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Abstract

A new approach to the solution of optimal stopping problems for one-dimensional
diffusions is developed. It arises by imbedding the stochastic problem in a linear
programming problem over a space of measures. Optimizing over a smaller class of
stopping rules provides a lower bound on the value of the original problem. Then the
weak duality of a restricted form of the dual linear program provides an upper bound
on the value. An explicit formula for the reward earned using a two-point hitting time
stopping rule allows us to prove strong duality between these problems and, therefore,
allows us to either optimize over these simpler stopping rules or to solve the restricted
dual program. Each optimization problem is parameterized by the initial value of the
diffusion and, thus, we are able to construct the value function by solving the family of
optimization problems. This methodology requires little regularity of the terminal reward
function. When the reward function is smooth, the optimal stopping locations are shown
to satisfy the smooth pasting principle. The procedure is illustrated using two examples.
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1. Introduction

In this paper we develop a new approach to the solution of optimal stopping problems
for one-dimensional diffusions. By imbedding the optimal stopping problem in an infinite-
dimensional linear program (LP) and examining its dual, a nonlinear optimization problem and
a semi-infinite LP are derived from which the value function is able to be constructed for a wide
class of reward functions.

We consider a one-dimensional diffusion X which satisfies the stochastic differential equa-
tion

dX(t) = µ(X(t)) dt + σ(X(t)) dW(t), X(0) = x, (1.1)
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Construction of the value function in optimal stopping 159

in some interval (xl, xr ). The objective is to select a time τ so as to maximize

J (τ ; x) := E

[ ∫ τ

0
e−αsr(X(s)) ds + e−ατ g(X(τ)) 1{τ<∞}

]
. (1.2)

In this expression, α > 0 denotes a discount rate, r is a running reward function, andg represents
the reward obtained at the terminal time. The need for a discount factor arises when the time
frame for stopping is such that alternative investment possibilities affect the value of the reward
earned. This, for example, will be the case for many perpetual options and for many applied
problems such as the harvesting of renewable resources. For example, in forest harvesting, r
might represent the amenity value or carbon credit of the forest while g would give the value
derived from harvesting.

Typically, we are interested in determining both an optimal stopping time τ ∗ and the value
function

V (x) = sup
τ
J (τ ; x). (1.3)

It is helpful to observe that V is a function of the initial position of the diffusion X. This will
become important when the problem is imbedded in a family of LPs parameterized by x. We
present a careful formulation of the optimal stopping problem in Section 1.1 and impose further
technical conditions in Sections 2, 4, and 5 that guarantee finiteness of the discounted reward
and existence of optimal stopping rules.

Optimal stopping of stochastic processes has a long history which has resulted in several
solution approaches. Two excellent surveys of the general theory of optimal stopping are El
Karoui [6] and Zabczyk [16]. The book by Shiryaev [15] approaches a nondiscounted version
of the above problem in which r ≡ 0 by seeking the minimal excessive majorant of g. This
minimal excessive function is the value function V and an optimal stopping rule is determined
by stopping when the processX first hits a point a where V (a) = g(a). The key to this solution
technique is identifying the minimal excessive function V along with the set {a : V (a) = g(a)}.
The recent book by Peskir and Shiryaev [12] relates the solution of optimal stopping problems
to the solution of free boundary problems and uses the terminology of superharmonic functions
in place of excessive functions. The authors considered more general problems that involve
processes with jumps and include rewards based on the supremum of the process X as well as
running and terminal rewards. For continuous processes, they employed the method of smooth
pasting; that is, they sought to determine a (not necessarily connected) open continuation
region C, a (not necessarily connected) closed stopping region S, and a function V for which

(i) C ∩ S = ∅, C ∪ S = [xl, xr ],
(ii) V ∈ C1[xl, xr ], with V |C ∈ C2(C),

(iii) AV (y)− αV (y)+ r(y) = 0 for all y ∈ C, and

(iv) V (y) = g(y) for all y ∈ S,

where A in (iii) denotes the generator of X so

AV (y) = µ(y)V ′(y)+ 1
2σ

2(y)V ′′(y).

The moniker ‘smooth pasting’ arises from the fact that we seek to paste the solution of the
differential equation in the region C from (iii) to the function g on the set S with the function so
defined being continuously differentiable at the boundary points S ∩ C. When the process has
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160 K. HELMES AND R. H. STOCKBRIDGE

jumps, the condition of smooth pasting is relaxed to continuous pasting, though smooth fit may
also hold [1]. Optimal stopping of diffusion processes using smooth pasting is also discussed
by Salminen [14], Dayanik and Karatzas [4], and in the text of Øksendal [11, Chapter 10].

The book by Dynkin [5, pp. 146, 155] and the recent paper by Dayanik and Karatzas [4] show
that the excessive functions are characterized as concave functions in a generalized sense. The
problem of determining the minimum excessive function which majorizes the reward function
is therefore recast as a problem of finding the minimum generalized concave function which
majorizes the reward function. The paper [4] illustrates this approach on a number of optimal
stopping problems.

As indicated in the first paragraph, this paper approaches the optimal stopping problem
quite differently. As will be seen in Section 1.1, the problem formulation optimizes over all
stopping times. Sections 2 to 4, however, examine carefully the optimal stopping problem
over a restricted class of stopping times. The stochastic problem is imbedded in an infinite-
dimensional LP (Section 2). We then optimize over an even smaller class of stopping times in
Section 3, specifically the two-point hitting times, and relax the constraints to form an auxiliary
linear problem. A dual LP is derived for which a weak duality relationship exists between
the LPs. In Section 4, strong duality between the problems and sufficiency of a two-point
hitting rule are proven. The result of strong duality is that the restricted stopping problem is
reformulated as an explicit nonlinear optimization problem and as a semi-infinite LP, both of
which can be used to determine the value. When the (modified) terminal reward function is
smooth, the smooth pasting principle follows from the necessary conditions for optimality in the
nonlinear problem. The unrestricted optimal stopping problem is then analyzed in Section 5,
in which it is shown that the values of the unrestricted and restricted problems are the same,
and, as a result, it follows that optimizing over two-point stopping rules determines optimal
stopping rules. This solution technique is then illustrated in Section 6 using two examples.

The paper by Alvarez [2] is closest to our approach in that he analyzed a nonlinear program
and demonstrated that the principle of smooth fit is a consequence of his optimization procedure.
His solution approach is global, whereas the approach in this paper is local and allows the value
function to be constructed. In addition, our paper provides an explicit reformulation for the
running reward term and, hence, we identify a simple nonlinear optimization problem. The key
to our result is Theorem 4.2, which proves strong duality between all our LPs.

1.1. Detailed formulation

Let the coefficients µ and σ in (1.1) be continuous. Furthermore, assume that µ and σ
are such that X is a weak solution of (1.1) while X(t) ∈ (xl, xr ) (see [7, Section 5.3, p. 291]
or [13, V.16.1, p. 149] for details) and that the solution to (1.1) is unique in distribution. This
uniqueness implies that the martingale problem for A is well posed and, hence, that X is a
strong Markov process (see [7, Theorem 4.4.2, p. 184] or [13, V.21.2, p. 162]). We denote the
filtration for the weak solution by {Ft }.

Each of the boundary points xl and xr can be classified as a natural, an entrance, or an
exit boundary point depending on the characteristics of the drift coefficient µ(·) and diffusion
coefficient σ(·) (see [3, II.10, pp. 14–19] or [10, pp. 128–131]). When a point is both an exit and
an entrance boundary point, the point is called nonsingular and the diffusion is not determined
uniquely. We therefore assume that the boundary points are singular. When xl is a natural
boundary point and x > xl , the processX will not hit xl in finite time (a.s.). The point xl is thus
not part of the state space for X. When xl is an entrance-not-exit boundary point and x ≥ xl ,
X(t) ∈ (xl, xr ] (a.s.) for all t > 0, so when x = xl , the process immediately enters the interval
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(xl, xr ) and never exits at xl . When xl is an exit-not-entrance boundary point, there is a positive
probability thatX hits xl in finite time. Similar statements apply to xr . When xl = −∞ and/or
xr = ∞, we require these points to be natural boundaries of the diffusion, which implies that
the diffusion is nonexplosive.

In light of the hitting behavior of the boundary points, for simplicity, we assume that the
initial position x satisfies x ∈ (xl, xr ). We emphasize that throughout this paper, x is reserved to
be the initial value of the diffusion. It will never be used as a dummy variable in any expression.

As already noted, in the case where either xl or xr is an exit boundary point, X will have
positive probability of hitting the boundary in finite time, so the choices of stopping times
cannot exceed this hitting time. Let ζ = inf{t > 0 : X(t) /∈ (xl, xr )} denote the time at which
the process exits (xl, xr ). The running reward function r , defined on (xl, xr ), is required to
satisfy

E

[ ∫ ζ

0
e−αs |r(X(s))| ds

]
< ∞;

conditions on the terminal reward function g are specified indirectly in Conditions 2.1, 4.1,
and 5.1. The objective is to select an {Ft }-stopping time τ ≤ ζ so as to maximize (1.2). Note
that, when X(t) ∈ (xl, xr ) for all t , by convention, ζ = ∞ and no restriction is placed on
the stopping times. Let A denote the set of admissible {Ft }-stopping times; this means that
A has the additional constraint that τ ≤ ζ when either boundary point is an exit-not-entrance
boundary point, but otherwise is unrestricted. To be specific, V defined in (1.3) is taken to be
the supremum over τ ∈ A.

We note that {Ft } is the filtration associated with the weak solution to (1.1) so it may contain
more information than that arising from the observations of the process X. Since the stopping
times τ ∈ A are {Ft }-measurable, these may in principle be determined using information
contained in {Ft } that is not generated by X. Our results nevertheless show that optimal
stopping rules exist within the subclass of hitting times of the process.

Our definition of {Ft }-stopping times follows that of Ethier and Kurtz [7, p. 51] and allows
stopping times to take value ∞. Peskir and Shiryaev [12] referred to these random variables as
Markov times and reserved the term stopping time to be those Markov times which are finite
almost surely. We allow the stopping times to be infinite on a set of positive probability, in
which case the decision is not to stop and receive any terminal reward. Clearly, this decision
should not be, and is not, rewarded when there is no running reward and the terminal reward is
positive.

As a preliminary step, we wish to eliminate the running reward from the objective by adjusting
the terminal reward function. To do so, we require the following condition.

Condition 1.1. The reward function r and the diffusion are such that there exists a function fr
with the property that, for all τ ∈ A and initial values x ∈ (xl, xr ),

E

[ ∫ τ

0
e−αsr(X(s)) ds

]
= E[e−ατ fr(X(τ)) 1{τ<∞}] − fr(x).

The next proposition indicates that this condition is satisfied for a large class of reward
functions. In this proposition, we use the notation Ex[·] to emphasize the initial value of X,
which will be of importance for the application of the strong Markov property. Some additional
preparation is necessary for the proof of the proposition.
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Note that the generator of the discounted process {e−αtX(t) : t ≥ 0} is Af (y) − αf (y) =
1
2σ

2(y)f ′′(y)+ µ(y)f ′(y)− αf (y). It is well known (see [3, II.10, pp. 18, 19] or [10,
pp. 128–131]) that, under the conditions assumed in this paper, the eigenfunction equation

Af = αf (1.4)

has a positive, strictly decreasing solution φ and a nonnegative, strictly increasing solution ψ
as its fundamental solutions. (Both φ and ψ depend on α; since we assume α is fixed, we do
not use notation that indicates this dependence.) The functions φ and ψ are unique up to a
multiplicative factor. Furthermore, φ(xl+) = ∞ and ψ(xl+) ≥ 0 when xl is either a natural
or an entrance-not-exit boundary of X and φ(xl+) ∈ (0,∞) when xl is an exit-not-entrance
boundary point. Similar comments apply to xr with the roles of φ and ψ reversed.

Proposition 1.1. Let r be bounded and continuous on (xl, xr ). Then Condition 1.1 holds.

Proof. Let τ ∈ A and x ∈ (xl, xr ) be chosen arbitrarily. Set r(xl) = 0 = r(xr) so that no
reward is accrued once the process X is absorbed at the boundary. Then

Ex

[ ∫ τ

0
e−αsr(X(s)) ds

]
= Ex

[ ∫ ∞

0
e−αsr(X(s)) ds − 1{τ<∞}

∫ ∞

τ

e−αsr(X(s)) ds

]
.

Define fr(x) = − Ex[
∫ ∞

0 e−αsr(X(s)) ds]. Then fr is well defined and has an integral repre-
sentation in terms of the function r , and the Green kernel and the speed measure of the process
(see [3, II.1.4]). This representation shows that fr is twice differentiable and is a particular
solution of Af − αf = r . Furthermore, by the strong Markov property we get

Ex

[
1{τ<∞}

∫ ∞

τ

e−αsr(X(s)) ds

]
= Ex

[
1{τ<∞} Ex

[ ∫ ∞

τ

e−αsr(X(s)) ds
∣∣∣ Fτ

]]
= Ex

[
1{τ<∞} e−ατ Ex

[ ∫ ∞

0
e−αur(X(τ + u)) du

∣∣∣ X(τ)]]
= Ex

[
1{τ<∞} e−ατ EX(τ)

[ ∫ ∞

0
e−αur(X(u)) du

]]
= − Ex[1{τ<∞} e−ατ fr(X(τ))],

from which the assertion follows.

Under Condition 1.1, the reward obtained under an admissible stopping time τ ∈ A is

E

[ ∫ τ

0
e−αsr(X(s)) ds + e−ατ g(X(τ)) 1{τ<∞}

]
= E[e−ατ (fr + g)(X(τ)) 1{τ<∞}] − fr(x).

Thus, using the function fr allows the replacement of the running reward of the objective
function by suitably adjusting the terminal reward earned at time τ and shifting by the constant
−fr(x). Since the constant shift is the same for each stopping rule τ ∈ A, it may be ignored for
optimization purposes. Define gr = fr + g. The stopping problem is now one of maximizing

Jr(τ ; x) := E[e−ατ gr(X(τ)) 1{τ<∞}] (1.5)
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over stopping times τ ∈ A. Denote the value function for this optimal stopping problem by

Vr(x) = sup
τ∈A

Jr(τ ; x) = sup
τ∈A

J (τ ; x)+ fr(x).

In the sequel, we assume that, for each τ ∈ A, the random variable e−ατ gr(X(τ)) 1{τ<∞} is
integrable.

The diffusion processes under consideration in this paper exclude reflection at a boundary and
killing. The inclusion of reflected processes would require either restricting the domain of the
test functions to capture the reflection or adding a second operatorB that adjusts the evolution of
the processXwhen reflection occurs. The latter approach adapts well to the linear programming
methodology and is an example of one type of singular behavior [8]. The exclusion of killing
is merely for convenience so as to clearly observe the effect discounting has on the problem.
The generator A for a killed diffusion is Af (y) = 1

2σ
2(y)f ′′(y)+ µ(y)f ′(y)− c(y)f (y),

where c ≥ 0 gives the state-dependent killing rate; when discounting is also included, the
operator of interest is Af (y)− αf (y) = 1

2σ
2(y)f ′′(y)+ µ(y)f ′(y)− (c(y)+ α)f (y). The

key requirements for this paper are that (1.4) has decreasing and increasing solutions φ and ψ ,
respectively (see [3, 10, p. 18]), and that Condition 1.1 has a solution. Thus, the results of this
paper easily extend to diffusions having state-dependent killing rates.

2. LP problem and stopping rule analysis

For models in which both boundaries xl and xr are exit-not-entrance points, the arguments
of Sections 2, 3, and 4 hold without restrictions on the set of stopping times. For models in
which one of xl or xr is either a natural or an entrance-not-exit boundary point, it is necessary
to first restrict the optimization problem to a subclass A1 of stopping times. We then show
in Section 5 that the optimal solution for the restricted problem is optimal for the unrestricted
problem.

Suppose that xl is either a natural or entrance-not-exit boundary. Each stopping time τ in
A1 satisfies the condition that there exists some aτ with xl < aτ ≤ x such that X(t) ≥ aτ for
all 0 ≤ t ≤ τ . Similarly, when xr is either a natural or entrance-not-exit boundary point, for
each stopping time τ ∈ A1, there exists some x ≤ bτ < xr for whichX(t) ≤ bτ for 0 ≤ t ≤ τ .
For the case that both xl and xr are natural or entrance-not-exit, both of these conditions must
be satisfied and, hence, for 0 ≤ t ≤ τ , aτ ≤ X(t) ≤ bτ for some aτ and bτ . The choice of aτ
and bτ depend on the particular stopping time τ ∈ A1 and, hence, may differ for different τ ,
but the requirement that aτ ≤ X(t) ≤ bτ must hold for all 0 ≤ t ≤ τ .

2.1. Derivation of the LP

We take the initial position x ∈ (xl, xr ) to be arbitrary but fixed in the following discussion.
We focus our arguments on natural or entrance-not-exit boundary points and consider functions
on the open interval (xl, xr ); the case for exit boundary points involves using nice functions on
the closed interval and considering times up to the lifetime ζ of the process.

Let f ∈ C2(xl, xr ) have compact support. Since X satisfies (1.1), an application of Itô’s
formula yields

e−αtf (X(t)) = f (x)+
∫ t

0
e−αs[Af (X(s))− αf (X(s))] ds +

∫ t

0
e−αsf ′(X(s)) dW(s).

Now let τ be any stopping time in A1. The optional sampling theorem [7, Theorem 2.2.13]
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implies that

e−α(t∧τ)f (X(t ∧ τ))− f (x)−
∫ t∧τ

0
e−αs[Af (X(s))− αf (X(s))] ds

=
∫ t∧τ

0
e−αsf ′(X(s)) dW(s), (2.1)

and so the left-hand side is a martingale. Since µ and σ are bounded on compact sets, and f
and its derivatives are bounded, taking expectations in (2.1) and letting t → ∞ yields Dynkin’s
formula (see, e.g. [10, p. 98])

E

[
e−ατ f (X(τ)) 1{τ<∞} −

∫ τ

0
e−αs[Af (X(s))− αf (X(s))] ds

]
= f (x). (2.2)

Note, in particular, that τ is not assumed to be almost surely finite. We observe that

lim
t↗∞ e−α(t∧τ)f (X(t ∧ τ)) = 0

on the set {τ = ∞}, so 1{τ<∞} may be included in the limiting expression. The identity (2.2)
holds for all f ∈ C2

c (xl, xr ).
We now specialize (2.2) to the eigenfunctions φ and ψ that solve (1.4). It is for this reason

that we need to restrict the stopping times to the set A1. Let τ ∈ A1 be chosen arbitrarily,
and let aτ and bτ denote the values such that xl < aτ ≤ X(t) ≤ bτ < xr for all 0 ≤ t ≤ τ .
Select a mollifying function ξ ∈ C2

c (xl, xr ) with ξ(x) = 1 for x ∈ [aτ , bτ ]. Taking f = ξφ

and f = ξψ shows that (2.2) holds for the functions φ and ψ with the added benefit that
Af − αf ≡ 0 on [aτ , bτ ] so the integral term is 0.

The LP associated with the optimal stopping problem uses a discounted stopping distribution.
Define the measure µτ as

µτ (G) = E[e−ατ 1G(X(τ)) 1{τ<∞}] for all G ∈ B[xl, xr ]. (2.3)

Observe that µτ has total mass that is less than or equal to 1. Taking the mollified φ and ψ
functions, the identity (2.2) can be expressed in terms of µτ as∫

φ dµτ = φ(x) and
∫
ψ dµτ = ψ(x). (2.4)

Note the dependence of this identity on the initial position x of the diffusion X. Turning to the
objective function (1.5), observe that it can also be expressed in terms of µτ as

Jr(τ ; x) =
∫
gr dµτ . (2.5)

We therefore observe that, for each stopping time τ ∈ A1 and process X satisfying (1.1),
the corresponding measure µτ satisfies (2.4) and the value Jr(τ ; x) is given by (2.5). Thus, the
optimal stopping problem is imbedded in the LP⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
∫
gr dµ

Subject to
∫
φ dµ = φ(x),∫
ψ dµ = ψ(x),∫
1 dµ ≤ 1,

µ is a nonnegative measure.

(2.6)
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Denote the value of this LP by VLP(x). It immediately follows that

V1(x) ≤ VLP(x). (2.7)

We place the following additional assumption on the problem to ensure that VLP(x) is finite.

Condition 2.1. For each x ∈ (xl, xr ),

sup
xl≤y≤x

gr(y)

φ(y)
< ∞ and sup

x≤y≤xr
gr (y)

ψ(y)
< ∞.

Since both φ and ψ are bounded on compact subsets of (xl, xr ), Condition 2.1 requires
that gr also be bounded on compact subsets of (xl, xr ). When xl or xr is an exit-not-entrance
boundary point, φ(xl+) < ∞ or ψ(xr−) < ∞, respectively, so Condition 2.1 implies that gr
is bounded at such boundary points. In the case of natural or entrance-not-exit boundary points,
φ(y) or ψ(y) go to ∞ as y approaches such a boundary point so gr may be unbounded near
such points. We adopt Condition 2.1 since it captures these variations in a simple manner.

2.2. Analysis of the hitting time of {a, b}
The constraints of LP (2.6) can be used to determine the values corresponding to a simple

stopping rule that plays a central role in the construction of the value function. In particular,
we examine the reward obtained by a two-point hitting time of levels on both sides of x.

Fix a and b with xl < a ≤ x ≤ b < xr , and consider the stopping rule τa,b = inf{t ≥
0 : X(t) ∈ {a, b}}, the first hitting time of either level a or level b. Definition (2.3) implies that
µτa,b has {a, b} for its support and hence (2.4) results in the system

φ(a)µτa,b (a)+ φ(b)µτa,b (b) = φ(x), ψ(a)µτa,b (a)+ ψ(b)µτa,b (b) = ψ(x).

Two cases must be considered. When a = x = b, the equation involving φ reduces to
φ(x)µτx (x) = φ(x), and similarly for ψ with solution µτx (x) = 1. Now suppose that a < b.
The solution of the system is then

µτa,b (a) = φ(x)ψ(b)− φ(b)ψ(x)

φ(a)ψ(b)− φ(b)ψ(a)
and µτa,b (b) = φ(a)ψ(x)− φ(x)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)
. (2.8)

These masses are nonnegative since φ is decreasing and ψ is increasing. It therefore follows
that the reward associated with the stopping rule τa,b is

Jr(τa,b; x) =
⎧⎨⎩gr(x), a = b,

gr(a)
φ(x)ψ(b)− φ(b)ψ(x)

φ(a)ψ(b)− φ(b)ψ(a)
+ gr(b)

φ(a)ψ(x)− φ(x)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)
, a < b.

(2.9)
Examining the expression for J (τa,b; x) when a < b, we see that it simplifies to gr(x) when
either a = x < b or a < x = b.

Remark 2.1. We observe the following limiting results which agree with our intuition. For
each c ∈ (xl, xr ), let τc = inf{t > 0 : X(t) = c}. When xr is either a natural boundary point or
an entrance-not-exit boundary point, ψ(xr−) = ∞. As a result, if we hold the left boundary
point a fixed and let b → xr , the expression for µτa,b (a) → φ(x)/φ(a) = µτa (a) (see [3,
Section II.10, p. 18]) and µτa,b (b) → 0. Hence, Jr(τa,b; x) converges to

Jr(τa; x) = φ(x)gr(a)

φ(a)
. (2.10)
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Similarly, when xl is either a natural or entrance-not-exit boundary point, φ(xl+) = ∞, and
holding b fixed and letting a → xl yields µτa,b (a) → 0 and µτa,b (b) → ψ(x)/ψ(b) = µτb(b).
Again, it follows that Jr(τa,b; x) converges to

Jr(τb; x) = ψ(x)gr(b)

ψ(b)
. (2.11)

A benefit of these observations is that our optimization of Jr(τa,b; x) in Section 4 allows for
one-sided stopping rules to be seen to be optimal.

Remark 2.2. Expression (2.9) forJ (τa,b; x) exhibits an interesting result whengr = c1φ+c2ψ

for any constants c1 and c2. This situation occurs when the running reward r ≡ 0 and the
terminal reward is g = c1φ + c2ψ . For each choice of stopping locations a and b, by explicit
computation, J (τa,b; x) = c1φ(x) + c2ψ(x) and, thus, every two-point stopping rule has the
same value. Of course, this observation is merely a special case of (2.4).

Finally, observe that, for any choice of a and b, with xl < a ≤ x ≤ b < xr , the reward
obtained using stopping rule τa,b is no greater than the optimal reward:

Jr(τa,b, x) ≤ V1(x). (2.12)

3. Dual LP and weak duality

In this section we analyze the LP (2.6) using the dual LP and a further restricted LP. For the
remainder of this section, fix x ∈ (xl, xr ) arbitrarily.

To develop a dual LP corresponding to (2.6), observe that, since there are three constraints,
there will be three dual variables, which we denote by c1, c2, and c3. The dual LP is⎧⎪⎪⎪⎨⎪⎪⎪⎩

Minimize c1φ(x)+ c2ψ(x)+ c3

Subject to c1φ(y)+ c2ψ(y)+ c31(y) ≥ gr(y) for all y ∈ [xl, xr ],
c1, c2 unrestricted,

c3 ≥ 0.

(3.1)

In this LP, the function 1 represents the constant function taking value 1. Let VDLP(x) denote
the value of this dual LP.

Theorem 3.1. For x ∈ (xl, xr ),
VDLP(x) ≥ VLP(x). (3.2)

Proof. Observe that Condition 2.1 implies the existence of feasible points for the dual
LP (3.1), and takingµ = δ{x} shows that the feasible set for the LP (2.6) is nonempty. A standard
weak duality argument therefore establishes the result.

Finally, we restrict the feasible set of the dual LP (3.1) by setting c3 = 0. This results in a
restricted dual LP⎧⎪⎨⎪⎩

Minimize c1φ(x)+ c2ψ(x)

Subject to c1φ(y)+ c2ψ(y) ≥ gr(y) for all y ∈ [xl, xr ],
c1, c2 unrestricted.

(3.3)
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Denote the value of (3.3) by VRDLP(x). The above discussion implies that the feasible set of
the dual LP (3.1) contains the feasible set of restricted dual LP (3.3), so

VDLP(x) ≤ VRDLP(x). (3.4)

Now look carefully at this restricted dual LP. The function c1φ+c2ψ satisfies the differential
equation Af − αf = 0 and, to be feasible, is required to lie above the reward function. The
goal of the LP is to pick the values c1 and c2 so as to minimize the objective function.

Combining the set of inequalities in (2.7), (2.12), (3.2), and (3.4) yields, for every xl < a ≤
x ≤ b < xr with x ∈ (xl, xr ),

Jr(τa,b; x) ≤ V1(x) ≤ VLP(x) ≤ VDLP(x) ≤ VRDLP(x). (3.5)

At this point, it will be helpful for our further discussion to state clearly the weak duality
result that will be exploited. Let J ∗

r (x) = sup{a,b : xl<a≤x≤b<xr } Jr(τa,b; x) denote the optimal
value associated by restricting the stopping rules to the set {τa,b : xl < a ≤ x ≤ b < xr}. Also,
define Â to be the set of feasible c1, c2 for (3.3) and let Ĵr (c1, c2; x) = c1φ(x)+ c2ψ(x). Then
VRDLP(x) = infc1,c2∈Â Ĵr (c1, c2; x).
Theorem 3.2. (Weak duality.) Let a and b satisfy xl < a ≤ x ≤ b < xr , and let c1 and c2 be
feasible for (3.3). Then

Jr(τa,b; x) ≤ J ∗
r (x) ≤ VRDLP(x) ≤ Ĵr (c1, c2; x). (3.6)

4. Optimization of Jr(τa,b; x) and strong duality

We return to the examination of the reward Jr(τa,b; x) associated with stopping at the first
hitting time of {a, b} and, in particular, we consider the optimization of this value over all
possible choices of a and b with xl ≤ a ≤ x and x ≤ b ≤ xr . Again, let x ∈ (xl, xr ) be fixed
for this discussion.

4.1. Existence of optimizers

We begin by considering the situation in which gr ≤ 0 and with xl and xr being either
natural boundaries or entrance-not-exit boundaries for the diffusion. This assumption means
that τxl,xr = ∞ almost surely and, moreover, φ(xl+) = ψ(xr−) = ∞. In this setting, an
optimal stopping rule is τxl,xr since Jr(τxl ,xr ; x) = 0 and stopping at any finite locations a and
b will result in a nonpositive expected reward.

For the rest of the optimization discussion, we assume that there is some y ∈ (xl, xr ) for
which gr(y) > 0. We now impose conditions which imply that J ∗

r (x) is achieved by some
points a∗ ∈ [xl, x] and b∗ ∈ [x, xr ].
Condition 4.1. Assume that gr satisfies the following:

(a) gr is upper semicontinuous;

(b) if xl is either a natural or an entrance-not-exit boundary point, then

lim
y→xl

gr (y)

φ(y)
= 0;

and
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(c) if xr is either a natural or an entrance-not-exit boundary point, then

lim
y→xr

gr (y)

ψ(y)
= 0.

Since fr is continuous, Condition 4.1(a) requires g to be upper semicontinuous.

Theorem 4.1. Under Conditions 2.1 and 4.1, for each x ∈ (xl, xr ), there exist values a∗ =
a∗(x) ∈ [xl, x] and b∗ = b∗(x) ∈ [x, xr ] such that Jr(τa∗,b∗; x) = J ∗

r (x).

Proof. When J ∗
r (x) = gr(x), the choice of a∗ = x = b∗ satisfies the claim. So assume that

J ∗
r (x) > gr(x). Let {(an, bn) : n ∈ N} be a sequence with an < x and bn > x for all n ∈ N

such that Jr(τan,bn; x) → J ∗
r (x) as n → ∞.

Compactify the interval [xl, xr ] when xl and/or xr are either natural or entrance-not-exit
boundary points. It then follows that there exists a subsequence {nk} and values a∗ and b∗ such
that ank → a∗ and bnk → b∗. To simplify notation, assume that the original sequence has the
properties of this subsequence. The following set of relations then holds:

J ∗
r (x) = lim

n→∞ Jr(τan,bn; x)

= lim
n→∞

(
gr(an)

φ(x)ψ(bn)− φ(bn)ψ(x)

φ(an)ψ(bn)− φ(bn)ψ(an)
+ gr(bn)

φ(an)ψ(x)− φ(x)ψ(an)

φ(an)ψ(bn)− φ(bn)ψ(an)

)
≤ gr(a

∗) φ(x)ψ(b
∗)− φ(b∗)ψ(x)

φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)
+ gr(b

∗) φ(a
∗)ψ(x)− φ(x)ψ(a∗)

φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)
= Jr(τa∗,b∗; x)
≤ J ∗

r (x);
the first inequality follows since the continuity ofφ andψ imply the convergence of the fractions
and gr is upper semicontinuous. Thus, equality holds throughout these relations and τa∗,b∗ is
an optimal stopping time.

To be precise, should a∗ = xl with xl being a natural or an entrance-not-exit boundary point
and b∗ be an interior point of the interval [xl, xr ], the limiting expression is (ψ(x)/ψ(b∗))
gr(b

∗) = Jr(τb∗; x) and τb∗ is optimal. A similar comment applies to the case of b∗ = xr with
a∗ ∈ (xl, xr ), yielding τa∗ as an optimal stopping time.

The case in which a∗ = xl and b∗ = xr with both boundary points being either natural
or entrance-not-exit does not arise. For if it did, Condition 4.1(b) and (c) imply that the
coefficients of gr(a∗) and gr(b∗) would be 0, corresponding to τa∗,b∗ = ∞ almost surely, and,
hence, Jr(τa∗,b∗; x) = 0. But there exists some y ∈ (xl, xr )with gr(y) > 0. The stopping time
τy which stops the process when it first hits {y} will have a strictly positive value for Jr(τy; x),
contradicting 0 = limn→∞ Jr(τan,bn; x) = J ∗

r (x).

Remark 4.1. The above proof only uses upper semicontinuity of gr at the optimizing points
a∗ and b∗. We would therefore be able to relax the upper semicontinuity assumption on gr so
that it is required to only hold at the optimizers.

4.2. Strong duality

At this point an observation is very helpful in preparation for the proof of the strong duality
theorem. To this point we have been considering a single initial point x and the LPs related to
it. The value function Vr is a function of the initial position and we will prove that the values
of the family of LPs parameterized by x give Vr . It is thus beneficial to consider more than a
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single initial value at a time. For instance, should x be an initial value such that a∗ < x < b∗,
then the optimization of J (τa,b; x̃) for every other initial value x̃ ∈ (a∗, b∗) implies that a∗
and b∗ are also optimal for x̃. The nondegenerate interval (a∗, b∗) is thus seen to be part
of the continuation region C described in the introduction in which it is optimal to allow the
process X to continue without stopping. Let C = ∪{x ∈ (xl, xr ) : a∗(x) < x < b∗(x)} be the
continuation region. The set S = [xl, xr ] ∩ Cc is the stopping region. Let C denote the closure
of C, and let S◦ denote the interior of S.

The following proposition identifies a condition under which x is an element of C.

Proposition 4.1. If lim supy→x gr(y) < gr(x) then x ∈ C.

Proof. Suppose that x is a point at which lim supy→x gr(y) < gr(x). Choose δ such that
0 < δ < gr(x)− lim supy→x gr(y). Let y1 < x be fixed, and consider the stopping rule τy1,x

when the initial value is y with y1 < y < x. The value associated with this rule is

Jr(τy1,x; y) = φ(y)ψ(x)− φ(x)ψ(y)

φ(y1)ψ(x)− φ(x)ψ(y1)
gr(y1)+ φ(y1)ψ(y)− φ(y)ψ(y1)

φ(y1)ψ(x)− φ(x)ψ(y1)
gr(x).

Observe that the coefficient of gr(y1) converges to 0 as y converges to x and, similarly, the
coefficient of gr(x) converges to 1. Select y2 < x such that, for all y2 < y < x, gr(y) <
gr(x)− δ,∣∣∣∣ φ(y)ψ(x)− φ(x)ψ(y)

φ(y1)ψ(x)− φ(x)ψ(y1)
gr(y1)

∣∣∣∣ < δ

3
and

φ(y1)ψ(y)− φ(y)ψ(y1)

φ(y1)ψ(x)− φ(x)ψ(y1)
gr(x) > gr(x)− δ

3
.

Then, for all y2 < y < x, Jr(τy1,x; y) > gr(y) and y ∈ C.

Having established the existence of optimizers a∗ = a∗(x) and b∗ = b∗(x) for the optimal
stopping problem restricted to two-point stopping rules, the goal is to prove the optimality of
τa∗,b∗ for the general stopping problem. Our approach will be to obtain coefficients c∗1 and c∗2
that are feasible for the restricted dual LP with Ĵ (c∗1, c∗2; x) = J (τa∗,b∗; x) and, thus, equality
will hold throughout (3.5) and (3.6). To achieve this result, we must further restrict the class of
reward functions.

Condition 4.2. For each x ∈ (xl, xr ) for which lim supy→x g(y) = g(x),

(a) we have

−∞ < lim inf
y↗x

g(y)− g(x)

y − x
< ∞ and − ∞ < lim sup

z↘x

g(z)− g(x)

z− x
< ∞;

and

(b) if x is a point where

lim inf
y↗x

g(y)− g(x)

y − x
�= lim sup

z↘x

g(z)− g(x)

z− x
,

then there exists a sequence {yn < x : n ∈ N}, with yn → x and

g(yn)− g(x)

yn − x
→ lim inf

y↗x

g(y)− g(x)

y − x
as n → ∞,
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such that, for each n,

lim inf
y↗yn

g(y)− g(yn)

y − yn
= lim sup

z↘yn

g(z)− g(yn)

z− yn
, (4.1)

or there exists a sequence {zn > x : n ∈ N} with limn→∞ zn = x and

lim
n→∞

g(zn)− g(x)

zn − x
= lim sup

z↘x

g(z)− g(x)

z− x

such that (4.1) is satisfied for each n when zn replaces yn.

Observe that Condition 4.2(b) is satisfied, for example, when g is C1 in either a left
neighborhood or a right neighborhood of x with the left-hand derivative or right-hand derivative
of g, respectively, existing at x.

Since fr ∈ C2[xl, xr ], the function gr = fr + g inherits the properties in Condition 4.2
from g. The proof of our main result uses these properties of gr .

Theorem 4.2. (Strong duality.) Under Conditions 2.1, 4.1, and 4.2 on g or gr , for x ∈ (xl, xr ),
there exist stopping locations a∗ ∈ [xl, x] and b∗ ∈ [x, xr ] and coefficients (c∗1 ,c∗2) ∈ Â such
that

Jr(τa∗,b∗; x) = J ∗
r (x) = V1(x) = VRDLP(x) = Ĵr (c

∗
1, c

∗
2; x).

Proof. The existence ofa∗ andb∗ such thatJr(τa∗,b∗; x) = J ∗
r (x) follows from Theorem 4.1.

Note in (2.9) that, when a = x or b = x, Jr(τx,b; x) = gr(x) so

J ∗
r (x) = sup

{a,b : xl≤a≤x≤b≤xr }
Jr(τa,b; x) ≥ gr(x).

It is necessary to consider different cases for the initial value x. Before doing so, however,
we examine the value associated with a two-point hitting rule and establish some notation.

Observe that the expression for Jr(τa,b; x) in (2.9) with a < x < b can be rewritten as

Jr(τa,b; x) = gr(a)ψ(b)− gr(b)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)
φ(x)+ gr(b)φ(a)− gr(a)φ(b)

φ(a)ψ(b)− φ(b)ψ(a)
ψ(x). (4.2)

Define the coefficients c1 and c2 by

c1(a, b) = gr(a)ψ(b)− gr(b)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)
and c2(a, b) = gr(b)φ(a)− gr(a)φ(b)

φ(a)ψ(b)− φ(b)ψ(a)
. (4.3)

Now, let

Ja,b(y) = c1(a, b)φ(y)+ c2(a, b)ψ(y) for y ∈ [xl, xr ];
that is, we define the function Ja,b on [xl, xr ] to have the form of Jr(τa,b; x) in (4.2), but do
not require the independent variable to lie in the interval (a, b).

Case (a). Suppose that x ∈ C. Then there are points a∗ and b∗ such that

a∗ = a∗(x) < x < b∗(x) = b∗.
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We claim that Ja∗,b∗ ≥ gr . To verify this claim, consider first a = y < x and b = b∗. Then
Jr(τy,b∗; x) ≤ Jr(τa∗,b∗; x) implies that

c1(y, b
∗)φ(x)+ c2(y, b

∗)ψ(x) ≤ c1(a
∗, b∗)φ(x)+ c2(a

∗, b∗)ψ(x).

Using the definitions of c1 and c2 in (4.3) and rewriting the expressions as in (2.9), we have

φ(x)ψ(b∗)− φ(b∗)ψ(x)
φ(y)ψ(b∗)− φ(b∗)ψ(y)

gr(y)+ φ(y)ψ(x)− φ(x)ψ(y)

φ(y)ψ(b∗)− φ(b∗)ψ(y)
gr(b

∗)

≤ φ(x)ψ(b∗)− φ(b∗)ψ(x)
φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)

gr(a
∗)+ φ(a∗)ψ(x)− φ(x)ψ(a∗)

φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)
gr(b

∗).

Isolating gr(y) on the left-hand-side results in

gr(y) ≤ φ(y)ψ(b∗)− φ(b∗)ψ(y)
φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)

gr(a
∗)

+
(
φ(y)ψ(b∗)− φ(b∗)ψ(y)
φ(x)ψ(b∗)− φ(b∗)ψ(x)

)
×

[
φ(a∗)ψ(x)− φ(x)ψ(a∗)
φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)

− φ(y)ψ(x)− φ(x)ψ(y)

φ(y)ψ(b∗)− φ(b∗)ψ(y)

]
gr(b

∗)

= φ(y)ψ(b∗)− φ(b∗)ψ(y)
φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)

gr(a
∗)+ φ(a∗)ψ(y)− φ(y)ψ(a∗)

φ(a∗)ψ(b∗)− φ(b∗)ψ(a∗)
gr(b

∗)

= c1(a
∗, b∗)φ(y)+ c2(a

∗, b∗)ψ(y)
= Ja∗,b∗(y).

Using a similar computation with a = a∗ and b = y > x establishes the claim. We therefore
see that this choice of c∗1 = c1(a

∗, b∗) and c∗2 = c2(a
∗, b∗) is feasible for the restricted dual

LP (3.3) and (a∗, b∗) is optimal for the problem of maximizing Jr(τa,b; x) over a and b, and,
moreover, by the definition of c∗1 and c∗2, Jr(τa∗,b∗; x) = Ĵr (c

∗
1, c

∗
2; x).

Case (b). Suppose that x ∈ ∂C, the boundary of C. There are two cases to consider.
(i) Suppose that x is a point at which lim supy→x gr(y) < gr(x). Since x /∈ C, the proof

of Proposition 4.1 shows that, for y sufficiently close to x, with y < x, y ∈ C and b∗(y) = x.
Since a∗(y) < b∗(y) = x, the result of case (a) applies so that fixing y < x sufficiently close
to x and defining c∗1 = c1(a

∗(y), x) and c∗2 = c2(a
∗(y), x), the function c∗1φ + c∗2ψ majorizes

gr with equality holding at x.
(ii) Now suppose that x ∈ ∂C with lim supy→x gr(y) = gr(x). Then there exists a sequence

{xn ∈ C : n ∈ N} such that limn→∞ xn → x. Without loss of generality, assume that xn ↘ x.
By considering a subsequence, if necessary, we may assume that

gr(xn)− gr(x)

xn − x
→ lim sup

n→∞
gr(xn)− gr(x)

xn − x
=: m.

Since each xn ∈ C, a∗
n := a∗(xn) < b∗(xn) =: b∗

n. Observe that x ≤ a∗
n < xn so, as n → ∞,

a∗
n ↘ x. Should b∗

n converge to some value b∗ ∈ (x, xr ], the proof of case (a) applies. So
assume that b∗

n ↘ x as n → ∞. Define cn1 = c1(a
∗
n, b

∗
n) and cn2 = c2(a

∗
n, b

∗
n). It then follows

that cn1φ + cn2ψ majorizes gr with equality holding at xn. We investigate the limit of cn1 as
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n → ∞. Observe that

c1(a
∗
n, b

∗
n) = gr(a

∗
n)ψ(b

∗
n)− gr(b

∗
n)ψ(a

∗
n)

φ(a∗
n)ψ(b

∗
n)− φ(b∗

n)ψ(a
∗
n)

= gr(a
∗
n)ψ(b

∗
n)− gr(a

∗
n)ψ(a

∗
n)+ gr(a

∗
n)ψ(a

∗
n)− gr(b

∗
n)ψ(a

∗
n)

φ(a∗
n)ψ(b

∗
n)− φ(a∗

n)ψ(a
∗
n)+ φ(a∗

n)ψ(a
∗
n)− φ(b∗

n)ψ(a
∗
n)

=
(
gr(a

∗
n)
ψ(b∗

n)− ψ(a∗
n)

b∗
n − a∗

n

− gr(b
∗
n)− gr(a

∗
n)

b∗
n − a∗

n

ψ(a∗
n)

)
×

(
φ(a∗

n)
ψ(b∗

n)− ψ(a∗
n)

b∗
n − a∗

n

− φ(b∗
n)− φ(a∗

n)

b∗
n − a∗

n

ψ(a∗
n)

)−1

.

Letting n → ∞, we see that

cn1 → gr(x)ψ
′(x)−mψ(x)

φ(x)ψ ′(x)− φ′(x)ψ(x)
=: c+1 .

A similar analysis shows that, as n → ∞,

cn2 → mφ(x)− gr(x)φ
′(x)

φ(x)ψ ′(x)− φ′(x)ψ(x)
=: c+2

and, thus, cn1φ + cn2ψ converges to c+1 φ + c+2 ψ . Therefore, c+1 φ + c+2 ψ majorizes gr and,
moreover, [c+1 φ + c+2 ψ](x) = gr(x).

Case (c). Suppose that x ∈ S◦. Then a∗(x) = x = b∗(x). In this case, c∗1 = c1(x, x) and
c∗2 = c2(x, x) are not defined and we need a different argument.

(i) To begin, consider the situation in which

lim inf
y↗x

gr(y)− gr(x)

y − x
= lim sup

z↘x

gr(z)− gr(x)

z− x
=: m.

We seek constants c1 and c2 such that the function c1φ + c2ψ majorizes gr and equality holds
at the initial value x. Consider the system of equations

c1φ(x)+ c2ψ(x) = gr(x), c1φ
′(x)+ c2ψ

′(x) = m. (4.4)

The solution to this system is

c1 = gr(x)ψ
′(x)−mψ(x)

φ(x)ψ ′(x)− φ′(x)ψ(x)
and c2 = mφ(x)− gr(x)φ

′(x)
φ(x)ψ ′(x)− φ′(x)ψ(x)

. (4.5)

We claim the function c1φ + c2ψ majorizes gr .
To see this, let ε > 0 be chosen arbitrarily and let y < x be arbitrary, z > x will be specified

later. The optimality of τx implies that Jr(τy,z; x) ≤ Jr(τx; x) = gr(x). Writing Jr(τy,z; x) as
in (2.9) and isolating gr(y) leads to the inequality

gr(y) ≤ φ(y)ψ(z)− φ(z)ψ(y)

φ(x)ψ(z)− φ(z)ψ(x)
gr(x)− φ(y)ψ(x)− φ(x)ψ(y)

φ(x)ψ(z)− φ(z)ψ(x)
gr(z)

= gr(x)ψ(z)− gr(z)ψ(x)

φ(x)ψ(z)− φ(z)ψ(x)
φ(y)+ gr(z)φ(x)− gr(x)φ(z)

φ(x)ψ(z)− φ(z)ψ(x)
ψ(y). (4.6)
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Now, as in case (b)(ii), examine the coefficient of φ(y). We have

gr(x)ψ(z)− gr(z)ψ(x)

φ(x)ψ(z)− φ(z)ψ(x)
= gr(x)ψ(z)− gr(x)ψ(x)+ gr(x)ψ(x)− gr(z)ψ(x)

φ(x)ψ(z)− φ(x)ψ(x)+ φ(x)ψ(x)− φ(z)ψ(x)

=
(
gr(x)

ψ(z)− ψ(x)

z− x
− gr(z)− gr(x)

z− x
ψ(x)

)
×

(
φ(x)

ψ(z)− ψ(x)

z− x
− φ(z)− φ(x)

z− x
ψ(x)

)−1

and, thus, letting {zn > z : n ∈ N} be a sequence with zn → x such that (gr(zn)− gr(x))/(zn−
x) → m, it follows that

lim
n→∞

gr(x)ψ(zn)− gr(zn)ψ(x)

φ(x)ψ(zn)− φ(zn)ψ(x)
= gr(x)ψ

′(x)−mψ(x)

φ(x)ψ ′(x)− φ′(x)ψ(x)
.

Arguing similarly with the coefficient of ψ(y) yields

lim
n→∞

gr(zn)φ(x)− gr(x)φ(zn)

φ(x)ψ(zn)− φ(zn)ψ(x)
= mφ(x)− gr(x)φ

′(x)
φ(x)ψ ′(x)− φ′(x)ψ(x)

.

Recalling that y is fixed, let N ∈ N be such that, for all n ≥ N ,∣∣∣∣gr(x)ψ(zn)− gr(zn)ψ(x)

φ(x)ψ(zn)− φ(zn)ψ(x)
− gr(x)ψ

′(x)−mψ(x)

φ(x)ψ ′(x)− φ′(x)ψ(x)

∣∣∣∣ < ε

φ(y)+ ψ(y)
(4.7)

and ∣∣∣∣gr(zn)φ(x)− gr(x)φ(zn)

φ(x)ψ(zn)− φ(zn)ψ(x)
− mφ(x)− gr(x)φ

′(x)
φ(x)ψ ′(x)− φ′(x)ψ(x)

∣∣∣∣ < ε

φ(y)+ ψ(y)
. (4.8)

Using the estimates in (4.7) and (4.8) in (4.6) yields

gr(y) ≤ gr(x)ψ
′(x)−mψ(x)

φ(x)ψ ′(x)− φ′(x)ψ(x)
φ(y)+ mφ(x)− gr(x)φ

′(x)
φ(x)ψ ′(x)− φ′(x)ψ(x)

ψ(y)+ ε

= c1φ(y)+ c2ψ(y)+ ε.

Since ε > 0 is arbitrary, the claim holds for all y < x.
A similar argument with z > x chosen arbitrarily and yn < x chosen in a similar approxi-

mating sequence close enough to x establishes the relation for z > x. Thus, when

lim inf
y↗x

gr(y)− gr(x)

y − x
= lim sup

z↘x

gr(z)− gr(x)

z− x
= m

at x and a∗ = x = b∗, we see that defining c1 and c2 as in (4.5) produces the function c1φ+c2ψ

which majorizes gr with [c1φ + c2ψ](x) = gr(x) and, hence, τx = 0 is optimal.
(ii) Suppose that gr satisfies Condition 4.2(b) at x with a ‘>’ inequality and, for simplic-

ity, assume that there is a left-approximating sequence {yn < x : n ∈ N} and let mn :=
lim infy↗yn(gr(y)− gr(yn))/(y − yn). A similar argument will apply when a right-approxi-
mating sequence {zn > x : n ∈ N} exists.

Let m := lim infy↗x(gr(y)− gr(x))/(y − x), and define the coefficients c−1 and c−2 to be
the solutions of the system (4.4). We claim that the function c−1 φ + c−2 ψ majorizes gr and
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satisfies [c−1 φ + c−2 ψ](x) = gr(x). The latter condition follows immediately from the first
equation in the system, so we only need to show that c−1 φ + c−2 ψ majorizes gr .

Since x ∈ S◦, there is some δ such that, for all x̃ ∈ (x − δ, x), a∗(x̃) = x̃ = b∗(x̃). For
yn ∈ (x − δ, x), define cn1 and cn2 as in (4.5) withmn replacingm. Case (b)(i) then implies that
cn1φ+cn2ψmajorizesgr and [cn1φ+cn2ψ](yn) = gr(yn). Since (gr(yn)− gr(x))/(yn − x) → m

as n → ∞, it follows that gr(yn) → gr(x). Letting n → ∞, the continuity of the derivatives
of φ and ψ and the existence of the finite limit m of (gr(yn)− gr(x))/(yn − x) implies that
cn1 → c−1 and cn2 → c−2 , and, hence, cn1φ + cn2ψ → c−1 φ + c−2 ψ . Therefore, c−1 φ + c−2 ψ
majorizes gr .

Observe that, when gr satisfies both approximating sequences in Condition 4.2(b), we are
able to make this argument on both sides to obtain pairs of coefficients (c−1 , c

−
2 ) and (c+1 , c

+
2 )

such that both c−1 φ + c−2 ψ and c+1 φ + c+2 ψ majorize gr and agree with gr at x. Using convex
combinations shows that the whole family of coefficients (λc−1 + (1−λ)c+1 , λc−2 + (1−λ)c+2 ),
where 0 ≤ λ ≤ 1, also provide majorizing functions.

(iii) Suppose that gr satisfies Condition 4.2(b) at x with a ‘<’ inequality. The same proof as
in case (b)(ii) applies to establish that c−1 φ + c−2 ψ majorizes gr , with equality at x. However,
c−1 φ + c−2 ψ is smooth at x so

[c−1 φ + c−2 ψ]′(x) ≤ lim inf
y↗x

gr(y)− gr(x)

y − x
< lim sup

z↘x

gr(z)− gr(x)

z− x
.

Thus, [c−1 φ+ c−2 ψ](z) < gr(z) for some z > x sufficiently close to x, a contradiction. Hence,
x ∈ S◦ implies that Condition 4.2(b) can only be satisfied with a ‘>’ inequality.

The proof of case (b)(iii) indicates a condition which implies that x ∈ C. We formalize this
result in the following proposition.

Proposition 4.2. Suppose that gr satisfies Conditions 2.1, 4.1, and 4.2. If x is a point at which

lim inf
y↗x

gr(y)− gr(x)

y − x
< lim sup

z↘x

gr(z)− gr(x)

z− x

then x ∈ C.

An implication of Theorem 4.2 is that the optimal stopping problem has been reformulated
as two different optimization problems. We may solve the nonlinear maximization problem
J (τa,b; x) over the values of a ≤ x and b ≥ x. We may also solve the restricted dual LP
(3.3) over coefficients c1 and c2. Only Conditions 2.1, 4.1, and 4.2 are imposed on gr so little
regularity is required.

We emphasize the constructive nature of this approach. For each initial position x, the
optimizing values a∗ and b∗ determine an interval [a∗, b∗] which may be degenerate. Consider
an x for which a∗ < x < b∗ so that the interval [a∗, b∗] is not degenerate. Then, for each
x ∈ [a∗, b∗], the corresponding optimizing values are also given by a∗ and b∗. So, for each x
in the interval, the coefficients c∗1 and c∗2 given by (4.3) are constant. Moreover, on [a∗, b∗],
c∗1φ + c∗2ψ is the minimal harmonic function which majorizes gr . Thus, a single optimization
determines the value function over the interval;

V1(x) = c∗1φ(x)+ c∗2ψ(x), x ∈ [a∗, b∗].
For the degenerate interval [a∗, b∗] = {x}, the proof of Theorem 4.2 shows how to find
coefficients c∗1 and c∗2 such that c∗1φ + c∗2ψ majorizes gr with c∗1φ(x) + c∗2ψ(x) = gr(x).
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Thus, the value function can be constructed by solving the family of nonlinear optimization
problems or by solving the family of restricted dual LPs (3.3) or by some combination of these
approaches.

4.3. Smooth pasting

Suppose now that gr has some additional smoothness. Specifically, suppose that gr is C1

in a neighborhood of the optimizing values a∗ and b∗. For each a and b with a ≤ x ≤ b and
a < b, define functions c1 and c2 by (4.3). Since we are interested in optimizing with respect to
a and b, we simplify notation by letting h(a, b) = J (τa,b; x) = c1(a, b)φ(x)+ c2(a, b)ψ(x).
Using the smoothness of gr , taking partial derivatives with respect to a and b and simplifying
the expressions yields

∂h

∂a
(a, b) =

[
g′
r (a)−

(
gr(a)ψ(b)− gr(b)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)
φ′(a)+ gr(b)φ(a)− gr(a)φ(b)

φ(a)ψ(b)− φ(b)ψ(a)
ψ ′(a)

)]
(4.9)

×
[
φ(x)ψ(b)− φ(b)ψ(x)

φ(a)ψ(b)− φ(b)ψ(a)

]
= [g′

r (a)− (c1(a, b)φ + c2(a, b)ψ)
′(a)]

[
φ(x)ψ(b)− φ(b)ψ(x)

φ(a)ψ(b)− φ(b)ψ(a)

]
(4.10)

and

∂h

∂b
(a, b) =

[
g′
r (b)−

(
gr(a)ψ(b)− gr(b)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)
φ′(b)+ gr(b)φ(a)− gr(a)φ(b)

φ(a)ψ(b)− φ(b)ψ(a)
ψ ′(b)

)]
(4.11)

×
[
φ(a)ψ(x)− φ(x)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)

]
= [g′

r (b)− (c1(a, b)φ + c2(a, b)ψ)
′(b)]

[
φ(a)ψ(x)− φ(x)ψ(a)

φ(a)ψ(b)− φ(b)ψ(a)

]
. (4.12)

Consider the expression on the right-hand side of (4.9). When x = b, the second factor is 0,
indicating that there is no change in h as one moves the stopping location a. This is intuitively
clear since x = b implies that the process is stopped immediately. For a ≤ x < b, the second
factor is strictly positive and less than or equal to 1. A similar analysis of the right-hand side
expression in (4.11) shows that the second factor is 0 when x = a, and is strictly positive and
bounded by 1 for a < x ≤ b.

From these observations, we see that setting ha = 0 and hb = 0 requires either a = x or,
from (4.10),

g′
r (a) = (c1(a, b)φ + c2(a, b)ψ)

′(a) (4.13)

and b = x or, from (4.12),

g′
r (b) = (c1(a, b)φ + c2(a, b)ψ)

′(b). (4.14)

Thus, when a∗ �= x and b∗ �= x, the optimization over a and b imposes equality of the first
derivatives of the functions gr and c1(a, b)φ + c2(a, b)ψ at the optimizers. At the beginning
of Section 4, it was shown that

gr(a) = (c1(a, b)φ + c2(a, b)ψ)(a) and gr(b) = (c1(a, b)φ + c2(a, b)ψ)(b)

for every choice of a and b. This means that at an optimal pair (a∗, b∗) of stopping locations,
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either a∗ = x and the process stops immediately or a∗ satisfies the smooth pasting condition,
and, similarly, either b∗ = x or the smooth pasting condition is satisfied at b∗.

In the case of natural or entrance-not-exit boundary points, we point out that a∗ could be
xl , in which case Jr(τxl ,b; x) has expression (2.11) and the smooth pasting condition is only
required at b∗, and, similarly, should b∗ = xr , the expression for Jr(τa,xr ; x) is (2.10) and
smooth pasting is only required at a∗.

The above argument assumes that the partial derivatives ∂h/∂a and ∂h/∂b actually equal 0
for some a and b with xl ≤ a ≤ x and x ≤ b ≤ xr . The optimal value could also occur with
a = xl or b = xr without either the smooth pasting condition holding or a∗ or b∗ being x. The
endpoints must also be considered when determining the optimizing values of a and b.

5. Unrestricted stopping problem

This section extends the optimality of the two-point stopping rule to the unrestricted problem
which optimizes Jr(τ ; x) over τ ∈ A. The extension requires an additional assumption on gr .
Observe that gr = fr + g in which fr satisfies Condition 1.1. Whereas it may be reasonable to
assume that the payoff functiong at the stopping location is nonnegative, the solutionfr depends
on the running reward function r , so imposing nonnegativity on fr will be too restrictive. Let
g+
r and g−

r denote the positive and negative parts of gr , respectively.

Condition 5.1. The family of random variables {e−ατ g−
r (X(τ)) 1{τ<∞} : τ ∈ A1} is uniformly

integrable.

Remark 5.1. Condition 5.1 involves the processX and the stopping times τ as well as knowl-
edge of g−

r , so may be difficult to check. However, a sufficient condition on the function gr
under which Condition 5.1 is readily verifiable is that gr be bounded below.

The following theorem demonstrates that the values of the unrestricted and restricted stopping
problems are the same.

Theorem 5.1. Assume that Conditions 2.1, 4.1, and 5.1 hold. Then

V1(x) = sup
τ∈A1

Jr(τ ; x) = sup
τ∈A

Jr(τ ; x) = Vr(x).

Proof. We prove that the result in the event xl is either a natural or entrance-not-exit boundary
point and that xr is an exit-not-entrance boundary point; the argument is symmetric when the
classifications of xl and xr are reversed and easily combine when both are natural or entrance-
not-exit.

Select τ ∈ A arbitrarily. Let {an} be a strictly decreasing sequence with an ↘ xl . Let τan =
inf{t ≥ 0 : X(t) = an}. Observe that, for each n, τan ∈ A1 and, furthermore, τ ∧ τan ∈ A1. It
therefore follows that, for each n,

V1(x) ≥ E[e−α(τ∧τan )gr (X(τ ∧ τan)) 1{τ∧τan<∞}]
= E[e−α(τ∧τan )g+

r (X(τ ∧ τan))1{τ∧τan<∞}] −E[e−α(τ∧τan )g−
r (X(τ ∧ τan))1{τ∧τan<∞}]

≥ E[e−α(τ∧τan )g+
r (X(τ ∧ τan)) 1{τ∧τan<∞} 1{τ<∞}]

− E[e−α(τ∧τan )g−
r (X(τ ∧ τan)) 1{τ∧τan<∞} 1{τ<∞}]

− E[e−α(τ∧τan )g−
r (X(τ ∧ τan)) 1{τ∧τan<∞} 1{τ=∞}]. (5.1)
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The second inequality is justified since the integrand in the first expectation is nonnegative and
is being integrated over a smaller set. Observe that on the set {τ < ∞}, τ ∧ τan → τ since
τan → ∞ a.s.; in fact, for each ω ∈ {τ < ∞}, τ(ω) ∧ τan(ω) = τ(ω) for sufficiently large n,
and, hence, again, for sufficiently large n,

e−α(τ(ω)∧τan (ω))g+
r (X(τ(ω) ∧ τan(ω), ω)) 1{τ∧τan<∞} 1{τ<∞}

= e−ατ(ω)g+
r (X(τ(ω), ω)) 1{τ<∞} .

Thus,

lim
n→∞ e−α(τ∧τan )g+

r (X(τ ∧ τan)) 1{τ∧τan<∞} 1{τ<∞} = e−ατ g+
r (X(τ)) 1{τ<∞} a.s.,

with the same result holding for g−
r replacing g+

r . Now consider the last expectation in (5.1).
On the event {τ = ∞}, τ ∧ τan = τan , so this expectation becomes

E[e−ατan g−
r (X(τan)) 1{τan<∞} 1{τ=∞}]. (5.2)

We claim that (5.2) converges to 0 as n → ∞. To see this, observe that the integrand is
nonnegative, so we have

E[e−ατan g−
r (X(τan)) 1{τan<∞} 1{τ=∞}] ≤ E[e−ατan g−

r (X(τan))]
= g−

r (an)E[e−ατan ]
= g−

r (an)
φ(x)

φ(an)
.

By Condition 4.1(b), this upper bound converges to 0 as n → ∞. Returning to the examination
of (5.1), Condition 5.1 implies that {e−α(τ∧τan )g−

r (X(τ∧τan)) 1{τ∧τan<∞} 1{τ<∞}} is uniformly
integrable. Hence, applying Fatou’s Lemma yields

V1(x) ≥ lim inf
n→∞ E[e−α(τ∧τan )g+

r (X(τ ∧ τan)) 1{τ∧τan<∞}]
− lim
n→∞ E[e−α(τ∧τan )g−

r (X(τ ∧ τan)) 1{τ∧τan<∞}]
≥ E[e−ατ g+

r (X(τ)) 1{τ<∞}] − E[e−ατ g−
r (X(τ)) 1{τ<∞}]

= E[e−ατ gr(X(τ)) 1{τ<∞}].
Taking the supremum over τ ∈ A demonstrates V1(x) ≥ Vr(x). Since A1 ⊂ A, the opposite
inequality follows immediately, establishing the result.

6. Examples

In this section we illustrate how to construct the value function V using the nonlinear
optimization method, the restricted dual LP, and a combination of these approaches. We consider
a geometric Brownian motion process for these examples. This choice of diffusion implies that
xl = 0 and xr = ∞, and that both boundaries are natural. Additional examples involving
other types of processes may be found in [9], though for those examples the initial position
is assumed to be small. For later reference, we begin by determining the important results
concerning geometric Brownian motion.
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Let α > 0 denote the discount rate, and let µ ≤ α and σ > 0 be constants. We assume that
the process X satisfies the stochastic differential equation

dX(t) = µX(t) dt + σX(t) dW(t), X(0) = x > 0. (6.1)

The generator A of the process X is Af (y) = (σ 2/2)y2f ′′(y)+ µyf ′(y), so the solutions
of the differential equation (1.4) are φ(y) = yγ1 and ψ(y) = yγ2 , in which

γ1 := 1

2
− µ

σ 2 −
√(

1

2
− µ

σ 2

)2

+ 2α

σ 2 < 0 <
1

2
− µ

σ 2 +
√(

1

2
− µ

σ 2

)2

+ 2α

σ 2 =: γ2. (6.2)

Consider a general solution f = c1φ + c2ψ in which c1, c2 > 0. Evaluating the derivative
we have f ′(y) = γ1c1y

(γ1−1) + γ2c2y
(γ2−1). Setting f ′ = 0 and solving for y yields

yc =
(−c1γ1

c2γ2

)1/(γ2−γ1)

.

Observe that f ′′(y) > 0 for y > 0 since α ≥ µ implies that γ2 ≥ 1. Thus, f ′ is strictly
decreasing for y < yc and strictly increasing for y > yc, and, hence, yc is a minimizer of f .

We utilize this structure of f .

Example 6.1. (Perpetual put option.) For this example, X represents the price of a risky asset
in a Black–Scholes market. Let K > 0 denote the option’s strike price. The goal is to select a
stopping time τ so as to maximize

E[e−ατ (K −X(τ))+].
For this optimization problem to give the risk-neutral price of the option, α is the interest rate
on the nonrisky asset and the expectation is taken with respect to the risk-neutral measure with
the result that the mean rate of return of the risky asset is µ = α. As a result, γ1 = −2α/σ 2

and γ2 = 1.
This optimal stopping problem has no running reward r; a reward g is only earned when the

option is exercised at the stopping time. The reward function is g(y) = (K − y)+. Our goal
is, for each x ∈ (0,∞), to maximize (2.9) over stopping locations a and b with a ≤ x ≤ b.

We note that, since r = 0, Jr = J , so we drop the subscript for both J and Ĵ in the discussion
of this example.

Solution 1: maximizing J (τa,b; x). Initial analysis of stopping location a to the left of x.
Consider the case when x > K . For any stopping location a with a > K and, hence, any b
with b > K as well, J (τa,b; x) = 0 by simple evaluation of (2.9) since g(a) = 0 = g(b). But,
for each a ∈ (0,K), J (τa,b; x) > 0, so the optimal choice a∗ must be less than K .

Analysis of stopping location b to the right of x. Now consider the case x > 0, and let a <
x∧K . First consider the case when x < b < K . The function Ja,b having expression (4.2) but
which takes the independent variable in [xl, xr ] is strictly convex and satisfies Ja,b(a) = K−a
and Ja,b(b) = K − b, and, hence, it follows that Ja,b(x) < K − x = gr(x).

Now consider any b > K ∨ x and the stopping time τa,b. The second summand in (2.9) is 0
and the first summand depends only on b in its mass. In fact, this mass is an increasing function
of b and, hence, the maximal value occurs when b = ∞. This means that an optimal stopping
rule has the form τa which exercises the option when the stock price first hits some value a.
The goal now reduces to maximizing J (τa; x) given by (2.10) over values of a ∈ [0,K].
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g(a*)

φ(a*)
φ

(a) (b)

a*

g

K a*

V

Figure 1: Relation between g and (g(a∗)/φ(a∗))φ and the value function V .

Fix x > 0, and let h(a) = (g(a)/φ(a))φ(x) = (Ka−γ1 −a1−γ1)xγ1 for 0 < a < K . Setting
h′(a) = 0 results in a∗ = −Kγ1/(1 − γ1). A simple analysis shows that a∗ is a maximizer.
This means that, for any x ≥ a∗, an optimal stopping rule is given by τa∗ . The relationship
between the functions g and (g(a∗)/φ(a∗))φ is displayed in Figure 1(a).

Analysis when x < a∗. Now consider 0 < x < a∗. Suppose that there is an optimal
stopping location a1 < x < a∗. Since, for 0 < y < K , g is continuously differentiable,
a1 would satisfy the smooth pasting principle. However, a∗ is the unique value at which
(g(a)/φ(a))φ′(a) = −1 = g′(a). Thus, for no a1 < x < a∗ is a1 an optimal stopping
location. It then follows that the optimal stopping rule is to stop immediately.

The value function V and optimal stopping time τ ∗ are given by

V (x) =
⎧⎨⎩K − x for 0 ≤ x ≤ a∗,

(K − a∗)
(
x

a∗

)γ1

for x ≥ a∗,
and τ ∗ =

{
τx = 0 for x ≤ a∗,

τa∗ for x ≥ a∗.

The value function V is displayed in Figure 1(b).

Solution 2: minimizing Ĵ (c1, c2; gr). We demonstrate how to use the restricted dual LP (3.3)
to obtain the value function. Let x > 0 be fixed. First observe that the majorizing condition
of c1φ + c2ψ over g along with φ(0+) = ∞ and the strict positivity of g near 0 implies that
c1 must be positive. Also, since ψ(∞) = ∞ and φ(∞) = 0, c2 must also be nonnegative.
Since ψ(x) > 0, the objective function would be minimized if c2 = 0. In this case, the
majorizing condition reduces to c1φ ≥ g, yielding c∗1 = sup0<a≤x g(a)/φ(a). Observe that
a∗ = (−γ1/(1 − γ1))K is the optimizer. Thus, for any initial value x ≥ a∗, the pair (c∗1, 0)
provides the optimal solution for the restricted dual LP.

For x < a∗, c2 must be positive. In trying to minimize [c1φ + c2ψ](x) subject to the
majorizing condition, we must have [c1φ + c2ψ](x) ≥ g(x). The question then arises as to
whether it is possible to have [c1φ+ c2ψ](x) = g(x). Since g is C1 on (0, a∗), the majorizing
requirement implies that [c1φ + c2ψ]′(x) = g′(x) when [c1φ + c2ψ](x) = g(x). This then
sets up the system (4.4) of linear equations that determine the optimal choice of c∗1 and c∗2
given by (4.5). Since [c∗1φ + c∗2ψ]′′ > 0, [c∗1φ + c∗2ψ]′ is strictly increasing and it follows that
c∗1φ + c∗2ψ majorizes g.
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Example 6.2. (Forest harvest with carbon credits.) Let X satisfy (6.1) with µ, σ > 0. The
process X now represents the quantity of lumber in a stand of forest. When the stand is
harvested, it earns a net profit of g(y) = k1y

β − k2, in which k1, k2 > 0 and β > 0. Until
harvest, the owner is paid a carbon credit that is proportional to the same power of the size of the
forest, so r(y) = Ryβ . The owner’s objective is to select a stopping time τ so as to maximize

E

[ ∫ τ

0
e−αtRXβ(t) dt + e−ατ (k1X

β(τ)− k2)

]
. (6.3)

We make the following assumptions about the relation between the parameters. In order to
have a finite maximum in (6.3), we impose the condition that β < γ2, where γ2 is defined
in (6.2); otherwise, the owner can receive arbitrarily large discounted rewards by choosing to
stop when X hits sufficiently large values. The assumption that 0 < β < γ2 also implies that
(σ 2/2)β(β−1)+µβ−α < 0. In addition, we assume that k1[α−βµ−(σ 2/2)β(β−1)] > R,
which will imply the existence of a finite optimal stopping time.

Applying the differential operator Af − αf to the function

fr(y) = R

(σ 2/2)β(β − 1)+ µβ − α
yβ

results inAfr−αfr = Ryβ . Let k3 = k1+R/((σ 2/2)β(β − 1)+ µβ − α). Thus, the function
gr(y) = fr(y)+g(y) = k3y

β −k2. We note that the assumptions on the parameters imply that
k3 > 0, so that the owner has an incentive to harvest the lumber at some point. It then follows
that gr is strictly increasing, gr(0) = −k2 and gr(y0) = 0 for y0 = (k2/k3)

1/β . For x < y0,
choosing any value a such that 0 < a < x has value J (τa,b; a) = gr(a) < 0. Selecting a = 0
and b ≥ y0 and, hence, c1(a, b) = 0, however, yields

J (τa,b; x) = J (τb; x) = gr(b)

ψ(b)
xγ2 ,

with the result that its value is nonnegative for all x ≥ 0. Thus, for sufficiently small x, the
optimal stopping time will be τb for some b > x ∨ y0. We now seek the optimal value of b.

Define h(b) = gr(b)/ψ(b) = k3b
β−γ2 − k2b

−γ2 . Setting the derivative of h equal to 0
yields

0 = k3(β − γ2)b
β−γ2−1 + k2γ2b

−γ2−1 = [k3(β − γ2)b
β + k2γ2]b−γ2−1,

and, hence, a unique maximum occurs at b∗ = (k2γ2/k3(γ2 − β))1/β .
Now consider the situation for x ∈ (b∗,∞). Since, for x > b∗, gr ∈ C1(b∗,∞). If there

were two distinct points a∗ and b∗ for which the stopping time τa∗,b∗ would be optimal, the
points would need to satisfy the smooth pasting conditions (4.13) and (4.14). These conditions
would imply that g′

r (y) = c1φ
′(y)+ c2ψ

′(y) for at least two values of y. Differentiating

h1(y) = c1φ
′(y)+ c2ψ

′(y)
g′
r (y)

= c1γ1

k3β
yγ1−β + c2γ2

k3β
yγ2−β

yields

h′
1(y) = c1γ1(γ1 − β)

k3β
yγ1−β−1 + c2γ2(γ2 − β)

k3β
yγ2−β−1 > 0.
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The ratio (c1φ
′ + c2ψ

′)/g′
r is therefore strictly increasing andb∗ is the only value which satisfies

the smooth pasting principle. Thus, for x > b∗, there cannot be two distinct optimal points a∗
and b∗. The only optimal stopping rule is τ ∗ = 0.

The value function is therefore

Vr(x) =
⎧⎨⎩

(
gr(b

∗)
(b∗)γ2

)
xγ2 for x ≤ b∗,

k3x − k2 for x ≥ b∗.

The value function for the original stopping problem is

V (x) =
⎧⎨⎩

(
gr(b

∗)
(b∗)γ2

− R

(σ 2/2)β(β − 1)+ µβ − α

)
xγ2 for x ≤ b∗,

k1x
β − k2 for x ≥ b∗.

7. Concluding remarks

In this paper we established two complementary optimization approaches to the solution
of optimal stopping problems for one-dimensional diffusions. One method recast the problem
as a nonlinear maximization over two-point stopping locations while the other determined a
semi-infinite linear program over the coefficients of the harmonic functions. The combination
of an explicit formula for the expected reward obtained using a two-point hitting rule and duality
analysis proved that the class of such two-point hitting times contains an optimal stopping rule.

The method is local in nature in that the optimization problems are parameterized by the
initial position x of the diffusion. Therefore, in principle, it is necessary to solve the entire
family of optimization problems in order to determine the value function. In practice, however,
the structure of the two-point stopping rules determines the value function over intervals of
initial values. Strong duality between the optimization problems allows us to choose whichever
problem is easier to analyze for a given initial value.

The restricted dual linear program (3.3) is quite similar to the approach of Shiryaev [15] in that
it seeks a minimal harmonic function which majorizes the terminal reward function. Shiryaev’s
approach seeks a minimal super-harmonic function for all values of x since this function is the
value function V . Our approach only determines the value function piecewise, so is able to
utilize the fundamental solutions of the differential equation Af − αf = 0 to characterize all
harmonic functions. When the pieces are connected, the resulting value function is, of course,
superharmonic.
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