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SPACES WITH A UNIQUE UNIFORMITY

RICHARD H. WARREN

1. Introduction. The major results in this paper are nine characteriza-
tions of completely regular spaces with a unique compatible uniformity.
All prior results of this type assumed that the space is Tychonoff (i.e.,
completely regular and Hausdorff) until the appearance of a companion
paper [9] which began this study. The more important characterizations
use quasi-uniqueness of R;-compactifications which relate to uniqueness
of T)-compactifications. The features of the other characterizations are: (i)
compact subsets linked to Cauchy filters, (ii) C- and C*-embeddings, and
(ii1) lifting continuous maps to uniformly continuous maps.

Section 2 contains information on Ty-identification spaces which we
will use later in the paper. In Section 3 several properties of uniform
identification spaces are developed so that they can be used later. The nine
characterizations are established in Section 4. Also it is shown that a space
with a unique compatible uniformity is normal if and only if each of its
closed subspaces has a unique compatible uniformity.

There are several reasons for this study of completely regular spaces
which may not be Hausdorff. First, it completes the work begun in [9].
Two new tools have been developed and used: uniform identification
spaces and Rj-compactifications. It is shown that, except for the
Stone-Cech compactification, all the characterizations in {2, 4, 5, 8] are
valid without a Hausdorff assumption. This study complements [3, 6, 7]
which are in the framework of completely regular spaces which are not
necessarily Hausdorff.

Recall that a topological space is called R, if and only if whenever {x}
# {y} there are disjoint open sets U and V' such that {x} € U and {y}
C V [1]. An R;-compactification is a compact Rj-space in which the
original space is densely embedded.

2. Ty-identification spaces. Background and extensive information
about these spaces is contained in [9]. We are interested in some additional
properties which are developed here for use in Section 4.
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Remember that points x, y in a topological space (X, ) are identified if
and only if {x} = {»} and the resulting quotient space (Y, ¥) is a
Ty-space, called the Ty-identification space of (X, 7). For x € X, let D, be
the member of Y containing x. Then f:X — Y by f(x) = D, is a
continuous, open, closed map onto Y and is called the Ty-identification
map.

Throughout this section (Y, ¥7) will be the Ty-identification space of (X,
J), and D, and f will be as designated in the two preceding sentences.

A topological space (X, .7) is said to be C*-embedded in the space (Z, %)
if every bounded, real-valued, continuous function on X has a continuous
extension to Z, possibly through a homeomorphism of (X, .7) onto a
subspace of (Z, %). Such a homeomorphism is called an embedding of (X,
) into (Z, ¥). Also, (X, ) is said to be densely embedded in (Z, %) if
there is an embedding 4 of (X,.7) into (Z, %) such that #(X) is dense in Z.
By C*(X) we denote the set of bounded, real-valued, continuous functions
on X.

THEOREM 2.1. Let (X, ) be a subspace of (S, &) whose Ty-identification
space is (T, ). If (Y, ¥) is C*-embedded in (T, %), then (X, T) is
C*-embedded in (S, &).

Proof. Let g be in C*(X). As a result of Lemma 2.1 in [9)], we may define
a real-valued function 4 on Y by h(D,) = g(x) for each D, € Y. Hence g
= h o fand k is continuous. By assumption % has an extension k in C*(T).
Let e:S — T be the quotient map e(s) = [s] where [s] is the equivalence
class containing s. Then k o e is in C*(S) and is an extension of g.

THEOREM 2.2. Let (Y, ¥) be a dense subspace of the Ty-space (T, %).
Then there is a topological space (S, &) such that (T, %) is the
To-identification of (S, &) and (X, J) is densely embedded in (S, &).
Furthermore, if (X, I) is C*-embedded in (S, &), then (Y, ¥") is
C*-embedded in (T, %).

Proof. Let S = X U (T \Y), so without loss of generality we may
assume TN X = . For each open subset 4 of T form

A" = U{Dy:Dy € A N Y} U A\Y.

Then {4’:A € %} is a topology on S. As usual, define x = y forx,y € S
if and only if {x}® = {¥}’. Note that when x and y are distinct points in
S, then x = y if and only if x, y € X and x ~ y in X. Thus =~ determines
the members of T, with the identification of {z} with  whenever t € T \'Y.
It is easy to show that the quotient topology on T agrees with % and that
(X, 7) is a dense subspace of (S, &).
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Let h be in C*(Y). Then & o fis in C*(X) and has an extension j in
C*(S). As a result of Lemma 2.1 in [9], we may define a real-valued
function k on T by k(D,) = j(x) for D, € Y and k(¢) = j(¢) fort €
T\Y. Let e:S — T be the quotient map. Thenj = ko e, kisin C*(T) and
kly = h.

THEOREM 2.3. Let X* be an Rj-compactification of (X, 7) and Y* the
Ty-identification space of X*. Then Y* is a Ty-compactification of (Y, ¥).

Proof. Let k be a dense embedding of X into X* and let g be the
Ty-identification map of X* onto Y*. By Lemma 2.1 in [9], we may define
amap h:Y — Y* by h(D,) = g(k(x) ). Then A(Y) is homeomorphic to Y
and h(Y) is dense in Y*. It is known that a compact R;-space is
completely regular. Thus Y* is Tychonoff.

THEOREM 2.4. (X, ) is locally compact if and only if (Y, ¥") is locally
compact.

Proof. Since f'is an open, onto mapping, (Y, ¥") is locally compact when
(X, J) is. On the other hand, since for each G € 9, f(G) € ¥ and
S Yf(G)) = G, it follows that if (Y, ¥") is locally compact, then (X, .7)
is.

3. Uniform identification spaces. These spaces originated in [9] where
they became the major tool for extending uniform results from Tychonoff
spaces to completely regular spaces.

Let (X, 5#) be a uniform space. For x, y € X, define x ~ y if and only if
y € H(x) for each H € 5 Then ~ is an equivalence relation on X.
Throughout this section Y is the set of equivalence classes, D, is the
member of Y containing x, f:X — Y by f(x) = D, and X'is the quotient
uniformity on Y induced by f. Then (Y, X)) is called the wuniform
identification space of (X, »#). The map f'is uniformly continuous and is the
Ty-identification map with respect to the induced topologies.

For our purposes in Section 4, the most useful feature about identifying
uniform spaces is the following theorem which is proved in [9].

THEOREM 3.1. Let (X, ) be a topological space and let (Y, ¥") be its
Ty-identification space. Let © be the family of all uniformities on X
compatible with Zand let Q be the family of all uniformities on Y compatible
with ¥. Then © and Q are order isomorphic.

THEOREM 3.2. (X, ¥) has property (*) if and only if (Y, X)) does.
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(*) Each entourage for the uniformity contains a set of the form 4 X A4
where the complement of A4 is compact.

Proof. (=) Let K € X Then f/ !(K) € #by Theorem 3.3 in [9] and
there is A X A € f!(K) such that X \ 4 is compact. Then f(X \ A4) is
compact and

YNS(X\N A) € f(X\(X\ A)) = f(4).
Thus

YANS(XNA4) X YNS(X\A) C f(4) X [f4) cK

(<) Let H € 5 Since X is a quotient uniformity, f(H) € X and there
is B X B C f(H) such that Y \ B is compact. Then /(Y \ B) is compact
since for each open subset G of X, f(G) is open and f~'(f(G)) = G.
Also

X\SUYNB) = (Y \(Y\ B)) = /\(B).
Therefore
XN/'Y\NB) X X\f(Y\B)cH.
CoROLLARY 3.1. (X, 5) has property (¥) if and only if (Y, X)) does.

(¥) The space is compact or the filter with base consisting of
complements of compact subsets is a Cauchy filter.

Proof. A filter Zin a uniform space is a Cauchy filter if and only if for
each entourage H there is F € Zsuch that F X F C H.

THEOREM 3.3. (X, 5¥) is totally bounded if and only if (Y, X) is totally
bounded.

Proof. Since [ is uniformly continuous and onto, (Y, %) is totally
bounded when (X, 5) is. On the other hand, given H € 5 by Theorem 3.3
in [9] there is K € X'such that f'(K) ¢ H. Assuming (Y, ) is totally
bounded, there is a finite set {Dx,, e, Dx"} such that

U{K(Dy):k=1,...,n} =Y.
So Y = {D,:(Dy,, D,) € K for some k}. Hence
X = U{D,:(xx, ») € f1(K) for some k}

= U{H(x )k =1,...,n}.

4. Unique compatible uniformity. The first characterization of Tychon-
off spaces with exactly one compatible uniformity was published by Doss
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[4] and was extended to completely regular spaces in [9]. Additional
characterizations of these Tychonoff spaces were implied by Dickinson [2]
and given by Newns [8]. Dickinson’s work is extended to completely
regular spaces in Theorem 4.1 (b) and Newns’ work in Theorem 4.1 (c), (d)
and (d’).

THEOREM 4.1. Let (X, 9) be a completely regular topological space. Then
the following are equivalent.

(a) There is a unique uniformity on X compatible with I.

(b) (X, I) is compact or locally compact with a unique (up to
Ty-identification) Ry-compactification.

(©) (X, ) is compact or locally compact with the 1-point compactification
of (X, T) densely embedded in each R;-compactification of (X, ).

(d) Each entourage for each compatible uniformity on X contains a set of
the form A X A where X \ A is compact.

(d) (X, T) is compact or the filter with base consisting of complements of
compact subsets of X is a Cauchy filter for every compatible uniformity
on X.

Proof. Let (Y, ¥) be the Ty-identification space of (X, ).

(a) = (b). Assume (X, .7) is not compact. Then (Y, ¥7) is not ¢compact
and has a unique compatible uniformity by Theorem 3.1. From [2] (Y, ¥")
is locally compact and by Theorem 2.4 (X, .7) is locally compact. In [2] it
is shown that (Y, ") has a unique compactification which is Tychonoff.
Let X* be the l-point compactification of (X, J) and Y* its Ty-
identification .space. By Theorem 2.3 Y* is a T)-compactification of Y. If
X’ is any Rj-compactification of X and Y’ its Ty-identification space, then
by Theorem 2.3 Y is a Ty-compactification of (Y, ¥7). Thus Y’ is
homeomorphic to Y*.

(b) = (a). It is well-known that a compact, completely regular space
admits exactly one compatible uniformity. If (X, .7) is not compact, then
its 1-point compactification X* is an R;-space and hence completely
regular. By Theorem 2.3 the Tj-identification space of X* is a
T,-compactification of (Y, ¥7). If (T, %) is any T»-compactification of (Y,
¥7), then the space (S, &) constructed in Theorem 2.2 is an R;-
compactification of (X, .7). By assumption (7, %) is homeomorphic to the
Ty-identification space of X*. Hence (Y, ¥") has a unique compactification
which implies by [8] that (Y, ¥") has a unique compatible uniformity.
From Theorem 3.1 (X, ) has a unique compatible uniformity.

(b) = (¢). If (X, &) is not compact, then let X* be its l-point
compactification and Y* the T-identification space of X*. Let X’ be any
R|-compactification of (X, 7) and Y’ the Tj-identification space of X'
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There is an embedding map j:X — X which is one to one, open,
continuous and satisfies j(X) = X’. There is a homeomorphism i: Y* —
Y. If f, g, h are the respective Ty-identification maps, then we have:

, ) .
i
g /
(X, 7) L v

We may assume X* = X U {w} and hoj = i o g on X. Since Y’ is
homeomorphic to the 1-point compactification of (Y, ¥), we can choose o’
€ Y’ which is a point adjoined to Y. Then there is w’ € X’ satisfying (")
= o'. Define k:X* — X’ by k(x) = j(x) foreach x € X and k(w) = . It
1s easy to verify that k is one to one, open, continuous and that k(X*)
is dense in X".

(c) = (b). Using the same notation as in the diagram for the previous
proof, we now assume that k:X* — X’ is a dense embedding. Denote
equivalence classes in X* by D, for x € X* and in X’ by [x'] for X’ € X".
Since

[k(x)] = hkg '(D,) for each x € X*,

we may define i: Y* — Y by i(D,) = [k(x) ]. Then it is easy to verify that i
is a homeomorphism.

(a) & (d). Coupling Theorems 3.1 and 3.2 with [8] shows that (a) is
equivalent to (Y, ¥7) having a unique compatible uniformity, which is
equivalent to each entourage for each compatible uniformity on Y
containing a set of the form B X B where Y \ B is compact, which is
equivalent to (d).

(d) & (d'). Use Corollary 3.1.

The next theorem takes two pieces of work [5, p. 95] from Tychonoff
spaces to completely regular spaces. Other characterizations on p. 95 were
generalized in [9].

THEOREM 4.2. For a completely regular space (X, T) the following are
equivalent:

(a) There is a unique uniformity on X compatible with .

(b) (X, 9) is C*-embedded in every completely regular space containing
(X, ) as a dense subspace.
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(¢) Every continuous image (Z, &) of (X, I) is C-embedded in each
completely regular space containing (Z, Z) as a dense subspace.

Proof. Let (Y, ¥) be the Ty-identification space of (X, 7).

(a) & (b). Let X be a dense subspace of the completely regular space S
whose T-identification space is 7. Denote the equivalence classes of S by
[s] where s € S. If s € X, then we may identify the equivalence class D; of
X with [s] of S. Thus Y is densely embedded in 7. It follows from Theorem
3.1 that (a) is equivalent to Y having a unique compatible uniformity,
which by [5, p. 95] implies that Y is C*-embedded in 7, and by Theorem
2.1 X'is C*-embedded in S. On the other hand, (b) implies by Theorem 2.2
that Y is C*-embedded in every Tychonoff space containing Y as a dense
subspace, which by [5, p. 95] is equivalent to Y having a unique
compatible uniformity.

(a) = (c). If we assume (Z, 2) is a dense subset of a completely regular
space, then (Z, %) is completely regular. Let (U, %) be the Ty-
identification space of (Z, £). Since (Y, ¥") has a unique compatible
uniformity by Theorem 3.1 and since (U, %) is the continuous image of (Y,
¥, by [5, p. 95] (U, %) is C-embedded in every Tychonoff space
containing (U, %) as a dense subspace. By Theorems 2.1 and 2.4 in [9}], (Z,
Z) satisfies (c).

(c) = (a). Since the identity map on X combined with (c) implies that
Theorem 4.1 (e) in [9] holds, it follows that (X, ) satisfies (a).

The next theorem generalizes the characterizations found in [5,
p- 238].

THEOREM 4.3. For a completely regular space (X, I) the following are
equivalent:

() There is a unique uniformity on X compatible with .

(b) Every continuous map from (X, J) into a completely regular space is
uniformly continuous for each compatible uniformity on X.

(¢) Every function in C(X) is uniformly continuous for each compatible
uniformity on X.

(d) Every function in C*(X) is uniformly continuous for each compatible
uniformity on X.

(e) Every function in C*(X) is uniformly continuous for each compatible,
totally bounded uniformity on X.

Proof. Let (Y, ¥") be the Ty-identification space of (X, .9) and f: X — Y
the Tj-identification map.

(a) = (b). Let h:(X, ) — (Z, 2) be continuous where (Z, 2) is a
completely regular space. Let (U, %) be the Ty-identification space of (Z,
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Z) and g:Z — U the Tj-identification map. By assumption there is a
unique uniformity s##on X which induces . and by Theorem 3.1 a unique
uniformity 2#on Y which induces ¥7 Let #be a uniformity on Z which
induces & and let (U, #) be the uniform identification space of (Z, .%).
Then by Corollary 3.2 in [9] the map f is uniformly continuous with
respect to ¥ and . By Theorem 3.3 in [9] for each L € £ g(L) € .
Define k:Y — U by k(D) = gh(x). Then k is continuous and by [S,
p. 238] k 1s uniformly continuous from (Y, X") to (U, #). Therefore A is
uniformly continuous.

(b) = (c). The real line is a completely regular space.

(c) = (d). C*(X) < C(X).

(d) = (e). Each totally bounded uniformity is a uniformity.

(e) = (a). Let g € C*(Y). Let X" be a compatible, totally bounded,
separated uniformity on Y. By Theorem 3.4 in [9] there is a uniformity >
on X such that (Y, ) is the uniform identification space of (X, ). By
Theorem 3.3 (X, 5¥) is totally bounded. Define 4 on X by h(x) = gf(x).
Thus h € C*(X) and by assumption 4 is uniformly continuous. It follows
that g is uniformly continuous and by [5, p. 238] (Y, ¥") has a unique
compatible uniformity. From Theorem 3.1 (X, .7) has a unique compatible
uniformity.

Next we examine those completely regular spaces whose subspaces
inherit a unique uniformity.

THEOREM 4.4. A closed subspace of a normal space with a unique
compatible uniformity has a unique compatible uniformity.

Proof. Let S be a closed subspace of the normal space X and f € C(S).
Then

A={xeSf(x) =1} and B = {x € Sif(x) = 0}

are disjoint closed subsets of S. By Tietze’s extension theorem there is an
extension F of fto all of X. Since X has a unique uniformity, by Theorem
41in[9], {x € X:F(x) = 1} or {x € X:F(x) = 0} is compact. Hence 4
or B is compact, and by Theorem 4.1 in [9] S has a unique uniformity.

THEOREM 4.5. If every closed subspace of a space (X, I) has a unique
compatible uniformity, then (X, 7) is normal.

Proof. Let f be the Ty-identification map of (X, ) onto (Y, ¥") and let 4
be a closed subset of Y. Then it is assumed that f~ '(4) has a unique
uniformity. Alsoflf I(4) s the Ty-identification map of /= (4) onto 4. By
Theorem 3.1 4 has a unique uniformity and so (Y, ¥") is normal by
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Theorem 4 in [8]. Then (X, ) is normal because [ is closed and
continuous.
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