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Abstract. We present in this work the development of a solar data assimilation method based on
an axisymmetric mean field dynamo model and magnetic surface data. Our mid-term goal is to
predict the solar quasi cyclic activity. We focus on the ability of our variational data assimilation
algorithm to constrain the deep meridional circulation of the Sun based on solar magnetic
observations. Within a given assimilation window, the assimilation procedure minimizes the
differences between data and the forecast from the model, by finding an optimal meridional
circulation in the convection zone, and an optimal initial magnetic field, via a quasi-Newton
algorithm. We demonstrate the capability of the technique to estimate the meridional flow by a
closed-loop experiment involving 40 years of synthetic, solar-like data. We show that the method
is robust in estimating a (stochastic) time-varying flow fluctuating 30% about the average, and
that the horizon of predictability of the method is ~ 1 cycle length.
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1. Introduction

Solar activity impacts space-weather and influences our modern technology-based so-
ciety significantly, so it is important to obtain good solar predictions. The most common
index to quantify solar activity is the sunspot number (SSN) (Clette et al. 2014; Vaquero
et al. 2016), and Wolf reconstructed the past SSN from 1749. In addition, the surface
magnetic field of the Sun is also an important observable. Observations of solar magnetic
field can at least be traced back to 1908 (Hale 1908). Solar activity is quasiperiodic with
sunspot cycle of 11+3 years (Clette & Lefevre 2012). Those cycles, however, vary in both
their period and amplitude (Svalgaard, Cagnotti & Cortesi 2015), which raises questions
regarding their predictability (Ossendrijver et al. 2002; Tobias et al. 1998). Data assim-
ilation is an emerging technique in solar prediction, which incorporates observations in
numerical models (Brun 2007). For examples of application in studying solar activity,
see Dikpati, Anderson & Mitra (2014), Dikpati, Anderson & Mitra (2016) and Jouve,
Brun & Talagrand (2011). In this work, we develop a variational data assimilation tech-
nique to analyze magnetic observations of the Sun. By controlling selected parameters
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of the physical model, an optimal fit of data is obtained over the time window when
observations are available. We adopt the 4D-Var method, which minimizes the misfit or
objective function, by using the adjoint model (Fournier et al. 2010; Talagrand 2010).
This is based on the Babcock-Leighton flux transport mean field dynamo model (Bab-
cock 1961; Leighton 1969; Jouve & Brun 2007) and its adjoint. The initial magnetic
field and the meridional flow are the control parameters, as they determine the phase and
the cycle length of the magnetic field. While recent estimate of meridional flow from he-
lioseismology below the solar surface suggests the possibility of more complex structures
other than a unicellular one (Zhao et al. 2013; Schad, Timmer & Roth 2013; Haber et al.
2002; Kholikov, Serebryanskiy & Jackiewicz 2014), there is no unique conclusion on the
meridional structure, which raises the interest of estimating the meridional flow with a
dynamo model. We show that we get a satisfactory estimate of the true time varying
profile of the meridional circulation, and reconstruct the magnetic trajectory.

2. Data Assimilation Framework

We develop a data assimilation technique to estimate the initial magnetic field and the
flow of the Sun on the meridional plane. We aim to minimize an objective function 7,
defined in terms of the differences between the observations and the model trajectory,

Ng .o Na o N 0 9 9
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where o denotes the type of magnetic proxy y to be compared. The proxies with the
superscript © stand for observations, and without for the forecast values, and o, stands
for the errors. For each type o we sum over the observation times and latitudes, N? , and
N, respectively. In the assimilation setup, the magnetic observations are compared
with the forecast values from the flux transport dynamo model. The latter is controlled
by the state vector x, which consists of the initial magnetic field and the flow of the
model on the meridional plane. We adopt a quasi-Newton algorithm in the minimization
of the objective function (Gilbert & Lemaréchal 1989), and the gradient of the function
with respect to x is obtained by the adjoint model (Hung et al. 2015, 2017).

3. Closed-loop experiment and results

We verify and study our assimilation framework with a closed-loop numerical experi-
ment. We generate synthetic observations from the same model used in the assimilation
procedure with a known set of control parameters, contribute to the truth state x’. Then,
by ingesting the synthetic observations, we show that we are able to estimate the truth
state. In our example shown, we create an meridional circulation as a linear combination
of 2 time varying expansion coefficients of the basis functions on the meridional plane.
These 2 basis functions are of opposite parity about the equator, so that the flow and
and corresponding field can be equatorially asymmetric. The scale of the stochastic time
variability (~ 3 years) is chosen to be of the same order as the observed flow (Ulrich
2010). Furthermore, the amplitude of the fluctuation (30% of the average) is adjusted
so that the corresponding fluctuation of the cycle length in the model is close to the ob-
served 11 4 3 years. We show the time-latitude plot of the surface flow in Figure 1. The
synthetic magnetic proxy we used in this experiment is the surface magnetic field at the
line of sight (Bj,s), and the toroidal field energy at the tachocline in both hemispheres
(which mimic the hemispheric SSNs), and the data is noised artificially with 10% of its
root mean square. We show the magnetic butterfly diagrams of the Bj,; and the toroidal
field at the tachocline (r = 0.7Rg) in Figure 2. We assimilate the synthetic data yearly
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Figure 1. Latitudinal component of the
flow at the surface as a function on arbi-
trary time unit. The assimilation period
in the numerical experiment which fol-
lows is indicated by the dashed vertical
lines. The sign convention is positive for
a flow due south.
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Figure 3. (a) Time series of the coeff. of
the unicellular component of the merid-
ional circulation. The reference time se-
ries is in broken line. The piecewise con-
stant red (blue) curve is the result of
assimilating synthetic observations from
a unicellular (asymmetric) prior infor-
mation. (b) Same for the antisymmetric
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Figure 2. Top: time-latitude plot of the
toroidal field at the tachocline. Bottom:
Same for Bj,s at the surface.
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Figure 4. Top: Absolute difference be-
tween various estimates of the toroidal
magnetic field and the true magnetic
field versus time. Blue broken: free run
of the dynamo model (unconstrained by
data). Black: data assimilation estimate,
with data consisting of Bj,s and pseudo
sunspot number (toroidal field energy at
the tachocline). Bottom: Same for the
poloidal magnetic field.

component.

for 40 consecutive years. Figure 3 shows the result of the estimate of the expansion co-
efficients of the meridional circulation. We approximate the true, smooth, time varying
profiles with piecewise constant functions, by ingesting the synthetic observations yearly
and assuming the flow is constant within each year. This estimate reasonably captures
the time variability of the flow. Figure 4 shows the total error of the estimated poloidal
field potential (Ay) and the toroidal field (By) (black curves), defined by integration of
the differences between the truth and the estimate over the meridional plane. The errors
are compared with the counterparts of a free dynamo run without assimilation (blue bro-
ken curves). When the synthetic observations are available, the errors in the estimate are
5% or less than the counterparts of the free run. After year 40, the errors start to grow
and reach the free run case after ~ 15 years without input of the data, which indicates
the predicative capability in this example.

4. Summary

Our numerical experiment shows the capability of the data assimilation framework
in estimating the deep meridional circulation of the Sun using magnetic proxies. We
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construct synthetic magnetic proxies with artificial random noise from the model, like
By,s and the sunspot number, by relating them to the surface poloidal field potential
and the toroidal field in the tachocline computed from the flux transport dynamo model.
We then show that, by ingesting the synthetic monthly observations using a 4D-Var
assimilation method over one-year long time intervals, we are able to reconstruct the time
varying flow for 40 years. The method can also account for the equatorial asymmetry
of the observed magnetic field as well as an asymmetric meridional flow, hence it is not
impaired by symmetry of any sort. By comparing the time evolution of the error of the
estimated magnetic field with that of a free dynamo run where no data assimilation
is done, we conclude that in this experiment, the predictive capability of the method
is about 15 years. More details and analysis can be found in Hung et al. (2017). Our
future development include (i) analyzing magnetic proxies of the real Sun with the data
assimilation method, (ii) improving the representation of the meridional circulation in
the assimilation framework, such as adding the acceleration of the fluid to the control
vector, and (iii) including physical constraints in the objective function.
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