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Let J( be a a-field of subsets of a space SC. A partition of 3C means
a countable partition IJ of X into sets belonging to u^; the set of partitions
is directed by refinement. A. Kolmogoroff in 1930 [1] discussed an integral

(1) IF{S) = (K) f dF = lim £ F{M n S)
JS Men

(Moore-Smith limit as 77 gets finer) for set-functions F defined on Jt.
When it exists, IF is <r-additive, and if by chance JF is already cr-additive,
then IF = F.

In [2], P. D. Finch studies the same integral for the case that F = ffi,
H being a positive tr-finite measure and / an arbitrary set-function on uf,
whose values on sets of ^-measure 0 are evidently irrelevant. This case is
not really special, since any Kolmogoroff-integrable F can be so written,
modulo sets of ^-measure 0, by using for (i the total variation of IF, but
the giving of fi enriches the situation with new questions such as those
treated below. Let us call a function F o n u f K-integrable if IF as defined
in (1) exists, and call / F-integrable for fi if ffi is /£-integrable.

An important example of an F-integrable function / is the quotient
vjfi of a signed measure by a measure. Here the singular part of v with
respect to fi has no effect on the integral of ffi, because it can be isolated
in a set of ^-measure 0. In fact it is easy to see that If/l = va, the absolutely
continuous part of v. If we let 6 be the Radon-Nikodym derivative of va

with respect to n, then this equation can be written

(2)

More generally, as remarked by Finch, any F-integrable / satisfies (2) if
for 6 we use the derivative of If/l. Thus the generalized integration can be
regarded as a way of assigning to certain set-functions specific random
variables of which they are to be regarded as generalized averages. The
questions / propose to answer are these:
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1. When do two TMntegrable set-functions have the same integral,
and hence the same 8 in (2)?

2. Given / .F-integrable, how badly can the values of / be shaken up
without destroying integrability? That is, for what real functions g will
g(f) still be integrable?

3. How does replacing / by g(f) change 0?

The first question was answered by Kohnogoroff, but has to be
re-answered in Finch's terms for application to the others. The theorem
referred to in the title ([3] Theorem 1) is a partial answer to questions 2
and 3 for the cas"e that / has the form vlfi and g is of bounded variation.

As in other integration theories, questions of F-integrability have two
sides, one having to do with regularity of the integrand, the other with
its size. I address myself first to the regularity side, which is to say the
proofs are written for bounded /. The results hold in reality more generally,
but their application to unbounded / requires fuller explanation, which I
save for the last part of the paper. There is no loss of generality in sup-
posing fi to be finite throughout, rather than only ex-finite.

If 5 e J( and 77 is a partition, I shall write S < 77 to mean that
SCM for some M e 77. Adapting Kolmogoroff's phrase, I call set-functions
/x and f2 differentially equivalent for [i when for every 8 > 0 there exists a
partition 77 such that

(3) l/x(S)-/i(S)| < 8 for all S < 77, ^(S) > 0.

THEOREM 1. Suppose that f1 {or /2) is F-integrable for (i. Then a necessary
and sufficient condition for If M = If M is that /x and f2 be differentially
equivalent fdr \x.

PROOF. Sufficiency. Let SeJK, /i{S) > 0. Given e > 0, choose a
partition 77 (of S) to satisfy (3) with d — ej2[i{S), and so fine that for any
77' finer than 77

Then we have

W II'

whence If ^(S) = If ^(S) by definition.

Necessity. Suppose both integrals exist and /x and /2 are not differentially
equivalent for ft. Then there exists 8 > 0 such that for any partition 77
of 9C there is some S < 77 with/*(S) > 0 and |/i(5)—/2(S)| ^ <5. Apply this
to a partition 77 so fine that both fx and /2 have variations f£ \b on every
Me77 with fi(M) > 0 ([2] Theorem 3.3). Then
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^ (*=1 .2) .

Since |/i(5)—/2(S)| ^ d, this implies I,llt{S) =£lft/l(S), finishing the proof.
If 6 is a measurable real-valued function on SC', write 6(n) for the

distribution of 0 as a random variable, that is the measure defined for Borel
sets E of the real line by 6(p)(E) = p(6

THEOREM 2. Suppose 6 is /i-summable, and let v = / 8 dju. The following
three conditions on a bounded real function g of a real variable are equivalent:

(2.1) g(v//u) is F-integrable for p.
(2.2) The set of discontinuities of g has measure 0 for the continuous

(non-atomic) part of 0(/«).
(2.3) (K)fsdg(vlft)p = fsg(d)dfi (SeJt).

PROOF. 6{JJ) has at most countably many atoms situated at real points
xlt z2, • • •. Let Mn = Q~1(xn) e i , and set Mo = 2C-\J Mn. It suffices
to prove the theorem separately for each of the subspaces Mn. For n =£ 0
this is trivial, because then 0 is constant on Mn, while on MQ fi has a con-
tinuous distribution. We can therefore assume that 6(fi) is continuous.

LEMMA. Let a = ess inf 0 and b = ess sup 6. Then v(S)/fi(S) for /i(S) > 0
takes every value in the interval (a, b) (which may be infinite).

PROOF. For any c > a, Se = 6~1(a, c) has positive measure, and
a < v(Se)lfi(Sc) < c. Similarly v//i has values arbitrarily close to b. Now
(/i, v) is an atom-free vector valued measure having values on rays from the
origin into the right half-plane with slopes approximating a and b. Since
by Lyapounov's theorem the range of (n, v) is convex, (fi, v) has values
also on all rays with intermediate slopes.

Proof that (2.1) implies (2.2). Suppose the set of discontinuities of g
has positive 0(^-measure. Then for some s > 0 the set Es of all points where
g has saltus ^ e has positive measure. For any partition 77 of SC there is
some Mell which intersects 6~1(EE) in a set of positive measure. Applying
the lemma to the subspace M gives an open interval containing points
of Ee, every point of the interval being v(S)/ft(S) for some SCM with
ju(S) > 0. But then g(vjfi) has variation 2; e on M, which by [2] Theorem
3.3 rules out .F-integrability for g(v/fi).

Proof that (2.2) implies (2.3) Let h=g(vliJ,) and /2 = Jg(O)d/j,lfi. I
shall prove that fx and f2 are differentially equivalent for ft. Then it will
follow from Theorem 1 that If ^ = If ^ = f2/x, and this is (2.3). To this
end let e > 0 be given. The set Eie = E where g has saltus ^ \s being
closed, its complement is a countable disjoint union'of intervals. Partition
each of these intervals into countably many disjoint subintervals on each
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of which g has oscillation < e, and let IJR be the partition of the line con-
sisting of E and all the intervals so formed. Let 77 = 0~1(/7ij) be the cor-
responding partition of SC. This is the partition required to show differential
equivalence. Indeed, suppose S < 77, fi(S) > 0. Since /n{d-1(E)) = 0, S
is contained in 0-1(7) for some interval 7 of LTR, and g(I) is contained
in some interval J of length e. Since 0(5) C 7, v(S) = J5 0 d/j, e ft{S)I.
(This estimation works only because I is an interval!) Therefore /x(S) =
g(v{S)l/*(S))eJ. But also g{B(S))CJ, whence also f2{S)eJ. Thus

Since (2.3) obviously implies (2.1), Theorem 2 is proved.

REMARK. The bounded functions g which satisfy the three conditions
of the theorem for all [i and 0 are just those having at most countably many
discontinuities. This function class includes the functions of bounded
variation, so that Theorem 2 generalizes Theorem 1 of [3].

The next theorem generalizes Theorem 2 as far as possible to arbitrary
integrable functions / in place of v\p.

THEOREM 3. Let f and fx be set-functions F-integrable and differentially
equivalent for fx. Let g be a bounded real function satisfying (2.2) with 6 the
derivative with respect to fx of v = If/i = If ji. Then g(f) and g(ft) are F-
integrable and differentiably equivalent for /n.

PROOF. Nothing is lost by taking fr = vjfi, because of the transitivity
of differential equivalence. Given £ > 0, partition the real line as in the
proof of Theorem 2 into E and countably many disjoint intervals on each
of which g has oscillation < e. Refine this partition by separating from each
interval its end points, if any, so that aside from E each cell is either a point
or an open interval. It suffices to consider the problem on each subspace
M = Q~l (I) for 7 in this partition, and this is trivial except when 7 is one
of the open intervals. For this case form a partition 77 of M as follows.
Let 7 = (a, b), and let {<5n} be a decreasing sequence of numbers tending
to 0 as limit, with <5X < |(6—a). Let In = {a+dn, b—dn), and let
MB = 0-1(7B-7n_1) for n = 2, 3, . , . and Mx = fl-1^)- Using the dif-
ferential equivalence of / and /x find for each n a partition 77n of Mn such
that SCMn, S <nn, [*{S)>0 implies | / (S)-/1(S) | < dn. The desired
partition 77 of M is formed by combining all the 77n to refine the partition
{MB}. To see that this works, suppose S < 77, ft(S) > 0. Then 5 C Mn

for some «. Since d(S) C7 n , we have /X(S) = v(S)l/n(S) e 7 n , and since
|/(S)—/j(S)| < dn, we have also f(S) el. Finally, g has oscillation < e
on 7, so that |g(/(S))-g(/1(S)) |< e.

COROLLARY. (2) and (2.2) together imply

https://doi.org/10.1017/S1446788700004924 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004924


464 F. Cunningham, Jr. [6]

The following simple example shows that, in contrast to Theorem 2,
(2.2) is not necessary for the F-integrability of g(f), and that F-integrability
of both g(f) and g(fj) is not sufficient for equality of their integrals. Let
(SC, Jt, fi) be the Borel unit interval with Lebesgue measure. Let 6(x) = x,
and v = fdd/t. Define for /j,(M) > 0

>{M)Jn{M) when this is rational
', where r is rational and |r—V(M)//J.(M)\ < n{M) otherwise;

/X(M) similarly, interchanging rational and irrational.

Let g be the characteristic function of the rationals. One verifies easily
that /, ft, and v/ft are all differentially equivalent for fi. Moreover g(f) = 1
and g(fj) = 0 are trivially F-integrable for fi, with unequal integrals. Yet
g is discontinuous on a set of measure 1, and d{ji) is continuous.

For set-functions / which are not essentially bounded [2] the above
results are in doubt because they depend on the necessity of the condition
for F-integrability proved by Finch only for essentially bounded functions.
I shall call / bounded on M if {/(S) \SCM, (i{M) > 0} is bounded, and
I shall call / locally bounded if there exists a partition 77 such that / is
bounded on M for every M e IT. This is weaker than essential boundedness.
I shall prove that if the integral of / for (i as defined by (1) exists, then /
is locally bounded. Finch's theorem on integrability then applies to each
cell of the resulting partition, removing the above objection. Note that
for Theorems 2 and 3 to apply also to unbounded functions g, (2.2) should
be strengthened by requiring g to be summable for B(ji).

Assuming that (K) J d f(i exists, there exists a partition such that
2/7 in is convergent and bounded on all finer partitions 77. By restricting
our attention to one cell of this partition at a time we can assume at the
outset that |2/j M = ^ f°r ^ H. It is necessary to prove first that f/i is
locally bounded. For this it suffices to show the existence of a set M e Jt
with /J.(M) > 0 and / bounded on M, for then a maximal disjoint family
of such M gives the required partition. If no such M exists we can build
a decreasing sequence of sets {Mn} with Mo = X, p{Mn) > 0 and
\f{Mn)\ > | /(3-_M1_1)|+2. Then since

we have \f{Mn_1~Mn)\ ^ 1. But then setting Moo = f]Mn and
77 = {Mn | 0 5S n 5S oo} we have ^n ffi divergent.

We can now construct a partition to show / itself is locally bounded.
First choose a maximal disjoint sequence {Af™} from JK with /<(M") > 0
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and /(M™) > 1. (If no such sets exist, all the better!) Let M1 = 2C—\}mM™.
Then / is bounded above on Mx. Next choose, disjoint from Mr a maximal
disjoint sequence {M%} with f{M%) > 2, and set M2 = M1—\JmMf^.
Then / is bounded above on Af2. Continue thus indefinitely, and let
Mx = iT—(JBMB. Clearly {Mn | 1 ^ n <S oo} is the required partition,
provided we show that /u (Mj) = 0. But for any n the partition II consisting
of the set U"-i-^< a n ( i t n e sets M™ gives a sum ^af/i >tifi(M00)—k,
where k is a bound for f/x on 3C. If /*(MM) > 0 this gives unbounded sums.
For the partition constructed / is bounded above on each cell. Repeat the
argument in each cell to bound / below.

References

[1] A. Kolmogoroff, 'Untersuchung uber das Integralbegriff, Math. Annalen 103 (1930),
654-696.

[2] P. D. Finch, 'Integration of real-valued set functions in abstract spaces', / . Australian
Math. Soc. 4 (1964), 202-213.

[3] P. D. Finch, 'A generalization of the Radon-Nikodym theorem', / . Australian Math.
Soc. 5 (1965), 17-24.

Bryn Mawr College
Bryn Mawr, Pennsylvania

https://doi.org/10.1017/S1446788700004924 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004924

