ON L^{2}-BETTI NUMBERS FOR ABELIAN GROUPS

BY
HAROLD DONNELLY

1. Introduction. Let M be a differentiable manifold which admits the free action of a group Γ with compact quotient $M^{\prime}=M / \Gamma$. Suppose that the Γ action lifts to a Hermitian vector bundle $E \rightarrow M^{\prime}$. If Γ leaves invariant a measure μ on M, then denote by $L^{2}(E)$ the completion of $C_{0}^{\infty}(E)$ with respect to the inner product $\langle f, g\rangle=\int_{M}\langle f, g\rangle_{E} d \mu$, for $f, g \in C_{0}^{\infty}(E)$.

Given a self-adjoint elliptic operator D on $L^{2}(E)$, let Ker D be the kernel of D. If $P: L^{2}(E) \rightarrow \operatorname{Ker} D$ is orthogonal projection then P is given by a smooth kernel $P(x, y) \in C^{\infty}\left(\operatorname{Hom}\left(E_{y}, E_{x}\right)\right)$ [1]. Following M. F. Atiyah, one defines

$$
\operatorname{dim}_{\Gamma} \operatorname{Ker} D=\int_{\mathscr{D}} \operatorname{Tr}(P(x, x)) d \mu(x)
$$

Here \mathscr{D} is a fundamental domain for Γ and Tr denotes the trace.
If Γ is finite then $\operatorname{dim} \operatorname{Ker} D$ is easily seen to be a multiple of the reciprocal of the order of Γ. It is a question of current research interest to determine which values are assumed by $\operatorname{dim}_{\Gamma} \operatorname{Ker} D$ for Γ of infinite order. Observe that Γ is necessarily finitely generated since it is a homomorphic image of $\pi_{1}\left(M^{\prime}\right)$, the fundamental group of the compact manifold M^{\prime}.

In the present note we will establish
Theorem 1.1. Let Γ be abelian with torsion subgroup of order k. Then, for any self-adjoint elliptic operator $D, k \operatorname{dim}_{\Gamma} \operatorname{Ker} D$ is an integer.

If M is a Riemannian manifold, $E=\Lambda^{p} M$, and $D=\Delta_{p}$ is the Laplacian of M acting on p-forms, then Theorem I. 1 is due to J. Cohen [3]. In fact, by the generalized DeRham-Hodge theory of J. Dodziuk [4], $\operatorname{dim}_{\Gamma} \operatorname{Ker} \Delta_{p}=\beta_{p}(\Gamma)$. Here $\beta_{p}(\Gamma)$ is a topological invariant representing the Γ-dimension of the p^{\prime} th L^{2}-cohomology group. Using Dodziuk's work, J. Cohen deduces Theorem 1.1 for Δ_{p} by algebraic methods.

The present paper was motivated by the desire to derive J. Cohen's results directly using the analytical framework of [1].
2. Analytic families of compact operators. The proof of Theorem 1.1 will require some preliminary lemmas concerning holomorphic families of compact operators $K(z), z \in C^{n}$. These results are known for $n=1[5, \mathrm{p} .371]$.

[^0]One has
Lemma 2.1. Let $K(z): H \rightarrow H$, where H is a Hilbert space, be an analytic family of compact operators parameterized by $z \in \Omega$, where Ω is a connected open set in C^{n}. Then there exists a locally finite collection of analytic sets $A_{\alpha} \subset \Omega$, $A_{\alpha} \neq \Omega$, so that on $\Omega-U_{\alpha} A_{\alpha}$ the multiplicity of the eigenvalue 1 for $K(z)$ is constant.

Proof. The result is local in nature, so it will suffice to establish our claim on a neighborhood U of each point in Ω. Here one needs the result that removing an analytic set from Ω will not disconnect $\Omega[6$, p. 6].

As is well-known, the eigenvalues of a compact operator may accumulate only at zero. Using this fact, the projection technique of [5, p. 370] reduces the problem to the case where $\operatorname{dim} H<\infty$.

Let $\operatorname{dim} H=n<\infty$. The eigenvalues ζ of $K(z)$ are given by

$$
\begin{equation*}
\zeta^{n}+f_{1}(z) \zeta^{n-1}+\cdots+f_{n}(z)=0 \tag{2.2}
\end{equation*}
$$

where the functions $f_{i}(z)$ are holomorphic. The singular points (z, ζ) of the analytic set C defined by (2.2) form an analytic subset $B \subset C, B \neq C$. Consider the map $\pi(z, \zeta)=z$ from B into U. Since π is at most n to 1 , the proper mapping theorem [6, p. 129] implies that $A_{0}=\pi(B)$ is an analytic set in U.

In $U-A_{0}$, the eigenvalues of $K(z)$ are given by analytic functions $g_{i}(z)$, $i=1, \ldots, n$. If $g_{i}(z)$ is not identically one, then $A_{i}=\left\{z \mid g_{i}(z)=1\right\}$ is an analytic set in $U, A_{i} \neq U$. The result follows.

Corollary 2.3. Let $Q \subset R^{n}$ be the set of real points in Ω, as in Lemma 2.1. Then the multiplicity of the eigenvalue 1 for $K(x), x \in Q$, is constant almost everywhere in Q.

The reason for considering families parameterized by C^{n}, rather than just R^{n}, is that a complex codimension one set cannot disconnect C^{n}, whereas a real codimension one set may disconnect R^{n}.
3. Rationality for Abelian Groups. Let Γ be a finitely generated abelian group. Denote $n=\operatorname{rank} \Gamma$ and $k=$ order torsion Γ. All unitary representations χ of Γ are one dimensional. Moreover, the set $\hat{\Gamma}$ of unitary representations admits the structure of a compact abelian Lie group, with multiplication given by $\left(\chi \chi^{\prime}\right)(\gamma)=\chi(\gamma) \chi^{\prime}(\gamma)$ for $\chi, \chi^{\prime} \in \hat{\Gamma}, \gamma \in \Gamma$. We may write $\hat{\Gamma}=T^{n} \times \Sigma_{k}$ where T^{n} is an n-torus and Σ_{k} is a collection of k discrete points. Let $\hat{\Gamma}$ be endowed with a $\hat{\Gamma}$-invariant measure of total measure one. Then each component of $\hat{\Gamma}$ has measure $1 / k$.

We will need two lemmas concerning the compact abelian Lie group $\hat{\Gamma}$:

Lemma 3.1 (Orthogonality Relations). Let $\gamma_{1}, \gamma_{2} \in \Gamma$ and $\chi \in \hat{\Gamma}$. Then

$$
\int_{\hat{r}} \chi\left(\gamma_{1}\right) \overline{\chi\left(\gamma_{2}\right)}= \begin{cases}0 & \gamma_{1} \neq \gamma_{2} \\ 1 & \gamma_{1}=\gamma_{2}\end{cases}
$$

Proof. [8, pp. 221-222]
Lemma 3.2 (Parseval's Formula). Let $f(\chi) \in L^{2}(\hat{\Gamma})$ and $a_{\gamma}(f)$ its Fourier coefficients defined by $a_{\gamma}(f)=\int_{\hat{\Gamma}} f(\chi) \overline{\chi(\gamma)}, \gamma \in \Gamma$. Then

$$
\int_{\hat{\Gamma}}|f(\chi)|^{2}=\sum_{\Gamma}\left|a_{\gamma}(f)\right|^{2}
$$

Proof. [7, vol. I, p. 45].
Our most basic result is
Theorem 3.3. Let $D, \Gamma, M, M^{\prime}, E, E^{\prime}$ be as in Theorem I. 1 and the introduction. Denote by D_{x} the elliptic operator on $L^{2}\left(E^{\prime}\right) \times L^{2}\left(F^{\prime}\right)$ induced by D. Here $F_{\chi} \rightarrow M^{\prime}$ is the flat bundle associated to the representation χ of Γ.

The Hilbert space $L^{2}(E)$ decomposes under the action of the group Γ as a direct integral:

$$
\begin{equation*}
L^{2}(E) \rightarrow \int_{\hat{\Gamma}} L^{2}\left(E^{\prime}\right) \otimes L^{2}\left(F_{\chi}\right) \tag{3.4}
\end{equation*}
$$

Moreover, U intertwines D with the direct integral:

$$
\begin{equation*}
D \rightarrow \int_{\Gamma} D_{\chi} \tag{3.5}
\end{equation*}
$$

Consequently, one has

$$
\begin{equation*}
\operatorname{dim}_{\Gamma} \operatorname{Ker} D=\int_{\hat{f}} \operatorname{dim}\left(\operatorname{Ker} D_{\chi}\right) \tag{3.6}
\end{equation*}
$$

Proof. For $f \in C_{0}^{\infty}(E)$, we define

$$
\begin{equation*}
U f(p, \chi)=\sum_{\Gamma} \overline{\chi(\gamma)} \gamma^{*} f(\gamma p) \tag{3.7}
\end{equation*}
$$

where we identify $p \in M^{\prime}$ with $p \in \mathscr{D}$, a fundamental domain for Γ.
Now

$$
\begin{aligned}
\|U f\|_{2}^{2}= & \int_{\Gamma} \int_{M^{\prime}}\|U f(p, \chi)\|^{2} \\
\|U f\|_{2}^{2}= & \int_{\Gamma} \int_{\mathscr{D}}\left\|\sum_{\Gamma} \overline{\chi(\gamma)} \gamma^{*} f(\gamma p)\right\|^{2} \\
\|U f\|_{2}^{2}= & \sum_{\gamma \in \Gamma} \sum_{\mu \in \Gamma} \int_{\Gamma} \bar{\chi}(\gamma) \chi(\mu) \\
& \times \int_{\mathscr{D}}\left\langle\gamma^{*} f(\gamma p), \mu^{*} f(\mu p)\right\rangle .
\end{aligned}
$$

Applying the orthogonality relations, Lemma 3.1, one obtains

$$
\begin{aligned}
& \|U f\|_{2}^{2}=\sum_{\gamma \in \Gamma} \int_{\mathscr{D}}\left\|\gamma^{*} f(\gamma p)\right\|^{2} \\
& \|U f\|_{2}^{2}=\int_{M}\|f(p)\|^{2}=\|f\|_{2}^{2} .
\end{aligned}
$$

This shows that U defined by (3.7) extends to an isometry of $L^{2}(E)$ into $\int_{\hat{\Gamma}} L^{2}\left(E^{\prime}\right) \otimes L^{2}\left(F_{\chi}\right)$.

One may easily check that the adjoint of U is given by

$$
\left(U^{*} g\right)(\gamma p)=\int_{\Gamma} \chi(\gamma) g_{\chi}(p)
$$

for $p \in \mathscr{D}$ and g a smooth element in $\int_{\hat{\Gamma}} L^{2}\left(E^{\prime}\right) \otimes L^{2}\left(F_{\chi}\right)$.
Moreover,

$$
\begin{aligned}
& \left\|U^{*} g\right\|_{2}^{2}=\int_{M}\left\|U^{*} g(p)\right\|^{2} \\
& \left\|U^{*} g\right\|_{2}^{2}=\sum_{\gamma \in \Gamma} \int_{\mathscr{D}}\left|\int_{\hat{\Gamma}} \chi(\gamma) g_{\chi}(p)\right|^{2} \\
& \left\|U^{*} g\right\|_{2}^{2}=\int_{\mathscr{D}} \sum_{\gamma \in \Gamma}\left|\int_{\hat{\Gamma}} \chi(\gamma) g_{\chi}(p)\right|^{2} .
\end{aligned}
$$

Applying Parseval's formula, Lemma 3.2, we conclude that

$$
\left\|U^{*} g\right\|_{2}^{2}=\int_{\mathscr{D}} \int_{\Gamma}\left|g_{x}(p)\right|^{2}=\|g\|_{2}^{2}
$$

Thus, U defined by (3.7) for $f \in C_{0}^{\infty}(E)$ extends to a unitary isomorphism $U: L^{2}(E) \rightarrow \int_{\hat{r}} L^{2}\left(E^{\prime}\right) \otimes L^{2}\left(F_{\chi}\right)$. It is clear from (3.7) that U intertwines D and $\int_{\hat{\Gamma}} D_{\chi}$. The orthogonal projection P onto ker D splits as $\int_{\hat{\Gamma}} P_{\chi}$, where P_{χ} is the projection of $L^{2}\left(E^{\prime}\right) \otimes L^{2}\left(F_{\chi}\right)$ onto ker D_{χ}. Thus

$$
\operatorname{dim}_{\Gamma} \operatorname{ker} D=\int_{\mathscr{D}} \operatorname{Tr} P(x, x)=\int_{\mathscr{D}} \operatorname{Tr}\left(\int_{\hat{\Gamma}} P_{\chi}\right)=\int_{\Gamma} \int_{M} \operatorname{Tr} P_{\chi}=\int_{\hat{\Gamma}} \operatorname{dim} \operatorname{ker} D_{\chi} .
$$

We will now use (3.6) to prove Theorem I.1. Observe that $D_{\chi} f=0$ if and only if $\exp \left(-D_{\chi}^{*} D_{\chi}\right) f=f$. Since M^{\prime} is compact, $\exp \left(-D_{\chi}^{*} D_{\chi}\right)$ is a compact operator [2]. Moreover, by considering non-unitary characters, we may extend $\exp \left(-D_{x}^{*} D_{\chi}\right)$ to a holomorphic family of n complex variables. Applying Corollary 2.3 , we conclude that $\operatorname{ker} D_{x}$ has constant dimension d_{i} almost everywhere on each component $\hat{\Gamma}_{i}$ of $\hat{\Gamma}, i=1, \ldots, k$. Then by (3.6):

$$
\operatorname{dim}_{\Gamma} \operatorname{ker} D=\frac{1}{k} \sum_{i=1}^{k} d_{i}
$$

This demonstrates Theorem I.1.

Our consideration of the map U in (3.4) was motivated by the study of the Schrodinger Operator for periodic potentials in Euclidean space [7, Vol. IV, p. 285].

Bibliography

1. M. F. Atiyah, Elliptic Operators, Discrete Groups, and Von Neumann Algebras, Societé Mathematique de France Astérisque 32-33 (1976), pp. 43-72.
2. M. F. Atiyah, R. Bott, and V. K. Patodi, On the Heat Equation and Index Theorem, Invent. Math. 19 (1973), pp. 279-330.
3. J. M. Cohen, Von Neumann Dimension and the Homology of Covering Spaces, Quart. J. Math., Oxford (2) 30 (1979), pp. 133-142.
4. J. Dodziuk, DeRham Hodge Theory for L^{2}-Cohomology of Infinite Coverings, Topology 16 (1977), pp. 157-166.
5. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, N.Y., 1966.
6. R. Narasimhan, Introduction to the Theory of Analytic Spaces, Springer-Verlag, Berlin, Heidelberg, N.Y., 1966.
7. M. Reed and B. Simon, Methods of Mathematical Physics, Vol. I, IV, Academic Press, N.Y., 1978.
8. L.S. Pontryagin, Topological Groups, Gordon and Breach, N.Y., London and Paris, 1966.

Purdue University

[^0]: Partially supported by NSF Grant MCS76-84177 and Sloan Fellowship.
 Received by the editors April 3, 1979 and in revised form, September 13, 1979.

