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Abstract

For a wide family of multivariate Hausdorff operators, the boundedness of an operator from this family
is proved on the real Hardy space. By this we extend and strengthen previous results due to Andersen
and Méricz.
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1. Introduction

Hausdorff means, the Cesaro means among them, were known long ago; a chapter
is devoted to them and their application to the summation of number series in the
celebrated book ‘Divergent series’ [12] by Hardy. One can also find a brief survey
on the Hausdorff summability and its application to the moment problem in [20,
Chapter III, Section 7]. Cesaro means for power series from the Hardy space H'
were considered by Siskakis. The idea was to substitute the coefficients @, in the
expansion f(z) = Y .o, az*, with f € H', for their Cesaro means k™' Z';_:B a, in
order to improve the behavior of the series on the unit circle; for an elegant proof of
the boundedness of the corresponding operator in H', see [17].

The Fourier transform setting of the correspondent problem was considered in [9].
In fact, general Hausdorff means of a Fourier-Stieltjes transform were introduced even
earlier, in [8], but only in L!. In the real Hardy space on R, for the Hausdorff operator
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defined by means of ¢ € L'(R), as

(1) HNw = tNw = [ 27 (Z)au
R lul u

the boundedness of this operator taking H'(R) into H'(R) was proved in [13]; the
result in [9] is a partial case of this, by letting ¢ (x) to be the indicator of [0, 1].

Observe that in [1-3] and [16] similar problems are considered for the Hausdorff
operators defined by suitable measures, while (1.1) is the partial case of absolutely
continuous measures. Here we restrict ourselves to the latter case for the sake of
brevity and convenience; we are aiming at a different generality, more transparent in
a simpler setting. An extension to arbitrary measures goes through as in the cited
papers.

Recently Hausdorff operators were considered in [7] for power series as well; in
that paper the reader may find some other relevant references.

Similarly to the case of power series, the point is as follows. Since, generally
speaking, the inverse formula

FO) = @7)~! A Fiye™ dr

does not take place for f € L'(R) as well as for f € H'(R), where f is the Fourier
transform of f; expected is that

/m HFY ()e™ dy

behaves better and characterizes f properly, in a sense. For relevant relations for the
Fourier transform of the value of a Hausdorff operator, see, for example, [3]. Though
these operators were considered in various spaces, the most important is the case of
Hardy spaces; see, for example, [13] or [15].

In the multidimensional case the situation is, as usual, more complicated. The
Cesaro means in [10] and the Hausdorff means in [14] were considered in dimension 2
only for the so-called product (mixed) Hardy space H!! (R x R) (for such spaces, see,
for example, [6]), while the case of usual Hardy space H'(R?) seems to be unsolvable
by the used method in full generality. In the recent paper [19] a slight extension was
made in the same direction of product Hardy spaces. In [1] the problem was solved
for the Hausdorff type operator

P = [ i (2) duw),

where x € R", defined by one-dimensional averaging. This does not seem to be
natural for the multivariate case.
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The problem is to figure out an appropriate setting. We generalize (1.1) by defining
a Hausdorff type operator by

(12) HNH@) = HeNx) = Houn ) = / ) f(xAw))du,

where A = A(u) = (a;)};_; = (a;; (u)):'_j=1 is the n x n matrix with the entries a;; (u)
being measurable functions of u#. This matrix may be degenerate at most on a set of
measure zero; x A(u) is the row n-vector obtained by multiplying the row n-vector
x by the matrix A. This is how Hausdorff operators are defined in [3] and [16], for
Borel measures rather than the Lebesgue measure. In [16] the boundedness of such
operators in H'(R") is proved for a very special case of diagonal matrices A with all
entries on the diagonal equal to one another.

The definition (1.2) suggests much wider range of Hausdorff type operators than
those for which efficient results were obtained. We mean not only the restrictive
diagonal case. For example, the above described operator from [1] (and even a variety
of such operators with one-dimensional averaging) can be obtained by letting u to be
one-dimensional and matrix A diagonal. Moreover, letting 4 = (uy, ..., u,) with m
not necessarily equal to n, we may consider various types of averaging. We feel that
the case m = n is the most natural in the n-dimensional setting. However we do not
exclude that other cases will prove to be of interest as well; our results can easily be
adjusted to them.

We are going to prove sufficient conditions, in terms of ¢ and A, for the bound-
edness of the whole range of Hausdorff type operators (1.2) in H'!(R"). This will be
done in Section 2, and this is the main result of the paper.

We can easily find the adjoint operator H* as the one satisfying, for appropriate
(‘good’) functions f and g,

(1.3) (Hf)x)g(x)dx = | (H*g)(x)f(x)dx.
[R’I RII
It is defined (compare [3] and [16]) as
H* HHx) = (Hp 4 )x) = / @ (u)|det A7 ()| f(xA™' () du.
R

The boundedness of this operator on H'!(R") readily follows from the main result
since it is also of Hausdorff type. The key ingredient in the proofs is a lemma on the
behavior in u of the BMO-norm of f(xA(u)). This also allows us to get conditions
for the boundedness of both operators in BMO(R").

In the last section we consider some examples and give concluding remarks.
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2. Main results

In this section we formulate and prove our main result. But before this we give
natural assumptions on ® and A, which provide the boundedness of the Hausdorff
operator in L'(R"), that turn out to be weaker than those providing the main result.
This is by no means surprising, since the latter specify only a part that belongs
to H'(R").

Let the following condition be satisfied:

1Pl =/ |0 (u)|| det A~ ()| du < o0,
R

or (u) = ®(u)det A~'(u) € L'(R").
As an example, we mention that the corresponding Cesaro operator is given by

o) = ®w)| det A7 (W) = xycerarwin )

Among the other basic properties of Hausdorff operators, one may find in [3], in
different terms of course, that the operator H f is bounded taking L! into L', with

IH e < IPHL M f Nl

For diagonal matrices the belonging to L, either gives nothing like in [14] or
.coincides with the condition of belonging to H'(R") like in [1] and [16].

There are various well-known expressions for the norm of a function in the real
Hardy space H' = H!(R") (see, for example, [18, Chapters 3 and 4]). We will use
the dual space approach (see, for example, [4] and [5]) in which the norm of h € H'!
is defined as

(2.1) WAllae = sup

lgll, <1

/ h(x)g(x)dx

where g is taken to be infinitely smooth and of compact support and the semi-norm
llgll. is that in BMO:

. 1
lgll, = supinf — / lg(x) — cl dx,
Qo ¢ |Q| 1)

where Q is a cube with all the sides parallel to the coordinate axes, say admissible
cube, | Q] is its Lebesgue measure, and the supremum is taken over all such cubes.

We denote ||A|l = [|[A@)]| = max;(|a;;(u)| + - - + la,;(u)]) to be the operator
£-norm (see [11, Chapter IV, Section 10, Problem 244]) of the operator in an n-di-
mensional linear space defined by the matrix A in the corresponding canonical basis.
We will say that ® € L}, if

I Pl = [ [®P@IIAWI"du < oo.
R
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LEMMA 2.1. Let F(x,u) = f(xA(u)). Then
IFCwlle < IA@I" det A7 @)l fll.r  u € R™.

PROOF. Changing variables, we have

Tal —supmf@f | f(xA) — cldx

-—l
— supinf LA [ ry — el di,
o < 12l Joa
where QA = Q A(u) is the image of Q after right multiplying by A, the parallelepiped
with the vertices that are the images of the vertices of Q. We now enlarge the domain
of integration, Q A, up to the least circumscribed cube Q,. It is easy to see that
< ||A||£g, where £, denotes the side length of Q. Therefore,

Qa
. . |det A7Y . . |detA™Y
inf ——— | f(x) —cldx < inf ——— |f(x) —cldx
¢ 19| QA ¢ Q] 04
Al*|det A~!
< inf IAPILATT [ oy cax
¢ | Qal Q4
< |AllI"|det A7 £,
which completes the proof. O

With this lemma as a tool in hand, we first obtain results on the boundedness of
Hausdorff type operators in BMO(R").

THEOREM 2.2. (i) The Hausdorff operator H f is bounded on BMO(R") pro-
vided ®det A~ € L%, and |H fll, < [[®det A~ [l |l fll

(ii) The adjoint Hausdorff operator H* f is bounded on BMO(R") provided
Qe Ly, and H fll. < 1Pl ILf s

PROOF. We prove only item (i) of the theorem, the other deals with the same
Hausdorff type operator with different parameters for which the changes are obvious.
Given a cube Q and ¢ > 0, denote by c, (1) the constant satisfying

2.2) / |f(xA(u) —cogu)|dx < (1+¢) inf/ |f(xA(u) —c|dx.
0 ¢ Je
Observe that |co ()| < (2 + &) [, | f(xA(u)], and hence

Co E/ P (u)ecg(u)du < co.
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Using (2.2), Lemma 2.1 and Fubini’s theorem, we get

/ Hf(x) = coldx < — / 1®@W)| f | f(rAG) — cow)] dx du

101 QI

=(+e) | [PWIIF(, w)lldu
mll

< (+e)|@det A 5l f ..

Thus, |Hfll. < (A + £)||<DdetA"l|L; i fll«. Letting & — O yields the desired
result. O

We are now in a position to obtain conditions for the boundedness of Hausdorff
type operators in H'!(R").

THEOREM 2.3. (i) The Hausdorff operator H f is bounded on the real Hardy
space H'(R") provided ® € L*_,, and |H f |l g1 @y < |||, - Il £ 11 £ ey

(i) The adjoint Hausdorff operator H* f is bounded on the real Hardy space
H'(R™) provided ®det A~! € L%, and ||H* flm@sy < | P det A~ '||L; Il £l qny-

PROOF. As in the previous theorem, it is enough to prove only item (i). But this
follows immediately from (1.3), (2.1) and from item (ii) of Theorem 2.2. O

3. Examples and concluding remarks

In this section we collect some examples and concluding remarks.

Multidimensional Hausdorff operators investigated in previous papers were defined,
in our terms, by diagonal matrices A. By taking such matrices with equal diagonal
entries, our Theorems 2.2 and 2.3 reduce immediately to the main results from [16].

A simplest generalization to the non-diagonal case is as follows. Consider the
matrix with the entries

aij
@)’

where ¥ (u) is a measurable function, a;; are numbers, and the corresponding matrix
is non-degenerate. Setting ®(u) = ¢(u)/¥ (u)", where ¢ € L'(R"), we satisfy the
assumptions of the theorem.

Considering, in dimension 2, the case of the diagonal matrix A with a;; = 1/u;
anda;; =0,i # j, j = 1, 2, we, correspondingly, have

i,j=1,...,n,

aij(u) =

pu)
|u,u2|

D(u) =
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with integrable ¢. By this we have the Hausdorff operator

Hf(x)=f P f(ﬂ,.x_2>du
re Ui \uy uy

considered in {14] and well adjusted to the product (mixed) Hardy space H''(R x R).
Sure, we cannot expect the fulfillment of (2.1) for most of ¢ in this case. The study
of Hausdorff operators in general mixed Hardy spaces will appear elsewhere.
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