A PROPERTY OF CLOSED FINITE TYPE CURVES

MIROSLAVA PETROVIĆ-TORGAŠEV

(Received 28 May 2007)

Abstract

In the paper we prove that any closed finite type curve in the Euclidean space $E^{n}(n \geq 2)$ lies in a nullspace of a non-trivial polynomial $P=P\left(x_{1}, \ldots, x_{n}\right)$ of variables x_{1}, \ldots, x_{n}, and thus lies on a surface of finite degree.

2000 Mathematics subject classification: primary 53A04.
Keywords and phrases: finite type curves, Euclidean spaces.

We shall first recall the notion of a closed finite type curve in the Euclidean space E^{n}.

According to a well-known result of Chen [1, 2], a closed curve $\gamma(s)$ of length $2 \pi r$ is of finite l-type $(l \geq 1)$ if and only if it can be written in the form

$$
\begin{equation*}
\gamma(s)=A_{0}+\sum_{\nu=1}^{l}\left(A_{p_{v}} \cos \frac{p_{\nu} s}{r}+B_{p_{v}} \sin \frac{p_{v} s}{r}\right), \tag{*}
\end{equation*}
$$

where $A_{0} \in E^{n}, p_{1}<p_{2}<\cdots<p_{l}$ are non-zero natural numbers and

$$
A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{l}}, B_{p_{1}}, B_{p_{2}}, \ldots, B_{p_{l}}
$$

are vectors in E^{n} such that, for each $v \in\{1,2, \ldots, l\}, A_{p_{v}}$ and $B_{p_{v}}$ are not simultaneously zero. In that case the numbers $p_{1}, p_{2}, \ldots, p_{l}$ are called the frequency numbers of the curve γ.

Substituting parameter s into t by $(s / r)=t(0 \leq t \leq 2 \pi)$ in the equation $(*)$ and extending the sum in ($*$) with $A_{i}=B_{i}=0\left(i \leq m, i \neq p_{1}, \ldots, p_{l}\right)$, it follows that the curve $\gamma(s)$ can also be written in the following form:

$$
\gamma(t)=A_{0}+\sum_{k=1}^{m}\left(A_{k} \cos k t+B_{k} \sin k t\right) \quad(0 \leq t \leq 2 \pi)
$$

where $m=p_{l}$ and $\left\|A_{i}\right\|^{2}+\left\|B_{i}\right\|^{2} \neq 0\left(i=p_{1}, \ldots, p_{l}=m\right)$. In particular, we have that $\left\|A_{m}\right\|^{2}+\left\|B_{m}\right\|^{2} \neq 0$.

In several papers (see, for example, [3-5]) we have characterized the closed finite type curves in the space E^{n} which lie on quadrics in that space.

[^0]Next, we shall call a surface in the space E^{n} a 'surface of finite degree' (more exactly 'of degree d ') if it is defined as a null-space $\mathcal{N}(P)$ of a non-trivial polynomial $P=P\left(x_{1}, \ldots, x_{n}\right)$ of variables x_{1}, \ldots, x_{n} of some degree $d(d \geq 1)$.

Note that surfaces of degree one are the simplest in this class since they have equations of the form

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}+b=0 \quad\left(a_{1}^{2}+\cdots+a_{n}^{2} \neq 0\right)
$$

Thus, they are exactly hyperplanes in the space E^{n}.
Surfaces of degree two are in fact quadrics in the space E^{n}, surfaces of degree three are cubics in the space E^{n}, and so forth.

In the present paper we shall consider the closed finite type curves and the surfaces of finite degree in a Euclidean space, and the following problem.

Do any closed finite type curves $\gamma(s)$ in the Euclidean space E^{n} lie on a surface of finite degree?

This statement is obviously not true for $n=1$ since the null-space of any polynomial $P(x)$ of one variable is finite, and finite type curves are continuous, differentiable, and so on. However, in what follows we positively solve this question for every $n \geq 2$.

The key of the proof is the next lemma.
Lemma. For any two trigonometrical polynomials

$$
x=\sum_{k=0}^{m}\left(a_{k} \cos k t+b_{k} \sin k t\right), \quad y=\sum_{k=0}^{m}\left(c_{k} \cos k t+d_{k} \sin k t\right) \quad(0 \leq t \leq 2 \pi)
$$

there is at least one polynomial $P_{s}(x, y)$ of two variables x, y, whose degree is $s(0<s \leq 2 m+1)$ such that $P_{s}(x(t), y(t)) \equiv 0$, that is the curve $\gamma(t)=$ $(x(t), y(t)) \in R^{2}$ lies in the null-space $\mathcal{N}(P)$ of that polynomial.

If at least one of the coefficients $a_{m}, b_{m}, c_{m}, d_{m} \neq 0$, then this polynomial is non-trivial.

Proof. The basic idea is to construct at least one resultant of two trigonometric polynomials as was done for two algebraic polynomials.

Consider the equations of the curve $\gamma(t)$ in the form

$$
\begin{align*}
a_{0}-x+\sum_{k=1}^{m}\left(a_{k} \cos k t+b_{k} \sin k t\right) & =0 \tag{1}\\
c_{0}-y+\sum_{k=1}^{m}\left(c_{k} \cos k t+d_{k} \sin k t\right) & =0 \tag{2}
\end{align*}
$$

Multiplying equation (1) respectively by $1, \cos t, \cos 2 t, \ldots, \cos m t, \sin t$, $\sin 2 t, \ldots, \sin m t$, then equation (2) respectively by $\cos t, \cos 2 t, \ldots, \cos m t, \sin t$, $\sin 2 t, \ldots, \sin m t$, we obtain the following equations:

$$
\begin{array}{r}
a_{0}-x+\sum_{k=1}^{m}\left(a_{k} \cos k t+b_{k} \sin k t\right)=0, \\
\left(a_{0}-x\right) \cos p t+\sum_{k=1}^{m}\left(a_{k} \cos k t \cos p t+b_{k} \sin k t \cos p t\right)=0 \\
(p=1, \ldots, m), \\
\left(a_{0}-x\right) \sin p t+\sum_{k=1}^{m}\left(a_{k} \cos k t \sin p t+b_{k} \sin k t \sin p t\right)=0 \\
(p=1, \ldots, m), \\
\left(c_{0}-y\right) \cos p t+\sum_{k=1}^{m}\left(c_{k} \cos k t \cos p t+d_{k} \sin k t \cos p t\right)=0 \\
(p=1, \ldots, m) \\
\left(c_{0}-y\right) \sin p t+\sum_{k=1}^{m}\left(c_{k} \cos k t \sin p t+d_{k} \sin k t \sin p t\right)=0 \tag{6p}\\
(p=1, \ldots, m) .
\end{array}
$$

Next, using the well-known additional theorems for products of trigonometric functions $\cos x$, $\sin y$, one can transform each of the above $4 m+1$ equations into an equation which shows that a linear combination of the functions $1 ; \cos t, \ldots, \cos 2 m t$; $\sin t, \ldots, \sin 2 m t$ equals zero.

Hence, we obtain a linear system of homogenous equations of order $4 m+1$ with unknowns $1, \cos t, \ldots, \cos 2 m t ; \sin t, \ldots, \sin 2 m t$. Since for each t it has a nontrivial solution, the corresponding determinant must be zero.

Note that this determinant $\operatorname{det}\left(A_{i j}\right) \quad(i, j \leq 4 m+1)$ has for almost all entries $A_{i j}(i, j \leq 4 m+1)$ some real numbers depending on the coefficients $a_{0}, c_{0}, a_{p}, b_{p}, c_{p}, d_{p}(p=1, \ldots, m)$, and the only entries involving x and y are the following:

$$
\begin{gathered}
A_{11}=2 X, \quad A_{1+p, 1+p}=2 X+\epsilon_{p} a_{2 p} \\
A_{m+1+p, 2 m+1+p}=2 X-\epsilon_{p} a_{2 p} \\
A_{2 m+1+p, 1+p}=2 Y+\epsilon_{p} a_{2 p} \\
A_{3 m+1+p, 2 m+1+p}=2 Y-\epsilon_{p} a_{2 p}
\end{gathered}
$$

for any $p=1,2, \ldots, m$, where $X=a_{0}-x, Y=c_{0}-y, \epsilon_{p}=1(p \leq m / 2)$ and $\epsilon_{p}=0(p>m / 2), p=1,2, \ldots, m$.

It is clear that the development of this determinant by the Laplace formula gives a polynomial $P(x, y)$ of two variables x, y, and its degree is at most $2 m+1$.

It is also obvious that the above polynomial is not unique, and there are many such polynomials with a similar property, which can be constructed in a similar way.

Moreover, we notice the following fact. Observe that all entries of the last column of the determinant by which the polynomial $P(x, y)$ is defined are equal to a_{m}, b_{m}, c_{m}, d_{m} or zero. Hence the above polynomial is obviously identically zero if $a_{m}=b_{m}=c_{m}=c_{m}=0$.

Now we shall prove that this is the only case when this polynomial is trivial. Thus, we assume that $P(x, y) \equiv 0$, and therefore that all its coefficients are zero, and we prove that then $a_{m}=b_{m}=c_{m}=d_{m}=0$. Observe that the coefficient at $X^{2 m+1}$ is also zero, and up to the multiple $\pm 2^{2 m}$ this coefficient reads

$$
A_{2 m}\left(c_{1}, \ldots, c_{m} ; d_{1}, \ldots, d_{m}\right)=\left|\begin{array}{cc}
C_{m} & D_{m} \\
-D_{m} & C_{m}
\end{array}\right|
$$

where

$$
C_{m}=\left[\begin{array}{cccc}
c_{m} & 0 & \ldots & 0 \\
c_{m-1} & c_{m} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
c_{1} & c_{2} & \ldots & c_{m}
\end{array}\right], \quad D_{m}=\left[\begin{array}{cccc}
d_{m} & 0 & \ldots & 0 \\
d_{m-1} & d_{m} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
d_{1} & d_{2} & \ldots & d_{m}
\end{array}\right]
$$

But, since this coefficient satisfies the relation

$$
A_{2 m}\left(c_{1}, \ldots, c_{m} ; d_{1}, \ldots, d_{m}\right)=\left(c_{m}^{2}+d_{m}^{2}\right) A_{2 m-2}\left(c_{2}, \ldots, c_{m} ; d_{2}, \ldots, d_{m}\right)
$$

we easily find that $A_{2 m}\left(c_{1}, \ldots, c_{m} ; d_{1}, \ldots, d_{m}\right)=\left(c_{m}^{2}+d_{m}^{2}\right)^{m}$. From $A_{2 m}=0$ we obtain that $c_{m}=d_{m}=0$.

Similarly, assuming that $P(x, y) \equiv 0$, and considering the coefficient at $X Y^{2 m}$, we find that $A_{2 m}\left(a_{1}, \ldots, a_{m} ; b_{1}, \ldots, b_{m}\right)=0$.

This immediately gives that $a_{m}=b_{m}=0$. Hence we finally get that $a_{m}=b_{m}=$ $c_{m}=d_{m}=0$. So we conclude that the above polynomial $P(x, y)$ is identically zero if and only if $a_{m}=b_{m}=c_{m}=d_{m}=0$.

In addition, we give the full form of the above polynomial in the simplest case $m=1$. Then the polynomial from the above lemma has degree three and it reads

$$
\begin{aligned}
P(x, y)= & \left|\begin{array}{ccccc}
a_{0}-x & a_{1} & 0 & b_{1} & 0 \\
a_{1} & 2\left(a_{0}-x\right) & a_{1} & 0 & b_{1} \\
b_{1} & 0 & -b_{1} & 2\left(a_{0}-x\right) & a_{1} \\
c_{1} & 2\left(c_{0}-y\right) & c_{1} & 0 & d_{1} \\
d_{1} & 0 & -d_{1} & 2\left(c_{0}-y\right) & c_{1}
\end{array}\right| \\
= & -4\left(c_{1}^{2}+d_{1}^{2}\right) X^{3}+8\left(a_{1} c_{1}+b_{1} d_{1}\right) X^{2} Y-4\left(a_{1}^{2}+b_{1}^{2}\right) X Y^{2} \\
& +4\left(a_{1}^{2} d_{1}^{2}-b_{1}^{2} c_{1}^{2}\right) X+4\left(b_{1}^{2} c_{1}^{2}-a_{1}^{2} d_{1}^{2}\right) Y,
\end{aligned}
$$

where $X=a_{0}-x$ and $Y=c_{0}-y$.
By the above lemma, we immediately get the main theorem.

THEOREM. If $\gamma(s)$ is any closed finite type curve in the Euclidean space E^{n} $(n \geq 2)$ whose frequency numbers are $p_{1}<\cdots<p_{k}=m$, then there is an index $i=i_{0} \leq n$ such that for any index $j \leq n, j \neq i_{0}$ there is a non-trivial polynomial $P_{2 m+1}^{i_{0}, j}\left(x_{i_{0}}, x_{j}\right)$ of degree $2 m+1$ such that $P_{2 m+1}^{i_{0}, j}\left(x_{i_{0}}(s), x_{j}(s)\right) \equiv 0$, that is, the projected curve $\left(x_{i_{0}}(s), x_{j}(s)\right) \subseteq \mathcal{N}\left(P_{2 m+1}^{i_{0}, j}\right)$.

Proof. Since $\gamma(t)$ is a closed finite type curve in the space E^{n}, its equation has the form

$$
x_{i}(t)=a_{i 0}+\sum_{k=1}^{m}\left(a_{i k} \cos k t+b_{i k} \sin k t\right),
$$

$(i=1, \ldots, n)$. Then $A_{m}=\left(a_{1 m}, \ldots, a_{n m}\right)^{\top}, B_{m}=\left(b_{1 m}, \ldots, b_{n m}\right)^{\top}$ and $\left\|A_{m}\right\|^{2}+$ $\left\|B_{m}\right\|^{2} \neq 0$. The last relation gives that $a_{i m} \neq 0$ or $b_{i m} \neq 0$ for some $i=i_{0} \leq n$. Assuming that for instance $a_{i_{0} m} \neq 0$, the previous lemma provides that, for any index $j \neq i_{0}(j \leq n)$, there is a non-trivial polynomial $P_{2 m+1}^{i_{0}, j}\left(x_{i_{0}}, x_{j}\right)$ whose degree is $2 m+1$, which is not identically zero, such that $\gamma(t) \subseteq \mathcal{N}\left(P_{2 m+1}^{i_{0}, j}\right)$. Hence

$$
\gamma(t) \subseteq \bigcap_{j \neq i_{0}} \mathcal{N}\left(P_{2 m+1}^{i_{0}, j}\right)
$$

This completes the proof.
Note that the null-spaces $\mathcal{N}(P)$ are for $n \geq 3$ some cylindrical surfaces in the space E^{n}, and every polynomial P of two variables $x_{i}, x_{j}(i<j)$ is also a polynomial of n variables $x_{1}, x_{2}, \ldots, x_{n}$. Hence, any closed finite type curve $\gamma(s)$ lies in a null-space $\mathcal{N}(Q)$ of a polynomial Q of n variables x_{1}, \ldots, x_{n}, and moreover it lies in the intersection of such $n-1$ cylindrical surfaces.

References

[1] B. Y. Chen, Total mean curvature and submanifolds of finite type (World Scientific, Singapore, 1984).
[2] -, 'A report on Submanifolds of finite type', Soochow J. Math. 22 (1996), 117-337.
[3] J. Deprez, F. Dillen and L. Vrancken, 'Finite type curves on quadrics', Chinese J. Math. 18 (1990), 95-121.
[4] M. Petrović, L. Verstraelen and L. Vrancken, 3-types curves on ellipsoids of revolution, Preprint Series, Department Math. Katholieke Univ. Leuven 2 (1990), 31-49.
[5] M. Petrović-Torgašev, L. Verstraelen and L. Vrancken, '3-type curves on hyperboloids of revolution and cones of revolution', Publ. Inst. Math. (Beograd) 59(73) (1996), 138-152.

University of Kragujevac

Faculty of Science
Radoja Domanovića 12
34000 Kragujevac
Serbia
e-mail: mirapt@kg.ac.yu

[^0]: (C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00

