1. Fabricious website for decoding ancient languages, https:/artsexperiments.
withgoogle.com/fabricius.
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