SPACES WITH A UNIQUE UNIFORMITY

RICHARD H. WARREN

1. Introduction. The major results in this paper are nine characterizations of completely regular spaces with a unique compatible uniformity. All prior results of this type assumed that the space is Tychonoff (i.e., completely regular and Hausdorff) until the appearance of a companion paper [9] which began this study. The more important characterizations use quasi-uniqueness of R_1 -compactifications which relate to uniqueness of T_2 -compactifications. The features of the other characterizations are: (i) compact subsets linked to Cauchy filters, (ii) C- and C*-embeddings, and (iii) lifting continuous maps to uniformly continuous maps.

Section 2 contains information on T_0 -identification spaces which we will use later in the paper. In Section 3 several properties of uniform identification spaces are developed so that they can be used later. The nine characterizations are established in Section 4. Also it is shown that a space with a unique compatible uniformity is normal if and only if each of its closed subspaces has a unique compatible uniformity.

There are several reasons for this study of completely regular spaces which may not be Hausdorff. First, it completes the work begun in [9]. Two new tools have been developed and used: uniform identification spaces and R_1 -compactifications. It is shown that, except for the Stone-Čech compactification, all the characterizations in [2, 4, 5, 8] are valid without a Hausdorff assumption. This study complements [3, 6, 7] which are in the framework of completely regular spaces which are not necessarily Hausdorff.

Recall that a topological space is called R_1 if and only if whenever $\{\overline{x}\} \neq \{\overline{y}\}$ there are disjoint open sets U and V such that $\{\overline{x}\} \subset U$ and $\{\overline{y}\} \subset V$ [1]. An R_1 -compactification is a compact R_1 -space in which the original space is densely embedded.

2. T_0 -identification spaces. Background and extensive information about these spaces is contained in [9]. We are interested in some additional properties which are developed here for use in Section 4.

Received January 8, 1982 and in revised form December 1, 1982.

Remember that points x, y in a topological space (X, \mathcal{T}) are identified if and only if $\{\overline{x}\} = \{\overline{y}\}$ and the resulting quotient space (Y, \mathcal{V}) is a T_0 -space, called the T_0 -*identification space* of (X, \mathcal{T}) . For $x \in X$, let D_x be the member of Y containing x. Then $f: X \to Y$ by $f(x) = D_x$ is a continuous, open, closed map onto Y and is called the T_0 -*identification map*.

Throughout this section (Y, \mathscr{V}) will be the T_0 -identification space of (X, \mathscr{T}) , and D_x and f will be as designated in the two preceding sentences.

A topological space (X, \mathcal{T}) is said to be C^* -embedded in the space (Z, \mathcal{U}) if every bounded, real-valued, continuous function on X has a continuous extension to Z, possibly through a homeomorphism of (X, \mathcal{T}) onto a subspace of (Z, \mathcal{U}) . Such a homeomorphism is called an embedding of (X, \mathcal{T}) into (Z, \mathcal{U}) . Also, (X, \mathcal{T}) is said to be densely embedded in (Z, \mathcal{U}) if there is an embedding h of (X, \mathcal{T}) into (Z, \mathcal{U}) such that h(X) is dense in Z. By $C^*(X)$ we denote the set of bounded, real-valued, continuous functions on X.

THEOREM 2.1. Let (X, \mathcal{T}) be a subspace of (S, \mathcal{S}) whose T_0 -identification space is (T, \mathcal{U}) . If (Y, \mathcal{V}) is C*-embedded in (T, \mathcal{U}) , then (X, \mathcal{T}) is C*-embedded in (S, \mathcal{S}) .

Proof. Let g be in $C^*(X)$. As a result of Lemma 2.1 in [9], we may define a real-valued function h on Y by $h(D_x) = g(x)$ for each $D_x \in Y$. Hence $g = h \circ f$ and h is continuous. By assumption h has an extension k in $C^*(T)$. Let $e:S \to T$ be the quotient map e(s) = [s] where [s] is the equivalence class containing s. Then $k \circ e$ is in $C^*(S)$ and is an extension of g.

THEOREM 2.2. Let (Y, \mathscr{V}) be a dense subspace of the T_0 -space (T, \mathscr{U}) . Then there is a topological space (S, \mathscr{S}) such that (T, \mathscr{U}) is the T_0 -identification of (S, \mathscr{S}) and (X, \mathscr{T}) is densely embedded in (S, \mathscr{S}) . Furthermore, if (X, \mathscr{T}) is C*-embedded in (S, \mathscr{S}) , then (Y, \mathscr{V}) is C*-embedded in (T, \mathscr{U}) .

Proof. Let $S = X \cup (T \setminus Y)$, so without loss of generality we may assume $T \cap X = \emptyset$. For each open subset A of T form

 $A' = \bigcup \{ D_X : D_X \in A \cap Y \} \cup A \setminus Y.$

Then $\{A': A \in \mathcal{U}\}$ is a topology on S. As usual, define $x \approx y$ for $x, y \in S$ if and only if $\{\overline{x}\}^s = \{\overline{y}\}^s$. Note that when x and y are distinct points in S, then $x \approx y$ if and only if $x, y \in X$ and $x \sim y$ in X. Thus \approx determines the members of T, with the identification of $\{t\}$ with t whenever $t \in T \setminus Y$. It is easy to show that the quotient topology on T agrees with \mathcal{U} and that (X, \mathcal{T}) is a dense subspace of (S, \mathcal{S}) .

1002

Let h be in $C^*(Y)$. Then $h \circ f$ is in $C^*(X)$ and has an extension j in $C^*(S)$. As a result of Lemma 2.1 in [9], we may define a real-valued function k on T by $k(D_x) = j(x)$ for $D_x \in Y$ and k(t) = j(t) for $t \in T \setminus Y$. Let $e:S \to T$ be the quotient map. Then $j = k \circ e$, k is in $C^*(T)$ and $k|_Y = h$.

THEOREM 2.3. Let X^* be an R_1 -compactification of (X, \mathcal{T}) and Y^* the T_0 -identification space of X^* . Then Y^* is a T_2 -compactification of (Y, \mathscr{V}) .

Proof. Let k be a dense embedding of X into X* and let g be the T_0 -identification map of X* onto Y*. By Lemma 2.1 in [9], we may define a map $h: Y \to Y^*$ by $h(D_x) = g(k(x))$. Then h(Y) is homeomorphic to Y and h(Y) is dense in Y*. It is known that a compact R_1 -space is completely regular. Thus Y* is Tychonoff.

THEOREM 2.4. (X, \mathcal{T}) is locally compact if and only if (Y, \mathcal{V}) is locally compact.

Proof. Since f is an open, onto mapping, (Y, \mathscr{V}) is locally compact when (X, \mathscr{T}) is. On the other hand, since for each $G \in \mathscr{T}, f(G) \in \mathscr{V}$ and $f^{-1}(f(G)) = G$, it follows that if (Y, \mathscr{V}) is locally compact, then (X, \mathscr{T}) is.

3. Uniform identification spaces. These spaces originated in [9] where they became the major tool for extending uniform results from Tychonoff spaces to completely regular spaces.

Let (X, \mathscr{H}) be a uniform space. For $x, y \in X$, define $x \sim y$ if and only if $y \in H(x)$ for each $H \in \mathscr{H}$. Then \sim is an equivalence relation on X. Throughout this section Y is the set of equivalence classes, D_x is the member of Y containing $x, f: X \to Y$ by $f(x) = D_x$ and \mathscr{H} is the quotient uniformity on Y induced by f. Then (Y, \mathscr{H}) is called the *uniform identification space* of (X, \mathscr{H}) . The map f is uniformly continuous and is the T_0 -identification map with respect to the induced topologies.

For our purposes in Section 4, the most useful feature about identifying uniform spaces is the following theorem which is proved in [9].

THEOREM 3.1. Let (X, \mathcal{T}) be a topological space and let (Y, \mathscr{V}) be its T_0 -identification space. Let Θ be the family of all uniformities on X compatible with \mathcal{T} and let Ω be the family of all uniformities on Y compatible with \mathscr{V} . Then Θ and Ω are order isomorphic.

THEOREM 3.2. (X, \mathcal{H}) has property (*) if and only if (Y, \mathcal{H}) does.

(*) Each entourage for the uniformity contains a set of the form $A \times A$ where the complement of A is compact.

Proof. (\Rightarrow) Let $K \in \mathscr{K}$. Then $f^{-1}(K) \in \mathscr{H}$ by Theorem 3.3 in [9] and there is $A \times A \subset f^{-1}(K)$ such that $X \setminus A$ is compact. Then $f(X \setminus A)$ is compact and

$$Y \setminus f(X \setminus A) \subset f(X \setminus (X \setminus A)) = f(A).$$

Thus

$$Y \setminus f(X \setminus A) \times Y \setminus f(X \setminus A) \subset f(A) \times f(A) \subset K.$$

(⇐) Let $H \in \mathscr{H}$. Since \mathscr{K} is a quotient uniformity, $f(H) \in \mathscr{K}$ and there is $B \times B \subset f(H)$ such that $Y \setminus B$ is compact. Then $f^{-1}(Y \setminus B)$ is compact since for each open subset G of X, f(G) is open and $f^{-1}(f(G)) = G$. Also

$$X \setminus f^{-1}(Y \setminus B) = f^{-1}(Y \setminus (Y \setminus B)) = f^{-1}(B).$$

Therefore

 $X \setminus f^{-1}(Y \setminus B) \times X \setminus f^{-1}(Y \setminus B) \subset H.$

COROLLARY 3.1. (X, \mathcal{H}) has property (*) if and only if (Y, \mathcal{H}) does.

(*) The space is compact or the filter with base consisting of complements of compact subsets is a Cauchy filter.

Proof. A filter \mathscr{F} in a uniform space is a Cauchy filter if and only if for each entourage H there is $F \in \mathscr{F}$ such that $F \times F \subset H$.

THEOREM 3.3. (X, \mathcal{H}) is totally bounded if and only if (Y, \mathcal{H}) is totally bounded.

Proof. Since f is uniformly continuous and onto, (Y, \mathscr{K}) is totally bounded when (X, \mathscr{H}) is. On the other hand, given $H \in \mathscr{H}$, by Theorem 3.3 in [9] there is $K \in \mathscr{K}$ such that $f^{-1}(K) \subset H$. Assuming (Y, \mathscr{K}) is totally bounded, there is a finite set $\{D_{x_1}, \ldots, D_{x_n}\}$ such that

 $\cup \{K(D_{x_k}): k = 1, \ldots, n\} = Y.$

So $Y = \{D_{y}: (D_{x_{k}}, D_{y}) \in K \text{ for some } k\}$. Hence

$$X = \bigcup \{ D_y : (x_k, y) \in f^{-1}(K) \text{ for some } k \}$$

$$= \cup \{H(x_k): k = 1, \ldots, n\}.$$

4. Unique compatible uniformity. The first characterization of Tychonoff spaces with exactly one compatible uniformity was published by Doss

1004

[4] and was extended to completely regular spaces in [9]. Additional characterizations of these Tychonoff spaces were implied by Dickinson [2] and given by Newns [8]. Dickinson's work is extended to completely regular spaces in Theorem 4.1 (b) and Newns' work in Theorem 4.1 (c), (d) and (d').

THEOREM 4.1. Let (X, \mathcal{T}) be a completely regular topological space. Then the following are equivalent.

(a) There is a unique uniformity on X compatible with \mathcal{T} .

(b) (X, \mathcal{T}) is compact or locally compact with a unique (up to T_0 -identification) R_1 -compactification.

(c) (X, \mathcal{T}) is compact or locally compact with the 1-point compactification of (X, \mathcal{T}) densely embedded in each R_1 -compactification of (X, \mathcal{T}) .

(d) Each entourage for each compatible uniformity on X contains a set of the form $A \times A$ where $X \setminus A$ is compact.

 $(d')(X, \mathcal{T})$ is compact or the filter with base consisting of complements of compact subsets of X is a Cauchy filter for every compatible uniformity on X.

Proof. Let (Y, \mathscr{V}) be the T_0 -identification space of (X, \mathscr{T}) .

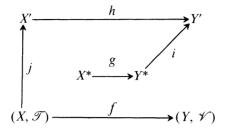
(a) \Rightarrow (b). Assume (X, \mathcal{T}) is not compact. Then (Y, \mathcal{V}) is not compact and has a unique compatible uniformity by Theorem 3.1. From [2] (Y, \mathcal{V}) is locally compact and by Theorem 2.4 (X, \mathcal{T}) is locally compact. In [2] it is shown that (Y, \mathcal{V}) has a unique compactification which is Tychonoff. Let X^* be the 1-point compactification of (X, \mathcal{T}) and Y^* its T_0 identification space. By Theorem 2.3 Y^* is a T_2 -compactification of Y. If X' is any R_1 -compactification of X and Y' its T_0 -identification space, then by Theorem 2.3 Y' is a T_2 -compactification of (Y, \mathcal{V}) . Thus Y' is homeomorphic to Y*.

(b) \Rightarrow (a). It is well-known that a compact, completely regular space admits exactly one compatible uniformity. If (X, \mathscr{T}) is not compact, then its 1-point compactification X^* is an R_1 -space and hence completely regular. By Theorem 2.3 the T_0 -identification space of X^* is a T_2 -compactification of (Y, \mathscr{V}) . If (T, \mathscr{U}) is any T_2 -compactification of (Y, $\mathscr{V})$, then the space (S, \mathscr{S}) constructed in Theorem 2.2 is an R_1 compactification of (X, \mathscr{T}) . By assumption (T, \mathscr{U}) is homeomorphic to the T_0 -identification space of X^* . Hence (Y, \mathscr{V}) has a unique compactification which implies by [8] that (Y, \mathscr{V}) has a unique compatible uniformity. From Theorem 3.1 (X, \mathscr{T}) has a unique compatible uniformity.

(b) \Rightarrow (c). If (X, \mathcal{T}) is not compact, then let X^* be its 1-point compactification and Y^* the T_0 -identification space of X^* . Let X' be any R_1 -compactification of (X, \mathcal{T}) and Y' the T_0 -identification space of X'.

1005

There is an embedding map $j:X \to X'$ which is one to one, open, continuous and satisfies $\overline{j(X)} = X'$. There is a homeomorphism $i:Y^* \to Y'$. If f, g, h are the respective T_0 -identification maps, then we have:



We may assume $X^* = X \cup \{\omega\}$ and $h \circ j = i \circ g$ on X. Since Y' is homeomorphic to the 1-point compactification of (Y, \mathscr{V}) , we can choose $\alpha' \in Y'$ which is a point adjoined to Y. Then there is $\omega' \in X'$ satisfying $h(\omega') = \alpha'$. Define $k:X^* \to X'$ by k(x) = j(x) for each $x \in X$ and $k(\omega) = \omega'$. It is easy to verify that k is one to one, open, continuous and that $k(X^*)$ is dense in X'.

(c) \Rightarrow (b). Using the same notation as in the diagram for the previous proof, we now assume that $k:X^* \rightarrow X'$ is a dense embedding. Denote equivalence classes in X^* by D_x for $x \in X^*$ and in X' by [x'] for $x' \in X'$. Since

 $[k(x)] = hkg^{-1}(D_x)$ for each $x \in X^*$,

we may define $i: Y^* \to Y'$ by $i(D_x) = [k(x)]$. Then it is easy to verify that *i* is a homeomorphism.

(a) \Leftrightarrow (d). Coupling Theorems 3.1 and 3.2 with [8] shows that (a) is equivalent to (Y, \mathscr{V}) having a unique compatible uniformity, which is equivalent to each entourage for each compatible uniformity on Y containing a set of the form $B \times B$ where $Y \setminus B$ is compact, which is equivalent to (d).

(d) \Leftrightarrow (d'). Use Corollary 3.1.

The next theorem takes two pieces of work [5, p. 95] from Tychonoff spaces to completely regular spaces. Other characterizations on p. 95 were generalized in [9].

THEOREM 4.2. For a completely regular space (X, \mathcal{T}) the following are equivalent:

(a) There is a unique uniformity on X compatible with \mathcal{T} .

(b) (X, \mathcal{T}) is C*-embedded in every completely regular space containing (X, \mathcal{T}) as a dense subspace.

(c) Every continuous image (Z, \mathcal{Z}) of (X, \mathcal{F}) is C-embedded in each completely regular space containing (Z, \mathcal{Z}) as a dense subspace.

Proof. Let (Y, \mathscr{V}) be the T_0 -identification space of (X, \mathscr{T}) .

(a) \Leftrightarrow (b). Let X be a dense subspace of the completely regular space S whose T_0 -identification space is T. Denote the equivalence classes of S by [s] where $s \in S$. If $s \in X$, then we may identify the equivalence class D_s of X with [s] of S. Thus Y is densely embedded in T. It follows from Theorem 3.1 that (a) is equivalent to Y having a unique compatible uniformity, which by [5, p. 95] implies that Y is C*-embedded in T, and by Theorem 2.1 X is C*-embedded in S. On the other hand, (b) implies by Theorem 2.2 that Y is C*-embedded in every Tychonoff space containing Y as a dense subspace, which by [5, p. 95] is equivalent to Y having a unique compatible uniformity.

(a) \Rightarrow (c). If we assume (Z, \mathscr{Z}) is a dense subset of a completely regular space, then (Z, \mathscr{Z}) is completely regular. Let (U, \mathscr{U}) be the T_0 -identification space of (Z, \mathscr{Z}) . Since (Y, \mathscr{V}) has a unique compatible uniformity by Theorem 3.1 and since (U, \mathscr{U}) is the continuous image of (Y, \mathscr{V}) , by [5, p. 95] (U, \mathscr{U}) is C-embedded in every Tychonoff space containing (U, \mathscr{U}) as a dense subspace. By Theorems 2.1 and 2.4 in [9], (Z, \mathscr{Z}) satisfies (c).

(c) \Rightarrow (a). Since the identity map on X combined with (c) implies that Theorem 4.1 (e) in [9] holds, it follows that (X, \mathcal{T}) satisfies (a).

The next theorem generalizes the characterizations found in [5, p. 238].

THEOREM 4.3. For a completely regular space (X, \mathcal{F}) the following are equivalent:

(a) There is a unique uniformity on X compatible with \mathcal{T} .

(b) Every continuous map from (X, \mathcal{T}) into a completely regular space is uniformly continuous for each compatible uniformity on X.

(c) Every function in C(X) is uniformly continuous for each compatible uniformity on X.

(d) Every function in $C^*(X)$ is uniformly continuous for each compatible uniformity on X.

(e) Every function in $C^*(X)$ is uniformly continuous for each compatible, totally bounded uniformity on X.

Proof. Let (Y, \mathscr{V}) be the T_0 -identification space of (X, \mathscr{T}) and $f: X \to Y$ the T_0 -identification map.

(a) \Rightarrow (b). Let $h:(X, \mathscr{T}) \rightarrow (Z, \mathscr{Z})$ be continuous where (Z, \mathscr{Z}) is a completely regular space. Let (U, \mathscr{U}) be the T_0 -identification space of (Z, \mathscr{Z})

 \mathscr{X}) and $g: \mathbb{Z} \to U$ the T_0 -identification map. By assumption there is a unique uniformity \mathscr{H} on X which induces \mathscr{T} and by Theorem 3.1 a unique uniformity \mathscr{H} on Y which induces \mathscr{Y} . Let \mathscr{L} be a uniformity on \mathbb{Z} which induces \mathscr{X} and let (U, \mathscr{M}) be the uniform identification space of $(\mathbb{Z}, \mathscr{L})$. Then by Corollary 3.2 in [9] the map f is uniformly continuous with respect to \mathscr{H} and \mathscr{H} . By Theorem 3.3 in [9] for each $L \in \mathscr{L}$, $g(L) \in \mathscr{M}$. Define $k: Y \to U$ by $k(D_x) = gh(x)$. Then k is continuous and by [5, p. 238] k is uniformly continuous from (Y, \mathscr{H}) to (U, \mathscr{M}) . Therefore h is uniformly continuous.

(b) \Rightarrow (c). The real line is a completely regular space.

(c) \Rightarrow (d). $C^*(X) \subset C(X)$.

(d) \Rightarrow (e). Each totally bounded uniformity is a uniformity.

(e) \Rightarrow (a). Let $g \in C^*(Y)$. Let \mathscr{K} be a compatible, totally bounded, separated uniformity on Y. By Theorem 3.4 in [9] there is a uniformity \mathscr{H} on X such that (Y, \mathscr{K}) is the uniform identification space of (X, \mathscr{H}) . By Theorem 3.3 (X, \mathscr{H}) is totally bounded. Define h on X by h(x) = gf(x). Thus $h \in C^*(X)$ and by assumption h is uniformly continuous. It follows that g is uniformly continuous and by [5, p. 238] (Y, \mathscr{V}) has a unique compatible uniformity. From Theorem 3.1 (X, \mathscr{T}) has a unique compatible uniformity.

Next we examine those completely regular spaces whose subspaces inherit a unique uniformity.

THEOREM 4.4. A closed subspace of a normal space with a unique compatible uniformity has a unique compatible uniformity.

Proof. Let S be a closed subspace of the normal space X and $f \in C(S)$. Then

$$A = \{x \in S: f(x) \ge 1\}$$
 and $B = \{x \in S: f(x) \le 0\}$

are disjoint closed subsets of S. By Tietze's extension theorem there is an extension F of f to all of X. Since X has a unique uniformity, by Theorem 4.1 in [9], $\{x \in X: F(x) \ge 1\}$ or $\{x \in X: F(x) \le 0\}$ is compact. Hence A or B is compact, and by Theorem 4.1 in [9] S has a unique uniformity.

THEOREM 4.5. If every closed subspace of a space (X, \mathcal{T}) has a unique compatible uniformity, then (X, \mathcal{T}) is normal.

Proof. Let f be the T_0 -identification map of (X, \mathscr{T}) onto (Y, \mathscr{V}) and let A be a closed subset of Y. Then it is assumed that $f^{-1}(A)$ has a unique uniformity. Also $f|_{f^{-1}(A)}$ is the T_0 -identification map of $f^{-1}(A)$ onto A. By Theorem 3.1 A has a unique uniformity and so (Y, \mathscr{V}) is normal by

Theorem 4 in [8]. Then (X, \mathcal{T}) is normal because f is closed and continuous.

REFERENCES

- 1. A. S. Davis, *Indexed systems of neighborhoods for general topological spaces*, Amer. Math. Monthly 68 (1961), 886-893.
- 2. A. Dickinson, Compactness conditions and uniform structures, Amer. J. Math. 75 (1953), 224-228.
- 3. R. F. Dickman, Jr., J. R. Porter and L. R. Rubin, Completely regular absolutes and projective objects, Pacific J. Math. 94 (1981), 277-295.
- 4. R. Doss, On uniform spaces with a unique structure, Amer. J. Math. 71 (1949), 19-23.
- 5. L. Gillman and M. Jerison, Rings of continuous functions (Van Nostrand, Princeton, 1960).
- 6. N. C. Heldermann, Developability and some new regularity axioms, Can. J. Math. 33 (1981), 641-663.
- D. C. Kent and G. D. Richardson, Completely regular and ω-regular spaces, Proc. AMS 82 (1981), 649-652.
- 8. W. F. Newns, Uniform spaces with unique structure, Amer. J. Math. 79 (1957), 48-52.
- 9. R. H. Warren, Identification spaces and unique uniformity, Pacific J. Math. 95 (1981), 483-492.

Military Programs Department, General Electric Company, King of Prussia, Pennsylvania