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ABSTRACT. For many regions, glacier inaccessibility results in sparse geometric datasets for use as
model initial conditions (e.g. along the central flowline only). In these cases, two-dimensional (2-D)
flowline models are often used to study glacier dynamics. Here we systematically investigate the
applicability of a 2-D, first-order Stokes approximation flowline model (FLM), modified by shape
factors, for the simulation of land-terminating glaciers by comparing it with a 3-D, ‘full’-Stokes ice-flow
model (FSM). Based on steady-state and transient, thermomechanically uncoupled and coupled
computational experiments, we explore the sensitivities of the FLM and FSM to ice geometry,
temperature and forward model integration time. We find that, compared to the FSM, the FLM
generally produces slower horizontal velocities, due to simplifications inherent to the FLM and to the
underestimation of the shape factor. For polythermal glaciers, those with temperate ice zones, or when
basal sliding is important, we find significant differences between simulation results when using the
FLM versus the FSM. Over time, initially small differences between the FLM and FSM become much
larger, particularly near cold/temperate ice transition surfaces. Long time integrations further increase
small initial differences between the two models. We conclude that the FLM should be applied with
caution when modelling glacier changes under a warming climate or over long periods of time.
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INTRODUCTION
While mountain glaciers make up only �0.5% of the global
land surface they are currently the major land-ice con-
tributors to global sea-level rise (IPCC, 2013). Further, many
alpine glaciers are located near human habitations and
significantly influence local water supplies. For example,
changes in the supply of meltwater produced by mountain
glaciers of the Tibetan Plateau could impact as many as
1.3 billion people living downstream (Immerzeel and
others, 2010). Though in situ and remote-sensing-based
observations of glacier changes are being continuously
carried out, they can only provide information on past or
present-day changes. To predict future mountain glacier
changes and their associated impacts, glacier evolution
under future climates must be studied with reliable numer-
ical ice-flow models.

Choosing an appropriate glacier model is not a simple
matter: computational cost must be balanced against accur-
acy, and a highly accurate, expensive model may not be
justified in the absence of adequate data constraints. Since
the 1950s, a number of mathematical ice-flow models have
been proposed, such as the shallow-ice approximation (SIA;
Hutter, 1983; Morland, 1984), the shallow-shelf approxima-
tion (SSA; Morland, 1987), the so-called ‘higher-order (HO)’
or ‘first- order (FO)’ model (a first-order accurate approxima-
tion to the Stokes equations; Blatter, 1995; Pattyn, 2002,
2003), the L1L2 model (Schoof and Hindmarsh, 2010;
Goldberg, 2011; Cornford and others, 2013) and so-called
‘hybrid’ models (a combination of the SIA and SSA; e.g.

Bueler and Brown, 2009). All are based on some approxima-
tion to the ‘full’, nonlinear Stokes equations, which have
themselves recently been incorporated into large-scale
models (Larour and others, 2012; Leng and others, 2012;
Gagliardini and others, 2013), and have been used in studies
of glacier and ice-sheet dynamics (e.g. Huybrechts, 1990;
Saito and others, 2003; Aschwanden and Blatter, 2005;
Gagliardini and others, 2007; Price and others, 2007; Seddik
and others, 2012; Leng and others, 2014a).

Because of high-elevation alpine terrain and poor
accessibility, geometry datasets for mountain glaciers are
generally based on sparse data. This is particularly true for
glaciers of the Tibetan Plateau where, for example, nearly all
the in situ ice thickness data of the Himalayan East Rongbuk
Glacier (�12 km long) are located along its central flowline
(CL), �6 km of which is currently unsurveyed (Zhang and
others, 2012, 2013). Three-dimensional (3-D) models may
not be the best choice for modelling the dynamics of these
glaciers, due to large uncertainties in glacier geometry, and,
as a result, 2-D glacier models are widely used for studies in
these areas (Oerlemans, 1986, 1997; Aschwanden and
Blatter, 2005; Pattyn and others, 2005; Price and Walder,
2007; Adhikari and Huybrechts, 2009; Pimentel and others,
2010; Flowers and others, 2011; Zhang and others, 2013).
Mountain glaciers are generally much narrower, and have
much larger aspect ratios than ice sheets, in which case the
2-D shallow-ice and plain strain (‘flowline’) approximations
(e.g. Cuffey and Paterson, 2010) may not apply. A standard
approach is to apply a flowline model, but to adjust
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velocities along the CL using a ‘shape factor’ (Nye, 1965;
Oerlemans, 1986; Pattyn and others, 2005; Adhikari and
Marshall, 2012), which applies a correction (generally to the
driving stress) to capture the influence of lateral drag from
valley walls (Nye, 1965). Another approach, which we do
not discuss further here, is to parameterize the lateral drag in
2-D ice-flow models using observed glacier width variations
(Pimentel and others, 2010; Flowers and others, 2011;
Zhang and others, 2013).

To date, few studies of mountain glaciers have included
the effects of polythermal ice or have explored the import-
ance of thermomechanical coupling. Using the EISMINT-1
geometry and environmental forcings (Huybrechts and
others, 1996), Pattyn (2002) tested the transient behaviors
of a 2-D FO model without coupling to the temperature
field. A more rigorous investigation of higher-order ice-flow
models, including applications to a realistic mountain
glacier geometry, was carried out during the Ice Sheet
Model Intercomparison Project for Higher-Order Models
(ISMIP-HOM) (Pattyn, 2008). However, the effects of
thermomechanical coupling were not considered. Recently,
Adhikari and Marshall (2011, 2012) tried to improve the
flowline model based on the SIA by parameterizing the
effects of longitudinal-stress coupling and by examining
shape factors for different types of glacier troughs, under
both sliding and frozen bed conditions. Again, no tempera-
ture coupling was incorporated. Due to a lack of tempera-
ture observations, Adhikari and Marshall (2013) assumed a
spatially uniform and constant flow law parameter, and
concluded that higher-order stresses do not significantly
alter the dynamics of Haig Glacier, Canada.

Because isothermal model assumptions may introduce
uncertainties when applied to polythermal glaciers (e.g.
those of the Tibetan Plateau), the following questions arise:
(1) How do the velocity biases in 2-D flowline models
influence the englacial temperature field? (2) What is the
role of temperature coupling in glacier dynamics for both 2-
D diagnostic and prognostic experiments? To address these
questions, we explore the impacts of (1) glacier geometry,
(2) ice temperature and (3) model integration time on ice-
flow dynamics of land-terminating glaciers. We use a 2-D,
thermomechanically coupled FO flowline model (FLM) and
compare the results with a 3-D, thermomechanical, ‘full’-
Stokes model (FSM), under identical conditions of glacier
geometry, environmental forcing and boundary/initial set-
tings. For our idealized test cases there are no observations
available for use in model validation. Thus, implicit in our
comparison is the assumption that solutions from the 3-D
FSM are as close as possible to the ‘truth’.

The paper is organized as follows: We first briefly
describe the FLM and FSM used in this study. We then
present a detailed description of three different experiments
designed to test model sensitivities to glacier geometry, ice
temperature and model integration time. We then analyze
experimental results for each model, in order to compre-
hensively identify conditions under which FLMs provide
reliable results relative to FSMs.

MODEL DESCRIPTIONS
Detailed descriptions of the FSM and the FLM used in this
study are given by Leng and others (2012, 2014a,b) and
Greve and Blatter (2009), respectively. Verification of the
FSM is discussed in detail by Leng and others (2013).

The conservation of momentum for ice flow can be
described by

r � �þ �g ¼ 0, ð1Þ

where � is the full stress tensor, � is the density of ice and g
is the acceleration due to gravity. We note that g ¼ ð0, 0, gÞ
for the FSM and ð0, fgÞ for the FLM. The tensors, �, are
represented by the 3-D tensor for the FSM and the 2-D
tensor for the FLM. The shape factor, f , is used as a
correction to the body force in the FLM to parameterize the
effects of drag against valley side-walls (e.g. Adhikari and
Marshall, 2012). Glacier ice is generally considered an
incompressible material so that

r � u ¼ 0, ð2Þ

where u denotes the ice velocity vector, given by ðu, v,wÞ
and ðu,wÞ for the FSM and the FLM, respectively.

The deviatoric stress is given by � ¼ �þ pI, where p is
the isotropic ice pressure (p ¼ � trð�Þ=3) and I is the identity
matrix. The deviatoric stress is related to the strain-rate
tensor, _�, through a constitutive law,

� ¼ 2� _�: ð3Þ

Glen’s flow law (Cuffey and Paterson, 2010) and Eqn (3)
can be combined to define the ‘effective’ ice viscosity, �, as

� ¼
1
2
A� 1=n _�ð1� nÞ=ne , ð4Þ

where n is the flow law exponent, A is the temperature-
dependent rate factor and _�e is the effective strain rate

_�e ¼
1
2

_� : _�

� �1=2

: ð5Þ

A is described by an Arrhenius-type relation

A ¼ A0 exp �
Q
RT

� �

, ð6Þ

with A0 a reference flow law parameter, Q the creep
activation energy of ice, R the universal gas constant and T
the ice temperature (in kelvin). Note that for the FLM, the
horizontal derivatives of vertical velocity are neglected in
the strain-rate computation (Greve and Blatter, 2009). Here

Fig. 1. Verification of the FLM. FLMa and b denote surface
velocities from the FLM using a horizontal grid spacing of 20 and
100m, respectively. Other first-order model results (ahu1, bds1,
fpa1 and mbr1) shown are taken from Pattyn (2008).
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the FLM is verified by comparing model output with other
FO models described by Pattyn (2008) (Fig. 1).

Conservation of energy is expressed through the advec-
tive–diffusive heat equation,

�c
@T
@t
þ u � rT

� �

¼ kr2T þ 2� _� : _�, ð7Þ

where k is the conductivity and c the heat capacity of ice
(taken as constants here). The pressure-melting point of
glacier ice, Tpmp, is described by the Clausius–Clapeyron
relation,

TpmpðzÞ ¼ T0 � �ðs � zÞ, ð8Þ

where T0 is the triple point of water, s is the ice surface
elevation, � is the Clausius–Clapeyron constant and z is the
vertical coordinate. In the models used in this study T is set
to satisfy the constraint

T � Tpmp: ð9Þ

While the ice temperature is allowed to evolve in some
experiments, we do not evolve the glacier geometry over
time in the present work. By holding the ice geometry fixed,
we can conduct grid-to-grid comparisons between the FSM
and the FLM, which simplifies our understanding of the
impact and importance of thermomechanical coupling
(details can be found in the ‘Experiment design’ and
‘Discussion’ sections, below). Because we do not evolve
the glacier geometry in time we do not present or discuss the
mass-continuity equation here.

Boundary conditions
We assume a stress-free boundary condition at the upper-ice
surface,

� � n ’ 0, ð10Þ

where n is the surface normal vector.
At the lower-ice surface (i.e. the ice/bedrock interface),

we set the ice velocity to zero if the ice is frozen (T < Tpmp),

u ¼ 0 ð11Þ

and, if ice temperature reaches the pressure-melting
point, T ¼ Tpmp, we apply a linear sliding law (cf. Schoof

and Hewitt, 2012):

u � n ¼ 0 ð12Þ

�nð Þ � t þ �u � t ¼ 0, ð13Þ

where � is a positive sliding parameter and t is the lower-ice
surface tangential vector. In the FLM, for numerical stability
and ease of implementation we approximate this sliding law
(Eqns (12) and (13)) as

�xz þ �u ¼ 0, ð14Þ

similar to the approach used by Pimentel and others (2010).
For the temperature model, we set T equal to the mean

annual surface air temperature, Ts, at the upper-ice surface.
For generality, we specify these according to

T ¼ Ts ¼ Tt þ �e s � stð Þ, ð15Þ

where �e is the environmental lapse rate and Tt and st
represent the surface air temperature and elevation at the
glacier terminus, respectively. The Neumann temperature
boundary condition at the ice/bedrock interface is given by

@T
@z
¼ �

G
k
, ð16Þ

where G is the geothermal heat flux.
All model constants discussed in this section are

summarized in Table 1.

EXPERIMENT DESIGN
The FSM and FLM are implemented using finite-element and
finite-difference methods, respectively. To facilitate model
intercomparisons, we use a layered grid for the FSM with
tetrahedral-type elements: the 3-D grid is vertically extruded
from a 2-D structured triangle mesh (see Leng and others,
2012, for further details). For the FLM, we use terrain-
following coordinates: (z 2 0, 1½ �; Greve and Blatter, 2009).
We compare the horizontal velocity component, u, and ice
temperature, T, along the CL of the FSM (uFSM, TFSM) and the
FLM (uFLM, TFLM) and compute their percentage relative
errors using the following error metrics (the FLM data are
first linearly interpolated onto the same grid as for FSM):

ru ¼
uFLM � uFSM

uFSM
� 100, ð17Þ

rT ¼
TFLM � TFSM

TFSM
� 100: ð18Þ

The relative errors between the FLM and FSM solutions are
used to identify conditions under which the FLM approx-
imation becomes a poor approximation of the ‘true’ solu-
tion, which we take here as that given by the FSM.

In both models, we apply a Picard iteration for treating
the nonlinearity associated with the ice viscosity. Following
Gagliardini and others (2013), we set the Picard iteration
convergence criterion as

2jjul � ul� 1jj
jjul þ ul� 1jj

< 10� 3, ð19Þ

where l denotes the iteration step.
A comprehensive evaluation of the FLM for use on

polythermal, mountain glacier dynamics is afforded by
examining the distribution of the error metrics, ru and rT , as
a function of ice geometry (e.g. length, slope, width, bedrock
topography), temperature and model integration time. Three
numerical experiments are designed as follows (Table 2).

Table 1. Parameters used in the numerical models

Symbol Constant Value Unit

c heat capacity of ice 2009 J kg� 1 K� 1

� Clausius–Clapeyron constant 8:7� 10� 4 K m� 1

�e environmental lapse rate � 0:007 Km� 1

� ice density 917 kgm� 3

�w water density 1000 kgm� 3

g gravitational acceleration 9.8 m s� 2

n flow law exponent 3
A0 flow law parameter s� 1 Pa� 3

when T � 263:15K 3:985� 10� 13

when T > 263:15K 1:916� 103

G geothermal heat flux 20 mWm� 2

Q creep activation energy kJmol� 1

when T � 263:15K 60
when T > 263:15K 139

k thermal conductivity of ice 2.1 Wm� 1 K� 1

L latent heat of fusion of ice 3:35� 105 J kg� 1

R universal gas constant 8.31 Jmol� 1 K� 1

T0 triple point of water 273.15 K
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ESD: Experiments for steady-state, thermomechanically
decoupled models. Similar to the EISMINT-I experi-
ments (Huybrechts and others, 1996), we first diagnose
the velocity field using a constant and uniform flow
law parameter, A ¼ 10� 16 Pa� 3 a� 1, and then use this
velocity field for computing a temperature field. Thus,
while we calculate both the velocity and temperature
distributions, they are not coupled through the
calculation of the flow law rate factor. For both the
FSM and FLM models, we use the Haut Glacier
d’Arolla (Switzerland) CL geometry (hereafter referred
to as HGA; Pattyn and others, 2008) with a uniform
width of 1 km (ESD-1). To isolate the impact of
different geometric parameters, we also model the
flow within several idealized ice geometries, for
example, three ‘ice-slab’ geometries (uniform surface
slope and ice thickness) and two idealized geometries
with Gaussian bumps along the bed. For the slab
geometries, we vary the length, L (2, 4 and 8 km; ESD-
2), surface slope, � (0.1, 0.2 and 0.3; ESD-3), and
glacier width, W (0.4, 1.2 and 2.0 km; ESD-4). For all
ice-slab model experiments, the ice thickness, H, is set
to 100m and a velocity boundary condition of u ¼ 0 is
applied at the glacier head and terminus. To improve
our understanding of the impact of extensive and
compressive ice flow, we further consider slab geom-
etries (4 km long and 1.2 km wide with a surface slope
of 0.2) with perturbed concave (ESD-5; M ¼ � 10,
� 20, � 40m) or convex (ESD-6; M ¼ 10, 20, 40m)
Gaussian bumps along the bedrock,

b ¼

s � H,
x > 0:5Lþ 400 or
x < 0:5L � 400,

s � HþM exp � x� 0:5Lð Þ
2

100H2

h in o
,

0:5L � 400 < x
< 0:5Lþ 400,

8
>>>><

>>>>:

ð20Þ

where b is the bedrock elevation. Using the Gaussian
bump geometries, we analyze the relative importance
of pure advection and pure diffusion on the ice
temperature fields between the FSM and the FLM. In

ESD-1–6, we set Tt ¼ 268:15K, which results in a
frozen ice/bed interface.

ESC: Experiments for quasi-steady-state, thermomech-
anically coupled models. Using the fixed HGA geom-
etry, we set @T=@t to zero in Eqn (7) and recalculate
AðTÞ at every step after the velocity field is computed.
Thus, for each iterative velocity solution, we calculate
a corresponding steady-state temperature field. The
thermomechanically coupled model runs until the u
and T fields are converged. To study flow regimes with
both frozen and thawed (i.e. sliding) beds, we set the
surface temperature at the terminus, Tt, to be 268.15K
(ESC-1) and 276.15 K (ESC-2) for cold and polythermal
glaciers, respectively. In the case of a thawed bed, we
test the model sensitivity by varying the sliding law
parameter between � ¼ 2� 104 Pa am� 1 (ESC-3) and
� ¼ 4� 104 Pa am� 1 (ESC-4).

ETC: Experiments for transient, thermomechanically
coupled models. Like the ESC experiments, we again
use the fixed HGA geometry. However, for these
experiments we include the @T=@t term in the
temperature calculation and let it freely evolve. Two
model run durations, 100 and 1000 years, are studied
for both frozen and thawed (sliding) basal conditions.
We use ETC-1–4 to denote experiments with the
parameter pairs (tend ¼ 100 years, Tt ¼ 268:15K),
(tend ¼ 1000 years, Tt ¼ 268:15K), (tend ¼ 100 years,
Tt ¼ 276:15K) and (tend ¼ 1000 years, Tt ¼ 276:15K),
respectively. The initial temperature fields for both the
FSM and FLM are steady-state solutions taken from a
purely diffusive temperature model (i.e. without heat
advection) under the same boundary conditions as
noted above.

Note that in the experiments above, both the FSM and the
FLM have identical central flowline geometry and a
horizontal grid size of 100m. For the FSM, we use six
vertical layers, which, because the FSM uses high-order
finite elements (Leng and others, 2012), provide a level of
accuracy nearly identical to that when using far more (e.g.
21) vertical layers. For the FLM, there are two different

Table 2. Details of numerical experiments. CLG: geometry along the center flowline (CGB: slab with concave Gaussian bump; VGB: slab
with convex Gaussian bump). CST: cross-sectional type (R: rectangular; U: parabolic)

EXPs CLG CST L W H � M Tt � tend

km km m m K Pa am� 1 years

ESD ESD-1 HGA U 5.0 1.0 – – – 268.15 – –
ESD-2 slab R 2.0/4.0/8.0 1.2 100 0.2 – 268.15 – –
ESD-3 slab R 4.0 1.2 100 0.1/0.2/0.3 – 268.15 – –
ESD-4 slab R 4.0 0.4/1.2/2.0 100 0.2 – 268.15 – –
ESD-5 CGB R 4.0 1.2 100 0.2 � 10/� 20/� 40 268.15 – –
ESD-6 VGB R 4.0 1.2 100 0.2 10/20/40 268.15 – –

ESC ESC-1 HGA U 5.0 1.0 – – – 268.15 – –
ESC-2 HGA U 5.0 1.0 – – – 276.15 1:0� 104 –
ESC-3 HGA U 5.0 1.0 – – – 276.15 2:0� 104 –
ESC-4 HGA U 5.0 1.0 – – – 276.15 4:0� 104 –

ETC ETC-1 HGA U 5.0 1.0 – – – 268.15 – 100
ETC-2 HGA U 5.0 1.0 – – – 268.15 – 1000
ETC-3 HGA U 5.0 1.0 – – – 276.15 1:0� 104 100
ETC-4 HGA U 5.0 1.0 – – – 276.15 1:0� 104 1000
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situations: (1) for the experiments with HGA geometry, we
use 51 vertical layers; (2) for the experiments with slab and
Gaussian bump geometries, we choose the vertical layer
number (�20–40) by comparing the modelled FLM and FSM
velocity fields for the infinitely long and wide geometries. In
other words, the number of vertical layers used for the FSM
and the FLM are chosen to optimize both model perform-
ance and accuracy and to minimize differences imparted
because of differing grids. The glacier cross section for HGA
is assumed to be parabolic, but for ice-slab and Gaussian
bump cases we set rectangular cross sections, so that we can
apply periodic boundary conditions along the x-direction for
the FLM and along both the x- and y-directions for the FSM.
The corresponding shape factor values (see Adhikari and
Marshall, 2012) are linearly interpolated as a function of x.
The geothermal heat flux is set to be uniform over the entire
model domain. For the convenience of model comparisons,
we simply constrain temperate ice to be not greater than
Tpmp for both the FSM and FLM, noting that this may bias
model results in the cases of real glaciers (Zwinger and
others, 2007).

MODEL RESULTS
Results for steady-state, thermomechanically
decoupled experiments (ESD)
Shape factors are obtained from numerical experiments
using infinitely long ice-slab geometries (Nye, 1965;
Adhikari and Marshall, 2012). In reality, however, glaciers
have finite lengths and longitudinal velocity gradients may
also have a non-negligible impact on ice flow. In addition,
the hydrostatic and first-order approximation that the FLM is
based on will also lead to model errors. Thus, relative to
simulations using the FSM, we expect biased results when
using the FLM combined with a shape factor to parameterize
the effects of lateral drag, �xy.

Such a bias can be observed in Figure 2. For HGA (ESD-1),
the FLM produces smaller u values in general and also
underestimates the values of T near the ice base, both of
which can be largely attributed to ice geometries, as
demonstrated by the ice-slab and Gaussian bump model
experiments (Fig. 3). In ESD-2–6, the model sensitivities to
glacier length, slope, width and Gaussian bump geometries
are studied. From these experiments we find that different
geometries result in different levels of velocity underestima-
tion for the FLM, which is partly a result of approximations
inherent to the FLM. In order to calculate the model error, rum
(as a result of the FLM approximations), we carry out
experiments with no lateral drag (f ¼ 1) so that rum ¼ ru.
rum is very sensitive to ice slopes and bedrock undulations
(Fig. 3; ESD-3, 5 and 6).

Errors in the velocity field, u, result in errors in the
corresponding equilibrium T field. With a frozen bed, the
FLM generally produces smaller @u=@z values near the
glacier base, and hence less shear heating. Also, the FLM
retains only the _�xz and _�xx terms, while neglecting all other
terms in the calculation of strain heating. Therefore, we
hypothesize that the FLM results in relatively ‘cooler’ ice
temperatures for most parts of the HGA domain.

Before exploring this further, we first confirm that the two
temperature models give comparable results. As shown in
Figure 4, the temperature results of the FSM (with periodic
boundary conditions along the y-direction) compare well
with those from the FLM (f ¼ 1) when using the same
velocity field, which in both cases is taken from the FSM
(blue solid curve in Fig. 4). Based on this analysis, we
assume that temperature differences between the FLM and
the FSM, resulting from the different model discretizations,
are minor.

We next conduct a series of experiments where either the
viscous dissipation or the advection components are
switched ‘off’ in the calculation of the temperature in both

Fig. 2. ESD model results for the HGA geometry with parabolic cross sections: (a) ru distribution; (b) rT distribution; (c) surface, us, and basal,
ub, velocity of the FSM and the FLM along the CL; (d) difference of the mean column ice temperature between FSM and FLM
(�T ¼ TFLM � TFSM) along the CL.
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the FLM and the FSM (Fig. 5). Without dissipative heating,
we find that the FLM produces a slightly warmer ice (relative
to the FSM), as a result of its slightly less advection of cold
ice (red curves, Fig. 5). However, we can see that tempera-
tures from the FLM are much cooler relative to the FSM in
the absence of advection, when only the dissipative heating
and diffusion terms act (blue curves, Fig. 5), indicating that,
overall, the larger velocities of the FSM act to warm the ice
rather than cool it (relative to the FLM). As a consequence,
compared to the FSM, the FLM leads to generally cooler
temperatures, especially near the bed, where the FLM
underestimation of @u=@z is large. We attribute the generally
‘cool’ bias of the FLM, shown by the green dashed curves in
Figure 4, to this same mechanism.

Results for quasi-steady-state, thermomechanically
coupled experiments (ESC)
For the case of cold glaciers (ESC-1; Fig. 6), when coupled
through the rate factor, the FLM generally produces add-
itional biases in u, but there is no clear and consistent pattern
whereby temperature and dynamical coupling increases or
decreases the temperature biases between the FLM and the
FSM: different geometries in different parts of a glacier may
lead to different ice dynamics, different velocity and
temperature fields, and different feedbacks between the two.

However, the results of the polythermal glacier experi-
ment (ESC-2), in which basal sliding is allowed, are
remarkably different. Both the u and T fields differ signifi-
cantly when a temperate ice zone (TIZ) forms (Fig. 7).

Fig. 4. Verification of the FLM temperature model. Shown are steady-state temperature differences when using (a) concave (M ¼ � 10m) and
(b) convex (M ¼ 10m) Gaussian bump geometries with rectangular cross sections. The curves represent the difference of the mean ice column
temperature along the CL between the FSM and the FLM (�T ¼ TFLM � TFSM). The solid blue curve shows differences when both temperature
models use the velocity field from the FSM. The dashed green curve shows differences when each model uses its own velocity field.

Fig. 3. Experiments ESD-2–6 with rectangular cross sections (for different glacier lengths, slopes, widths, concave Gaussian bumps and
convex Gaussian bumps; Table 2). Each subplot contains two parts: (bottom) surface velocity distribution along the CL. The blue and red
curves are for the FSM and FLM, respectively, while the solid and dashed curves are for experiments with lateral drag and without lateral
drag (shape factor equal to 1), respectively; (top) the corresponding errors, rum, due to model simplifications, shown by the thick, solid
blue curve.
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Compared with the FLM, the FSM produces a more ex-
tensive TIZ. Figure 7 shows that the largest differences
between the modelled u and T occur between the cold/
temperate ice transition surfaces (CTSs). A likely cause for
these differences is the presence or absence of basal sliding:
since the FSM produces warmer basal ice (as discussed
above) it is more likely that temperate ice appears closer to
the head of the glacier relative to the FLM when the TIZ
size increases. Once temperate ice appears upstream, the
ice downstream of it is also more likely to be temperate,
through the downstream advection of temperate basal ice,
through enhanced viscous heat dissipation (afforded by
more rapid deformation in soft basal ice) and through
frictional heating generated by sliding (as illustrated in

Fig. 8a). For the FSM (FLM), temperate (cold) ice is
transported from upstream to downstream faster as a result
of sliding, with the result that the CTS positions predicted
by the two models are very different in the presence of
sliding (Fig. 8a). Conversely, in the absence of sliding, the
CTS positions predicted by the two models are much more
comparable (Fig. 8a). We can find additional evidence for
this mechanism in ESC-3 and 4, for which we set the basal
sliding parameter, �, to 2�104 and 4�4 Pa am� 1 (Fig. 8b),
respectively. This change leads to changes in the extents of
the TIZs for the FSM and the FLM, which become more
similar (their sizes are still greatly different), relative to
ESC-2 (� ¼ 1�104 Pa am–1), when � increases (sliding
velocity decreases) (Fig. 8b).

Fig. 5. The contributions of viscous heat dissipation and advection are studied using (a) concave (M ¼ � 10m) and (b) convex (M ¼ 10m)
Gaussian bump geometries without lateral drag (f ¼ 1). The lower and upper figure panels show the mean column temperature profiles of
FSM (solid curves) and FLM (dashed curves) and their relative errors along the central flowline, respectively. The blue, black and red curves
represent temperature models without advection, complete temperature models and temperature models without viscous heat dissipation,
respectively.

Fig. 6. ESC-1 model results for the HGA geometry with parabolic cross sections: (a) ru distribution; (b) rT distribution; (c) surface, us, and
basal, ub, velocity of FSM and FLM along the CL; (d) difference of the mean column ice temperature between FSM and FLM
(�T ¼ TFLM � TFSM) along the CL.
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Results of transient, thermomechanically coupled
model experiments (ETC)
To study the impact of model integration time on the
differences between the FLM and the FSM, we integrate the
thermomechanically coupled models forward in time while
holding the domain geometry fixed (as discussed above). For
the case of both frozen (no slip) and thawed (sliding) beds,
we examine model differences at time steps associated with
100 and 1000 years of forward integration (Figs 9 and 10,
respectively). At the beginning of the transient modelling, the
temperature fields of both the FSM and FLM are initialized
with pure heat diffusion (u ¼ 0) under the same boundary
(geothermal heat flux and surface air temperature) settings.

As might be expected, we find that the discrepancies
between the FLM and FSM u and T fields become larger

over time, relative to results of the ESC experiments. For
example, the jruj of ETC-2 is greater than that of ETC-1 in
most parts of HGA (Fig. 9). This indicates that biases
between the FLM and the FSM, in both the u and T fields,
grow over time, presumably through the feedback between
u and T in Eqn (7). This feedback becomes even more
important when the glacier is sliding, whereby the FLM
versus FSM discrepancies between the u and T fields at
integration times of 100 versus 1000 years become even
larger (Fig. 10). A small initial difference in the FLM and FSM
T fields is magnified through the thermomechanical feed-
backs discussed above, such that the final extent of the TIZs
in the two models is markedly different.

Fig. 7. ESC-2 model results for the HGA geometry with parabolic cross sections: (a) ru distribution (absolute values >50% are not shown);
(b) rT distribution; (c) surface, us, and basal, ub, velocity of FSM and FLM along the CL; (d) difference of the mean column ice temperature
between FSM and FLM (�T ¼ TFLM � TFSM) along the CL. CTS represents the cold/temperate ice transition surface.

Fig. 8. Comparison of the cold/temperate ice transition surface (CTS) positions of FSM (blue curves) and FLM (red curves). (a) The solid and
dashed curves represent the cases in which basal sliding is allowed and prohibited, respectively. (b) The thick solid curves, the curve with
circles and the curve with crosses are for the sliding parameter � ¼ 1� 104, 2� 104 and 4� 104 Pa am� 1, respectively (for the FSM, those
three curves nearly overlap). The cross-sectional type is parabolic.

Zhang and others: Comparison of 2-D first-order and 3-D full-Stokes models 709

https://doi.org/10.3189/2015JoG14J220 Published online by Cambridge University Press

https://doi.org/10.3189/2015JoG14J220


DISCUSSION
In addition to the experiments discussed in detail above, we
conducted model experiments using different cross-sec-
tional shapes (rectangular rather than parabolic), using other
longitudinal ice geometries (the simple analytic glacier
profile presented by Le Meur and others, 2004, and Adhikari

and Marshall, 2012, as opposed to the HGA geometry), and
using different grid resolutions. The conclusions from these
additional experiments are qualitatively similar to those
described above. Real glaciers, however, have sufficiently
complex and spatially varying geometries that render it
impossible to conduct an exhaustive and conclusive series

Fig. 9. ETC-1 (100 years of integration) and ETC-2 (1000 years of integration) model results for the HGA geometry with parabolic cross
sections. (a, c) surface, us, and basal, ub, velocity of FSM and FLM along the CL. (b, d) Difference of the mean column ice temperature
between FSM and FLM (�T ¼ TFLM � TFSM) along the CL.

Fig. 10. ETC-3 (100 years of integration) and ETC-4 (1000 years of integration) model results for the HGA geometry with parabolic cross
sections. (a, c) surface, us, and basal, ub, velocity of FSM and FLM along the CL. (b, d) Difference of the mean column ice temperature
between FSM and FLM (�T ¼ TFLM � TFSM) along the CL.
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of experiments for more-realistic glaciers. For example, the
index of the power law function that describes cross-
sectional shapes (2 for parabolic cross sections) will vary
spatially over a wide range for real glaciers. Further, glacier
cross sections are often highly unsymmetric (e.g. Zhang and
others, 2012) and glacier widths are not uniform along flow
(as assumed in this study). Therefore, we expect that
additional errors and biases of the sort demonstrated here
can be expected when applying a FLM to approximate the
evolution of realistic, 3-D glaciers.

Adhikari and Marshall (2012) argued that two types of
correction factors induced by glacier geometry, fn, and
sliding conditions, fs, should be accounted for (f ¼ fn � fs).
In this study, we included only fn (f ¼ fn), as it would not be
practical to implement fs during the model numerical
iterations and to distinguish between ‘abrupt’ and ‘smooth’
basal sliding transition regions. While we expect that the
additional factor fs (<1) could further reduce the values of u
in the FLM relative to the FSM (thus resulting in even larger
discrepancies between the FSM and FLM results) and that
different basal sliding ‘laws’ (e.g. Weertman-type (Cuffey
and Paterson, 2010) or Coulomb- friction type (Gagliardini
and others, 2007)) may introduce additional differences, our
conclusion that basal sliding will enhance biases between
the FLM and FSM should be robust.

While we have studied model sensitivities with respect to
integration time in this paper, we have not carried out any
prognostic simulations whereby the glacier geometry is
allowed to change over time. Here this is because a
comparison of ice-volume changes between the FSM and
the FLM is far from straightforward. The u profiles along
glacier cross sections are not well understood (e.g. Nye,
1965), but for modelling volume evolution using a FLM a
reliable parameterization of the mean, across-flow ice flux is
required at each point along flow. In general, it is not clear
how best to conduct a fair and meaningful comparison of
glacier geometry changes as calculated by the FLM with
those calculated by the FSM.

CONCLUSIONS
By comparing output from a 3-D, thermomechanical, full-
Stokes model (FSM) and a 2-D, thermomechanical, first-
order flowline model (FLM) we investigated model sensitiv-
ities to three different factors: glacier geometry (e.g. length,
slope, width and bed undulation), ice temperature and
model integration time. We find that, in common situations,
the FLM will be heavily biased and should therefore be used
and interpreted with caution. These situations include the
simulation of (1) glaciers that are steep and with heavily
undulated bed topography, (2) polythermal glaciers for
which there is a temperate basal ice zone and for which
basal sliding occurs and (3) glacier evolution over long time
periods (�103 years). Put differently, the FLM is more likely
to give accurate results (relative to a FSM) for flat, cold or
temperate glaciers with relatively short equilibrium time-
scales (i.e. less than several hundred years).

Among the factors tested here, we argue that the glacier
geometry (accounted for in part by the shape factor for the
FLM) is likely to lead to the biggest differences in simulation
outputs for the FLM versus the FSM. While the presence or
absence of basal sliding leads to the largest overall model
differences, this is largely a result of differences in the
modelled temperature fields. These originally arise from

small differences in the modelled ice velocity fields, which
grow over time through positive, thermomechanical feed-
backs. In turn, these initially small differences in the velocity
field arise because of approximations inherent to the FLM and
the way that geometry is parameterized in the FLM (i.e. using
a shape factor to parameterize the effects of lateral drag).
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